Analysis of Wind Characteristics of Wind-Profiler Radars and Their Quality Control Methods for Data Assimilation
-
摘要: 以美国国家环境预报中心全球预报系统(National Centers for Environmental Prediction/Global Forecast System,NCEP/GFS)0.5°×0.5°分析场作为数值预报背景场,结合地面降水资料,面向资料同化分析了2017年1~12月逐日00时、06时、12时、18时(协调世界时)福建12部L波段风廓线雷达(其中CFL-03系列3部、CFL-06系列9部)水平风产品质量特征,并初步探讨了不同质量控制方案的影响差异。结果表明:(1)CFL-06系列雷达在水平风的最大探测高度、有效数据获取率和低层水平风质量等方面明显优于CFL-03系列;(2)相同系列的不同风廓线雷达探测水平风的数据获取率、有效探测高度、标准差、相关系数及偏差的垂直分布特征等存在极大差异,该差异与风廓线雷达所处的地理位置(沿海或内陆)、海拔高度等并无直接关系;(3)各雷达站探测u风速相对背景场存在明显系统性负偏差,小于背景场,不满足资料同化对背景场的无偏需求,资料同化时需进行偏差订正;v风则相对较好;(4)降水对风廓线雷达探测影响较大,有降水时数据获取率在中低层有所减小,但在中高层则大幅提高;u、v风标准差在中低层有所增加,而在中高层v风标准差有所增加,u风标准差则大幅降低;(5)针对不同风廓线雷达,提出了不同高可信度区间和不同有效探测高度两种质量控制方案,并与固定有效探测高度方案进行了对比,结果表明,这两种质量控制方案皆具有明显优势。不同高可信度区间方案的质量控制效果更为显著,不同雷达站水平测风数据得到更加充分和有效识别,既减少了雷达资料不必要损失,又可将质量差的数据进一步剔除;该方案在有降水情形下也有较好效果。Abstract: With the 0.5°×0.5° analysis fields of the National Centers for Environmental Prediction/Global Forecast System (NCEP/GFS) as the numerical forecast background and using surface precipitation data aimed at data assimilation, in this study, we first analyzed the quality of wind products from 12 L-band wind-profiler radars in Fujian Province, including three CFL-03 radars and nine CFL-06 radars obtained at 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC from January to December 2017. Then, we considered different quality control (QC) schemes and their effects. The results indicate that: (1) Winds detected by CFL-06 radars are obviously better than those by CFL-03 radars with respect to the maximum detection height, effective data availability, and horizontal wind quality at low levels. (2) Great differences exist in the horizontal winds detected by different wind-profiler radars in same series, including data availability, effective detection height, and the vertical distributions of the standard deviation, correlation coefficients, and bias. These differences have no direct relationship with the geographical locations of the wind-profiler radars, i.e., coastal area or inland, or their heights above sea level. (3) Wind-profiler radar products have obvious systematic negative biases relative to the GFS u-wind field, that is, the u winds detected by wind-profiler radars are lower than the GFS background field. This does not meet the no-bias requirement for data assimilation, so bias corrections are necessary in the data assimilation process. In contrast, the v-wind data are relatively better than u-wind data. (4) Precipitation has a great impact on the detection capability of wind-profiler radars. On precipitation days, the data availability is decreased in the middle-low levels but greatly enhanced in the middle-high levels. The standard deviations of u and v winds both increase in the middle-low levels, whereas the standard deviation of the v winds increase and those of u winds greatly decrease in the middle-high levels. (5) Two QC schemes, i.e., a scheme using different high-confidence ranges and a scheme using different effective detection heights are introduced to different wind-profiler radars to compare their results with those of the fixed effective detection height scheme. The results show that the two QC schemes both have obvious advantages. The QC effect of the different high-confidence range scheme is much more obvious, with the horizontal wind data of different radars more fully and effectively identified. This scheme reduces unnecessary loss of radar data, eliminates poor quality data, and achieves good results regarding the precipitation conditions.
-
Key words:
- Wind profiler radar /
- Horizontal wind product /
- Characteristic analysis /
- Quality control
-
图 1 福建省风廓线雷达站点分布(WYS、YA、FQ、JO、LY、WP、JN、LC、DH、PT、PH、XA分别代表武夷山、永安、福清、建瓯、罗源、武平、建宁、连城、德化、平潭、平和、翔安,数字为各风廓线雷达站海拔高度)
Figure 1. Locations of wind-profiler radars in Fujian Province (WYS, YA, FQ, JO, LY, WP, JN, LC, DH, PT, PH, and XA indicate wind-profiler radars in Wuyishan, Yongan, Fuqing, Jianou, Luoyuan, Wuping, Jianning, Liancheng, Dehua, Pingtan, Pinghe, and Xiang’an, respectively. The values in meters indicate the altitudes)
图 12 风廓线雷达u风速与GFS背景场标准差的垂直分布(蓝线:有降水;黑线:无降水;红线:所有样本)
Figure 12. Vertical distributions of u-wind speed standard deviations of wind-profiler radar products relative to GFS background (blue line denotes samples with precipitation, black line indicates samples without precipitation, and red line shows all samples)
图 14 (a)方案1、(b)方案2及(c)方案3质量控制前后福建12部风廓线雷达水平风与GFS背景场的标准差(STD)、平均误差(ERR)及数据剔除率(PDR)(0代表无质量控制,1、2、3分别代表方案1、方案2和方案3)
Figure 14. Standard deviations (STDs) and mean errors (ERR) of horizontal winds detected by 12 wind-profiler radars in Fujian Province against GFS background and their percentages of data rejection (PDR) before and after QC with schemes 1 (a), 2 (b), and 3 (c), respectively (0 indicates no QC. 1, 2, and 3 denote QC with schemes 1, 2, and 3, respectively)
图 15 三种不同质量控制方案下风廓线雷达水平风与GFS背景场的标准差及数据剔除率(STD代表标准差;PDR代表数据剔除率;数字代表相应的质量控制方案)
Figure 15. Standard deviations of horizontal winds detected by wind-profiler radars against GFS background and their percentages of data rejection with three different QC schemes (STD denotes standard deviation. PDR indicates percentages of data rejection. Numbers indicate the corresponding QC scheme)
图 16 有降水情形下不同高可信度区间方案质量控制前后风廓线雷达水平风与GFS背景场的标准差(0代表有降水样本;3代表有降水样本中剔除了u、v风标准差≥4.5 m s−1所在高度层的数据)
Figure 16. Standard deviations of horizontal winds detected by wind-profiler radars against GFS background before and after quality control with schemes of different high-confidence ranges under precipitation conditions (0 denotes all samples with precipitation, and 3 denotes samples whose data at heights with standard deviations of u and v greater than 4.5 m s−1 are rejected under precipitation conditions)
表 1 基于水平风数据获取率阈值(0.8)的福建风廓线雷达有效探测高度
Table 1. Effective detection altitude of Fujian wind-profiler radars based on the threshold (0.8) of horizontal wind availability
雷达站(系列) 有效探测高度/m 雷达站(系列) 有效探测高度/m 雷达站(系列) 有效探测高度/m 武夷山(CFL-03) 2400 永安(CFL-03) 3720 福清(CFL-03) 2760 建瓯(CFL-06) 5550 罗源(CFL-06) 6270 武平(CFL-06) 5310 建宁(CFL-06) 5550 连城(CFL-06) 6030 德化(CFL-06) 5070 平潭(CFL-06) 6510 平和(CFL-06) 6030 翔安(CFL-06) 5790 表 2 福建风廓线雷达探测最低层水平风与GFS背景场的相关系数
Table 2. Correlations of horizontal winds in the lowest level detected by Fujian wind-profiler radars with GFS background
雷达站 雷达系列 海拔高度
/m探测高度
/mu风相
关系数v风相
关系数武夷山 CFL-03 224.2 60/180 −0.002/−0.005 0.077/0.116 永安 CFL-03 253.0 60/180 0.066/ 0.144 0.463/0.571 福清 CFL-03 51.9 60/180 −0.022/−0.023 0.401/0.648 建瓯 CFL-06 154.9 150 0.146 0.408 罗源 CFL-06 87.0 150 0.596 0.494 武平 CFL-06 307.0 150 0.178 0.289 建宁 CFL-06 342.3 150 0.390 0.583 连城 CFL-06 404.0 150 0.355 0.801 德化 CFL-06 640.2 150 0.275 0.424 平潭 CFL-06 18.3 150 0.615 0.418 平和 CFL-06 108.5 150 0.264 0.352 翔安 CFL-06 17.0 150 0.735 0.847 表 3 福建风廓线雷达水平风标准差小于4.5 m s−1的高度
Table 3. Heights with the standard deviation of horizontal winds detected by Fujian wind-profiler radars less than 4.5 m s−1
高度/m 高度/m 高度/m 雷达站 ustd<4.5 m s−1 vstd<4.5 m s−1 ustd和vstd 均小于4.5 m s−1 武夷山 60~6600 120~6720 120~6600 永安 60~6720 60~7080 60~6720 福清 180~720 60~1680 180~720 建瓯 150~6030 150~9870 150~6030 罗源 150~3990 150~9870 150~3990 武平 150~9870 150~9870 150~9870 建宁 150~7710 150~9870 150~7710 连城 150~3750 150~2550 150~2550 德化 150~4830 150~9630 150~4830 平潭 270~4110 270~6990 270~4110 平和 150~5070 150~9870 150~5070 翔安 150~9870 150~9870 150~9870 表 4 有雨情形下福建风廓线雷达水平风标准差小于4.5 m s−1的高度
Table 4. Heights with the standard deviation of horizontal winds detected by Fujian wind-profiler radars less than 4.5 m s−1 under precipitation condition
高度/m 高度/m 高度/m 雷达站 ustd<4.5 m s−1 vstd<4.5 m s−1 ustd和vstd 均小于4.5 m s−1 武夷山 300~6720 300~5400 300~5400 永安 60~6840 60~7080 60~6840 福清 480~600 60~720 480~600 建瓯 150~6990 150~9870 150~6990 罗源 150~6750 150~9870 150~6750 武平 150~8910 270~9870 150~8910 建宁 870~6750 870~9870 870~6750 连城 150~4110 150~1590 150~1590 德化 150~6270 150~7470 150~6270 平潭 1590~4590 270~6270 1590~4590 平和 150~5310 150~9870 150~5310 翔安 150~9870 150~9870 150~9870 -
[1] Benjamin S G, Dévényi D, Weygandt S S, et al. 2004a. An hourly assimilation–forecast cycle: The RUC [J]. Mon. Wea. Rev., 132(2): 495−518. doi:10.1175/1520-0493(2004)132<0495:ahactr>2.0.co;2 [2] Benjamin S G, Schwartz B E, Koch S E, et al. 2004b. The value of wind profiler data in U.S. weather forecasting [J]. Bulletin of the American Metrological Society, 85(12): ES21−ES29. doi: 10.1175/BAMS-85-12-Benjamin [3] Bluestein H B, Speheger D A. 1995. The dynamics of an upper-level trough in the baroclinic westerlies: Analysis based upon data from a wind profiler network [J]. Mon. Wea. Rev., 123(8): 2369−2383. doi:10.1175/1520-0493(1995)123<2369:tdoaul>2.0.co;2 [4] Bouttier F. 2001. The use of profiler data at ECMWF [J]. Meteor. Z., 10(6): 497−510. doi: 10.1127/0941-2948/2001/0010-0497 [5] 陈红玉, 高月忠, 尹丽云, 等. 2016. 强降水过程风廓线雷达资料的极值特征 [J]. 气象科技, 44(1): 87−94. doi: 10.3969/j.issn.1671-6345.2016.01.014Chen Hongyu, Gao Yuezhong, Yin Liyun, et al. 2016. Characteristics of extremes in WPR data during severe convective rainfall [J]. Meteorological Science and Technology (in Chinese), 44(1): 87−94. doi: 10.3969/j.issn.1671-6345.2016.01.014 [6] 董保举, 付志嘉, 李明, 等. 2012. 风廓线雷达资料在暴雨天气过程特征分析中的应用 [J]. 气象科技, 40(1): 74−78, 86. doi: 10.3969/j.issn.1671-6345.2012.01.015Dong Baoju, Fu Zhijia, Li Ming, et al. 2012. Feature analysis of a rain storm with wind profile radar data [J]. Meteorological Science and Technology (in Chinese), 40(1): 74−78, 86. doi: 10.3969/j.issn.1671-6345.2012.01.015 [7] Frisch A S, Weber B L, Strauch R G, et al. 1986. The altitude coverage of the Colorado wind profilers at 50, 405 and 915 MHz [J]. J. Atmos. Oceanic Technol., 3(5): 680−692. doi:10.1175/1520-0426(1986)003<0680:TACOTC>2.0.CO;2 [8] 古红萍, 马舒庆, 王迎春, 等. 2008. 边界层风廓线雷达资料在北京夏季强降水天气分析中的应用 [J]. 气象科技, 36(3): 300−304. doi: 10.3969/j.issn.1671-6345.2008.03.009Gu Hongping, Ma Shuqing, Wang Yingchun, et al. 2008. Application of Airda-3000 boundary wind profile radar in analyzing summer heavy rainfall in Beijing [J]. Meteorological Science and Technology (in Chinese), 36(3): 300−304. doi: 10.3969/j.issn.1671-6345.2008.03.009 [9] 顾映欣, 陶祖钰. 1991. UHF多普勒风廓线雷达资料的初步分析和应用 [J]. 气象, 17(1): 29−34. doi: 10.7519/j.issn.1000-0526.1991.1.006Gu Yingxin, Tao Zuyu. 1991. Preliminary analysis and application of UHF wind profile radar data [J]. Meteor. Mon. (in Chinese), 17(1): 29−34. doi: 10.7519/j.issn.1000-0526.1991.1.006 [10] 顾映欣, 陶祖钰. 1993. 1989~1990年UHF风廓线雷达资料的分析和应用 [M]. 北京: 气象出版社, 194–201.Gu Yingxin, Tao Zuyu. 1993. Analysis and Application of UHF Wind Profile Radar Data During 1989–1990 (in Chinese) [M]. Beijing: China Meteorological Press, 194–201. [11] 何平. 2006. 相控阵风廓线雷达 [M]. 北京: 气象出版社, 96pp.He Ping. 2006. Phased-Array Wind Profile Radar (in Chinese) [M]. Beijing: China Meteorological Press, 96pp. [12] 何平, 朱小燕, 阮征, 等. 2009. 风廓线雷达探测降水过程的初步研究 [J]. 应用气象学报, 20(4): 465−470. doi: 10.3969/j.issn.1001-7313.2009.04.011He Ping, Zhu Xiaoyan, Ruan Zheng, et al. 2009. Preliminary study on precipitation process detection using wind profiler radar [J]. Journal of Applied Meteorological Science (in Chinese), 20(4): 465−470. doi: 10.3969/j.issn.1001-7313.2009.04.011 [13] 胡明宝, 郑国光, 肖文建. 2008. 风廓线雷达数据获取率的统计分析 [J]. 现代雷达, 30(10): 14−16. doi: 10.3969/j.issn.1004-7859.2008.10.004Hu Mingbao, Zheng Guoguang, Xiao Wenjian. 2008. The statistical analysis of wind profiler radar data availability [J]. Modern Radar (in Chinese), 30(10): 14−16. doi: 10.3969/j.issn.1004-7859.2008.10.004 [14] Ishihara M, Kato Y, Abo T, et al. 2006. Characteristics and performance of the operational wind profiler network of the Japan Meteorological Agency [J]. J. Meteor. Soc. Japan, 84(6): 1085−1096. doi: 10.2151/jmsj.84.1085 [15] Kuo Y H, Donall E G, Shapiro M A. 1987. Feasibility of short-range numerical weather prediction using observations from a network of profilers [J]. Mon. Wea. Rev., 115(10): 2402−2427. doi:10.1175/1520-0493(1987)115<2402:FOSRNW>2.0.CO;2 [16] 李晨光, 刘淑媛, 陶祖钰. 2003. 华南暴雨试验期间香港风廓线雷达资料的评估 [J]. 热带气象学报, 19(3): 269−276. doi: 10.3969/j.issn.1004-4965.2003.03.006Li Chenguang, Liu Shuyuan, Tao Zuyu. 2003. Review of wind profiler data of Hongkong during IOP of HUAMEX and SCSMEX [J]. Journal of Tropical Meteorology (in Chinese), 19(3): 269−276. doi: 10.3969/j.issn.1004-4965.2003.03.006 [17] 李红莉, 赖安伟, 周志敏. 2013. 风廓线雷达资料同化在中尺度数值预报中的应用研究 [C]//第30届中国气象学会年会. 南京: 中国气象学会.Li Hongli, Lai Anwei, Zhou Zhimin. 2013. Assimilation of wind profile radar data and its application to mesoscale numerical forecast (in Chinese) [C]//30th Annual Meeting of Chinese Meteorological Society. Nanjing, China: China Meteorological Society. [18] 李妙英, 杨璐, 周志敏, 等. 2013. 风廓线雷达资料在降水数值预报中的应用探讨 [J]. 成都信息工程学院学报, 28(3): 284−290. doi: 10.3969/j.issn.1671-1742.2013.03.013Li Miaoying, Yang Lu, Zhou Zhimin, et al. 2013. Application research of wind profile radar data in the numerical prediction of rainfall [J]. Journal of Chengdu University of Information Technology (in Chinese), 28(3): 284−290. doi: 10.3969/j.issn.1671-1742.2013.03.013 [19] 廖菲, 邓华, 李旭. 2017. 基于风廓线雷达的广东登陆台风边界层高度特征研究 [J]. 大气科学, 41(5): 949−959. doi: 10.3878/j.issn.1006-9895.1703.16208Liao Fei, Deng Hua, Li Xu. 2017. A study on boundary layer height characteristics of landing typhoons by wind profilers in Guangdong Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(5): 949−959. doi: 10.3878/j.issn.1006-9895.1703.16208 [20] 马大安, 田文斌, 丁渭兴, 等. 1989. 对流层风廓线雷达的研制 [M]//京津冀中尺度气象试验基地文集. 北京: 中国气象科学研究院中尺度气象研究所.Ma Daan, Tian Wenbin, Ding Weixing, et al. 1989. Development of tropospheric wind profiler [M]//Documents of Mesoscale Meteorological Experiment Base in Beijing, Tianjin and Hebei, Institute of Mesoscale Meteorology (in Chinese). Beijing: Chinese Academy of Meteorological Sciences. [21] Muschinski A, Sullivan P P, Wuertz D B, et al. 1999. First synthesis of wind-profiler signals on the basis of large-eddy simulation data [J]. Radio Sci., 34(6): 1437−1459. doi: 10.1029/1999RS900090 [22] 阮征, 何平, 葛润生. 2008. 风廓线雷达对大气折射率结构常数的探测研究 [J]. 大气科学, 32(1): 133−140. doi: 10.3878/j.issn.1006-9895.2008.01.12Ruan Zheng, He Ping, Ge Runsheng. 2008. Determination of refractive index structure constant with wind profile radar data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(1): 133−140. doi: 10.3878/j.issn.1006-9895.2008.01.12 [23] Strauch R G, Merritt D A, Moran K P, et al. 1984. The Colorado wind-profiling network [J]. J. Atmos. Oceanic Technol., 1(1): 37−49. doi:10.1175/1520-0426(1984)001<0037:TCWPN>2.0.CO;2 [24] 谭晓伟, 徐枝芳, 龚建东. 2016. 风廓线雷达资料对GRAPES_MESO数值预报系统影响的初步研究 [J]. 气象, 42(1): 26−33. doi: 10.7519/j.issn.1000-0526.2016.01.003Tan Xiaowei, Xu Zhifang, Gong Jiandong. 2016. Impact of wind profiling radar data assimilation on GRAPES_MESO model system [J]. Meteor. Mon. (in Chinese), 42(1): 26−33. doi: 10.7519/j.issn.1000-0526.2016.01.003 [25] Trexler C M, Koch S E. 2000. The life cycle of a mesoscale gravity wave as observed by a network of Doppler wind profilers [J]. Mon. Wea. Rev., 128(7): 2423−2446. doi:10.1175/1520-0493(2000)128<2423:TLCOAM>2.0.CO;2 [26] 王丹, 阮征, 王改利, 等. 2019. 风廓线雷达资料在GRAPES-Meso模式中的同化应用研究 [J]. 大气科学, 43(3): 634−654. doi: 10.3878/j.issn.1006-9895.1810.18125Wang Dan, Ruan Zheng, Wang Gaili, et al. 2019. A study on assimilation of wind profiling radar data in GRAPES-Meso model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(3): 634−654. doi: 10.3878/j.issn.1006-9895.1810.18125 [27] 汪学渊, 李栋, 任雍, 等. 2013. 风廓线雷达资料在台风苏拉登陆过程中的应用初探 [J]. 气象, 39(11): 1431−1436. doi: 10.7519/j.issn.1000-0526.2013.11.006Wang Xueyuan, Li Dong, Ren Yong, et al. 2013. Preliminary analyses on application of wind profiler radar data to the landing process of typhoon Saola [J]. Meteor. Mon. (in Chinese), 39(11): 1431−1436. doi: 10.7519/j.issn.1000-0526.2013.11.006 [28] 汪学渊, 汪波, 文明章, 等. 2015. 丘陵地区边界层风廓线雷达数据统计特性分析 [J]. 气象科学, 35(3): 328−333. doi: 10.3969/2014jms.0011Wang Xueyuan, Wang Bo, Wen Mingzhang, et al. 2015. Statistical characteristics analysis on the boundary wind profile radar data in Fujian hilly areas [J]. Journal of the Meteorological Sciences (in Chinese), 35(3): 328−333. doi: 10.3969/2014jms.0011 [29] 王志春, 植石群. 2014. 登陆台风启德近地层强风特性观测研究 [J]. 气象科技, 42(4): 678−681. doi: 10.19517/j.1671-6345.2014.04.026Wang Zhichun, Zhi Shiqun. 2014. Observational study of strong wind characteristics of typhoon Kaitak with automotive wind profiler radar [J]. Meteorological Science and Technology (in Chinese), 42(4): 678−681. doi: 10.19517/j.1671-6345.2014.04.026 [30] 吴蕾, 陈洪滨, 高玉春, 等. 2013. 国产风廓线雷达对比试验初步分析 [J]. 现代雷达, 35(6): 24−28. doi: 10.3969/j.issn.1004-7859.2013.06.007Wu Lei, Chen Hongbin, Gao Yuchun, et al. 2013. Primary analysis of the comparision test of domestic wind profilers [J]. Modern Radar (in Chinese), 35(6): 24−28. doi: 10.3969/j.issn.1004-7859.2013.06.007 [31] 余贞寿, 冀春晓, 杨程, 等. 2018. 同化风廓线雷达资料对浙江降水预报改进评估 [J]. 应用气象学报, 29(1): 97−110. doi: 10.11898/1001-7313.20180109Yu Zhenshou, Ji Chunxiao, Yang Cheng, et al. 2018. Impacts of assimilating wind profiler radar observations on precipitation prediction in Zhejiang Province [J]. Journal of Applied Meteorological Science (in Chinese), 29(1): 97−110. doi: 10.11898/1001-7313.20180109 [32] 曾瑾瑜, 汪学渊, 潘宁. 2017. 风廓线雷达资料在福建省气象局的业务应用现状与展望 [J]. 海峡科学(12): 61−68. doi: 10.3969/j.issn.1673-8683.2017.12.014Zeng Jinyu, Wang Xueyuan, Pan Ning. 2017. The application status and prospect of wind profile radar data in Fujian Meteorological Bureau [J]. Straits Science (in Chinese)(12): 61−68. doi: 10.3969/j.issn.1673-8683.2017.12.014 [33] 张胜军, 徐祥德, 吴庆梅, 等. 2004. “中国登陆台风外场科学试验”风廓线仪探测资料在四维同化中的初步应用研究 [J]. 应用气象学报, 15(Sl): 101−109. doi: 10.3969/j.issn.1001-7313.2004.z1.014Zhang Shengjun, Xu Xiangde, Wu Qingmei, et al. 2004. Researches on atmospheric profile observations of “CLATEX” in four-dimensional data assimilation [J]. Journal of Applied Meteorological Science (in Chinese), 15(Sl): 101−109. doi: 10.3969/j.issn.1001-7313.2004.z1.014 [34] 张旭斌, 万齐林, 薛纪善, 等. 2015. 风廓线雷达资料质量控制及其同化应用 [J]. 气象学报, 73(1): 159−176. doi: 10.11676/qxxb2015.015Zhang Xubin, Wan Qilin, Xue Jishan, et al. 2015. Quality control of wind profile radar data and its application to assimilation [J]. Acta Meteorologica Sinica (in Chinese), 73(1): 159−176. doi: 10.11676/qxxb2015.015 [35] Zhang X B, Luo Y L, Wan Q L, et al. 2016. Impact of assimilating wind profiling radar observations on convection-permitting quantitative precipitation forecasts during SCMREX [J]. Wea. Forecasting, 31(4): 1271−1292. doi: 10.1175/WAF-D-15-0156.1 [36] 张小雯, 郑永光, 吴蕾, 等. 2017. 风廓线雷达资料在天气业务中的应用现状与展望 [J]. 气象科技, 45(2): 285−297. doi: 10.19517/j.1671-6345.20150464Zhang Xiaowen, Zheng Yongguang, Wu Lei, et al. 2017. Review on application of wind profiler radar in weather monitoring and forecasting [J]. Meteorological Science and Technology (in Chinese), 45(2): 285−297. doi: 10.19517/j.1671-6345.20150464 [37] 仲跻芹, Guo Y R, 张京江. 2017. 华北地区地基GPS天顶总延迟观测的质量控制和同化应用研究 [J]. 气象学报, 75(1): 147−164. doi: 10.11676/qxxb2017.010Zhong Jiqin, Guo Y R, Zhang Jingjiang. 2017. A study of quality control and assimilation of ground-based GPS ZTD in North China [J]. Acta Meteorologica Sinica (in Chinese), 75(1): 147−164. doi: 10.11676/qxxb2017.010 [38] 周志敏, 万蓉, 崔春光, 等. 2010. 风廓线雷达资料在一次冰雹过程分析中的应用 [J]. 暴雨灾害, 29(3): 251−256. doi: 10.3969/j.issn.1004-9045.2010.03.008Zhou Zhimin, Wan Rong, Cui Chunguang, et al. 2010. Application of wind profiler radar data in a hailfall process [J]. Torrential Rain and Disasters (in Chinese), 29(3): 251−256. doi: 10.3969/j.issn.1004-9045.2010.03.008 [39] 朱立娟. 2015. 面向资料同化风廓线雷达水平风产品质量初步分析 [J]. 气象, 41(12): 1494−1502. doi: 10.7519/j.issn.1000-0526.2015.12.007Zhu Lijuan. 2015. Preliminary analysis on wind product of wind profiler for data assimilation [J]. Meteor. Mon. (in Chinese), 41(12): 1494−1502. doi: 10.7519/j.issn.1000-0526.2015.12.007 -