Characteristics of Solar Radiation and Radiative Transfer of a Forest Canopy in Huainan, Anhui Province
-
摘要: 本文利用淮南森林观测站2018年7月1日至2019年6月30日冠层辐射观测,分析了淮南栎树森林下垫面冠层内外辐射变化特征。结果表明:(1)从春季到夏季,栎树冠层之上向下的太阳短波辐射增加,到冬季逐渐减少。从早春开始,由于叶片生长增多,冠层中间和冠层之下向下的太阳短波辐射下降,从秋季到冬季树叶凋落,其向下的太阳辐射增加,与冠层之上的变化趋势相反;对于向上的短波辐射,无论冠层之上、冠层中间还是冠层之下,随季节的变化都与向下的短波辐射相似,只是数值小很多。(2)冠层之上、冠层中间和冠层之下向下的长波辐射,随时间的变化从春季逐渐开始增大至夏季达到最大,随后逐渐减小并在冬季达到最小;就空间变化而言,冠层中间和冠层之下向下的长波辐射值比冠层之上的辐射值高,使得冠层对长波辐射的振幅增大,晴空条件最高可达1.3倍。(3)淮南森林区冠层之上(距地面25 m)年平均反照率为0.14,比中国北方地区(35°N)温带季风气候区(混交林为主)反照率的整体水平低0.01,表明淮南的森林茂密、灌丛更多些。(4)冠层上部分和整层的短波辐射透射率主要受叶片的影响。夏季,冠层的短波透射率平均为0.1。到了冬天,叶子凋落,透射率增加并趋于一个平稳的波动。冠层的短波辐射吸收率在夏季最高,秋季逐渐降低,随着叶子凋落在冬季迅速减小,趋于一常值。Abstract: The forest canopy, as an active interface between vegetation and the environment, transmits energy by reflecting, absorbing, and transmitting solar radiation through its leaves. The radiation levels above, within, and beneath the forest canopy are considerably important factors that affect the energy balance and water and carbon cycles. The variation of radiation with the seasons and the distribution of radiation among the forest canopies of the Huainan area have rarely been studied. Using total radiation data obtained by the Huainan forest observation station from July 1, 2018 to June 30, 2019, we investigated the temporal changes in solar radiation above the Sawtooth Oak canopy, analyzed the spatial distribution and transfer of solar radiation through the canopy, and determined the albedo, transmittance, and absorbance of the canopy. The results show the following. (1) The downward shortwave radiation above the Sawtooth Oak canopy increases from spring to summer and then decreases gradually toward winter. Unlike that above the canopy, the downward shortwave radiation within and under the canopy demonstrate a different trend with smaller values that decrease from early spring and increase from autumn to winter. Concerning the upward shortwave radiation, the seasonal variation pattern is the same as the downward pattern, whether above, within, or under the canopy, but the values are much smaller. (2) The downward longwave radiation above, within, and under the canopy gradually increases from spring to summer, then decreases gradually, and reaches a minimum in winter. In terms of spatial change, the radiation longwave values within and under the canopy are higher than that above the canopy, enhancing the longwave radiation by as much as 1.3 times under clear skies. (3) The annual average albedo above the canopy in the Huainan forest area is 0.14, which is 0.01 lower than that in the temperate monsoon climate area (mainly mixed forest) in northern China (35°N), which indicates that the forest is denser in Huainan. (4) The shortwave radiation transmittance values of the upper part and the whole canopy are mainly affected by the leaves. In summer, the average shortwave transmittance of the whole canopy is 0.1, whereas in winter, as the leaves fall, the transmittance increases and tends to a stable fluctuation. The absorbance of shortwave radiation in the canopy is highest in summer, decreases gradually in autumn, and then decreases rapidly in winter as the leaves fall, tending to a constant value. These results are useful for validating layered-radiative-transfer and photosynthesis models as well as for further investigations of the energy, water, and carbon cycles of forest ecosystems.
-
Key words:
- Solar radiation /
- Shortwave radiation /
- Forest canopy /
- Radiative transfer /
- Albedo
-
图 2 淮南森林观测站冠层顶(a)向下短波辐射、(b)向上短波辐射、(c)向下长波辐射和(d)向上长波辐射的月平均值(柱状)和标准差(短线)
Figure 2. Monthly means (bars) and standard deviations (short lines) of (a) downward shortwave radiation, (b) upward shortwave radiation, (c) downward longwave radiation, and (d) upward longwave radiation above the canopy at Huainan forest observation station
图 4 淮南森林观测站栎树植被冠层内(a)6 m高度和(b)3.5 m高度向下的短波辐射,以及(c)6 m和(d)3.5 m向上的短波辐射月平均日变化曲线
Figure 4. Diurnal variations of monthly mean downward shortwave radiation (a) within the canopy (6 m height) and (b) below the canopy (3.5 m height) and upward shortwave radiation (c) within the canopy (6 m) and (d) below the canopy (3.5 m) at Huainan forest observation station
图 7 冠层之上、冠层中间和冠层之下日平均太阳向上短波辐射
Figure 7. As in Fig. 6, but for upward shortwave radiation
图 8 冠层之上、冠层中间和冠层之下日平均太阳向下长波辐射
Figure 8. As in Fig. 6, but for downward longwave radiation
-
[1] Aubin I, Beaudet M, Messier C. 2000. Light extinction coefficients specific to the understory vegetation of the southern boreal forest, Quebec [J]. Canadian Journal of Forest Research, 30(1): 168−177. doi: 10.1139/x99-185 [2] Betts A K, Ball J H. 1997. Albedo over the boreal forest [J]. J. Geophys. Res., 102(D24): 28901−28909. doi: 10.1029/96JD03876 [3] Bonan G B, Chapin Ⅲ F S, Thompson S L. 1995. Boreal forest and tundra ecosystems as components of the climate system [J]. Climatic Change, 29(2): 145−167. doi: 10.1007/BF01094014 [4] Bonan G B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests [J]. Science, 320(5882): 1444−1449. doi: 10.1126/science.1155121 [5] Cannell M G R, Sheppard L J, Milne R. 1988. Light use efficiency and woody biomass production of poplar and willow [J]. Forestry: An International Journal of Forest Research, 61(2): 125−136. doi: 10.1093/forestry/61.2.125 [6] Dai Q D, Sun S F. 2006. A generalized layered radiative transfer model in the vegetation canopy [J]. Adv. Atmos. Sci., 23(2): 243−257. doi: 10.1007/s00376-006-0243-7 [7] Dai Q D, Sun S F. 2007. A simplified scheme of the generalized layered radiative transfer model [J]. Adv. Atmos. Sci., 24(2): 213−226. doi: 10.1007/s00376-007-0213-8 [8] Dai X B. 1996. Influence of light conditions in canopy gaps on forest regeneration: A new gap light index and its application in a boreal forest in east-central Sweden [J]. Forest Ecology and Management, 84(1-3): 187−197. doi: 10.1016/0378-1127(96)03734-6 [9] Dai Y J, Dickinson R E, Wang Y P. 2004. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance [J]. J. Climate, 17(12): 2281−2299. doi:10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2 [10] Escobedo J F, Gomes E N, Oliveira A P, et al. 2009. Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil [J]. Applied Energy, 86(3): 299−309. doi: 10.1016/j.apenergy.2008.04.013 [11] Isabelle P E, Nadeau D F, Asselin M H, et al. 2018. Solar radiation transmittance of a boreal balsam fir canopy: Spatiotemporal variability and impacts on growing season hydrology [J]. Agricultural and Forest Meteorology, 263: 1−14. doi: 10.1016/j.agrformet.2018.07.022 [12] 李伟平, 孙菽芬, 刘新, 等. 2008. 阿尔卑斯山杉林冠层影响辐射传输的个例分析 [J]. 高原气象, 27(4): 749−756.Li Weiping, Sun Shufen, Liu Xin, et al. 2008. A case study of the influence of needle leaf forest canopy on the radiation transfer over Alps Mountain [J]. Plateau Meteorology (in Chinese), 27(4): 749−756. [13] Mercado L M, Bellouin N, Sitch S, et al. 2009. Impact of changes in diffuse radiation on the global land carbon sink [J]. Nature, 458(7241): 1014−1017. doi: 10.1038/nature07949 [14] Monteith J L. 1972. Solar radiation and productivity in tropical ecosystems [J]. Journal of Applied Ecology, 9(3): 747−766. doi: 10.2307/2401901 [15] Mõttus M, Sulev M. 2006. Radiation fluxes and canopy transmittance: Models and measurements inside a willow canopy [J]. J. Geophys. Res., 111(D2): D02109. doi: 10.1029/2005JD005932 [16] Ni W G, Li X W, Woodcock C E, et al. 1997. Transmission of solar radiation in boreal conifer forests: Measurements and models [J]. J. Geophys. Res., 102(D24): 29555−29566. doi: 10.1029/97JD00198 [17] Oker-Blom P, Pukkala T, Kuuluvainen T. 1989. Relationship between radiation interception and photosynthesis in forest canopies: Effect of stand structure and latitude [J]. Ecological Modelling, 49(1-2): 73−87. doi: 10.1016/0304-3800(89)90044-6 [18] Pieruschka R, Huber G, Berry J A. 2010. Control of transpiration by radiation [J]. Proceedings of the National Academy of Sciencesof the United States of America, 107(30): 13372−13377. doi: 10.1073/pnas.0913177107 [19] Pinty B, Lavergne T, Dickinson R E, et al. 2006. Simplifying the interaction of land surfaces with radiation for relating remote sensing products to climate models [J]. J. Geophys. Res., 111(D2): D02116. doi: 10.1029/2005JD005952 [20] Qiu B, Guo W D, Xue Y K, et al. 2016. Implementation and evaluation of a generalized radiative transfer scheme within canopy in the soil-vegetation-atmosphere transfer (SVAT) model [J]. J. Geophys. Res., 121(20): 12145−12163. doi: 10.1002/2016JD025328 [21] Sellers P J. 1985. Canopy reflectance, photosynthesis and transpiration [J]. Int. J. Remote Sens., 6(8): 1335−1372. doi: 10.1080/01431168508948283 [22] Sellers P, Hall F, Margolis H, et al. 1995. The Boreal Ecosystem-Atmosphere Study (BOREAS): An overview and early results from the 1994 field year [J]. Bull. Amer.Meteor. Soc., 76(9): 1549−1577. doi:10.1175/1520-0477(1995)076<1549:TBESAO>2.0.CO;2 [23] 王怀军, 潘莹萍, 陈忠升. 2017. 1960~2014年淮河流域极端气温和降水时空变化特征 [J]. 地理科学, 37(12): 1900−1908. doi: 10.13249/j.cnki.sgs.2017.12.014Wang Huaijun, Pan Yingping, Chen Zhongsheng. 2017. Spatial and temporal patterns of temperature and precipitation extremes in the Huaihe River basin, China in 1960-2014 [J]. Scientia Geographica Sinica (in Chinese), 37(12): 1900−1908. doi: 10.13249/j.cnki.sgs.2017.12.014 [24] 王胜, 张强, 卫国安. 2005. 敦煌绿洲—戈壁过渡带地表辐射与能量特征分析 [J]. 高原气象, 24(4): 556−562. doi: 10.3321/j.issn:1000-0534.2005.04.014Wang Sheng, Zhang Qiang, Wei Guoan. 2005. Analyses on characters of surface radiation and energy at oasis-desert transition zone in Dunhuang [J]. Plateau Meteorology (in Chinese), 24(4): 556−562. doi: 10.3321/j.issn:1000-0534.2005.04.014 [25] Wang Y P, Leuning R. 1998. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. I: Model description and comparison with a multi-layered model [J]. Agricultural and Forest Meteorology, 91(1-2): 89−111. doi: 10.1016/S0168-1923(98)00061-6 [26] Wang Y P. 2003. A comparison of three different canopy radiation models commonly used in plant modelling [J]. Functional Plant Biology, 30(2): 143−152. doi: 10.1071/FP02117 [27] Webster C, Rutter N, Zahner F, et al. 2016. Measurement of incoming radiation below forest canopies: A comparison of different radiometer configurations [J]. Journal of Hydrometeorology, 17(3): 853−864. doi: 10.1175/JHM-D-15-0125.1 [28] 韦志刚, 胡嘉骢, 董文杰, 等. 2016. 珠海凤凰山陆气相互作用与碳通量观测塔的基本观测及晴天主要观测量的日变化特征 [J]. 大气科学, 40(2): 423−436. doi: 10.3878/j.issn.1006-9895.1503.15111Wei Zhigang, Hu Jiacong, Dong Wenjie, et al. 2016. Basic observations and diurnal variation of key meteorological variables on clear days in the Phoenix Mountain area of Zhuhai [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(2): 423−436. doi: 10.3878/j.issn.1006-9895.1503.15111 [29] 闫俊华, 周国逸, 韦琴. 2000. 鼎湖山季风常绿阔叶林小气候特征分析 [J]. 武汉植物学研究, 18(5): 397−404. doi: 10.3969/j.issn.2095-0837.2000.05.009Yan Junhua, Zhou Guoyi, Wei Qin. 2000. Environment of microclimate of monsoon evergreen broad-leaves forest in Dinghushan [J]. Journal of Wuhan Botanical Research (in Chinese), 18(5): 397−404. doi: 10.3969/j.issn.2095-0837.2000.05.009 [30] 颜俊, 高正华, 赵锐. 2019. 淮南1957~2017年夏季降水变化特征 [J]. 中国农学通报, 35(7): 105−109. doi: 10.11924/j.issn.1000-6850.casb18090093Yan Jun, GaoZhenghua, Zhao Rui. 2019. Summer precipitation in Huainan from 1957 to 2017: Variation characteristics [J]. Chinese Agricultural Science Bulletin (in Chinese), 35(7): 105−109. doi: 10.11924/j.issn.1000-6850.casb18090093 [31] 张敏. 2008. 油松冠层辐射特征的研究[D]. 西北农林科技大学硕士学位论文, 41pp. Zhang Min. 2008. Characteristics of solar radiation and its distribution above the canopy of the Pinustabulaeformis[D].M. S. thesis (in Chinese), Northwest A&F University, 41pp. [32] 张小全, 徐德应, 赵茂盛. 1999. 林冠结构、辐射传输与冠层光合作用研究综述 [J]. 林业科学研究, 12(4): 411−421. doi: 10.3321/j.issn:1001-1498.1999.04.014Zhang Xiaoquan, Xu Deying, Zhao Maosheng. 1999. Review on forest canopy structure,radiation transfer and canopy photosynthesis [J]. Forest Research (in Chinese), 12(4): 411−421. doi: 10.3321/j.issn:1001-1498.1999.04.014 [33] 赵久佳, 张晓丽. 2015. 中国北方地区森林覆盖及反照率年际变化 [J]. 浙江农林大学学报, 32(5): 683−690. doi: 10.11833/j.issn.2095-0756.2015.05.005Zhao Jiujia, Zhang Xiaoli. 2015. Interannual variation of forest cover and albedo in Northern China [J]. Journal of Zhejiang A&F University (in Chinese), 32(5): 683−690. doi: 10.11833/j.issn.2095-0756.2015.05.005 [34] 周文艳, 罗勇, 李伟平, 等. 2018. 陆面模式中不同植被辐射模式的对比 [J]. 科学通报, 63(26): 2772−2784. doi: 10.1360/N972018-00398Zhou Wenyan, Luo Yong, Li Weiping, et al. 2018. Comparative studies of different radiation schemes within vegetation in land model [J]. Chinese Science Bulletin (in Chinese), 63(26): 2772−2784. doi: 10.1360/N972018-00398 [35] 朱德琴, 陈文, 刘辉志, 等. 2006. 我国西北典型干旱区和高原地区地表辐射能量收支特征的比较 [J]. 气候与环境研究, 11(6): 683−690. doi: 10.3969/j.issn.1006-9585.2006.06.002Zhu Deqin, Chen Wen, Liu Huizhi, et al. 2006. The comparison of surface radiation budget between typical arid region in Northwest China and plateau region [J]. Climatic and Environmental Research (in Chinese), 11(6): 683−690. doi: 10.3969/j.issn.1006-9585.2006.06.002 -