高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层状云催化宏微观物理响应的数值模拟研究

刘卫国 陶玥 周毓荃

刘卫国, 陶玥, 周毓荃. 2021. 层状云催化宏微观物理响应的数值模拟研究[J]. 大气科学, 45(1): 37−57 doi: 10.3878/j.issn.1006-9895.2005.19209
引用本文: 刘卫国, 陶玥, 周毓荃. 2021. 层状云催化宏微观物理响应的数值模拟研究[J]. 大气科学, 45(1): 37−57 doi: 10.3878/j.issn.1006-9895.2005.19209
LIU Weiguo, TAO Yue, ZHOU Yuquan. 2021. Numerical Simulation of the Macro and Micro Physical Responses of Stratiform Cloud Seeding [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 37−57 doi: 10.3878/j.issn.1006-9895.2005.19209
Citation: LIU Weiguo, TAO Yue, ZHOU Yuquan. 2021. Numerical Simulation of the Macro and Micro Physical Responses of Stratiform Cloud Seeding [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 37−57 doi: 10.3878/j.issn.1006-9895.2005.19209

层状云催化宏微观物理响应的数值模拟研究

doi: 10.3878/j.issn.1006-9895.2005.19209
基金项目: 国家重点研发计划项目2016YFA0601701,公益性行业(气象)科研专项GYHY201206025,国家自然科学基金项目41075099
详细信息
    作者简介:

    刘卫国,男,1973年出生,副研究员,主要从事云降水物理和数值模拟研究,E-mail: liuwg@cma.gov.cn

  • 中图分类号: P481

Numerical Simulation of the Macro and Micro Physical Responses of Stratiform Cloud Seeding

Funds: National Key Research and Development Project (Grant 2016YFA0601701), Special Scientific Research Fund of Meteorological Public Welfare Profession of China (Grant GYHY201206025), National Natural Science Foundation of China (NSFC) (Grant 41075099)
  • 摘要: 层状云系是进行人工增雨开发利用空中云水资源的重要对象,增雨作业需要有科学可行的技术指标来指导实际作业的科学实施,而合理准确评估人工增雨作业的效果也是需要解决的重要课题,通过数值模式合理地仿真模拟实际催化作业的过程,进而研究增雨作业后云和降水的一系列宏微观特征的变化及其机理,是建立和改进催化作业技术的必要途径,也是评估实际人工增雨作业效果的有效手段。本文使用三维中尺度冷云催化模式对2014年4月15日河北省一次层状云降水的飞机催化作业过程进行了仿真模拟,力图对实际作业过程进行合理再现,通过对模拟结果的分析,研究飞机播撒的AgI(Silver iodide)催化剂在空中的扩散传输特征,分析催化对云和降水宏微观特性的影响,并对此次飞机催化作业的增雨效果进行评估。研究结果表明,播撒的AgI催化剂烟羽扩展的水平尺度可达数十公里以上,垂直方向上,大部分AgI粒子则主要集中在作业层上下约1 km的厚度范围内,AgI粒子的向上输送明显强于向下的输送;催化后云中的冰晶和雪粒子明显增加,导致催化模拟前期的霰增长受到抑制,之后随着霰碰并雪过程及零度层附近冰相粒子淞附过程的增强,云中霰的总量逐渐增加;催化作业后,催化云的雷达回波强度有明显增强,且随时间变化表现出不同的结构特征;催化导致地面降水出现先减少后增加的时间变化特征,催化后3小时,作业影响区向作业区下游扩展100 km以上,总体呈现减雨—增雨的区域分布特征;数值模拟评估表明,整个评估区内的净增雨量达到3.6×107 kg,平均增雨率为1.1%,暖层霰粒浓度和尺度的增加是降水增加的主要原因。由于作业目标云系的催化条件一般,而播撒的AgI剂量偏大,造成增雨作业效果偏低。
  • 图  1  模式3 km(d01)和1 km(d02)模拟区域设置

    Figure  1.  Three- (d01) and one-kilometer (d02) domains of the simulation

    图  2  2014年4月15日20:00(北京时,下同)500 hPa(左列)和700 hPa(右列)天气形势(a1、a2)实况观测和(b1、b2)模拟结果对比。图中等值线为位势高度(单位:dagpm)

    Figure  2.  Comparison of 500 hPa (left column) and 700 hPa (right column) synoptic situation at 2000 BT (Beijing time) on April 15, 2014: (a1, a2) Observation; (b1, b2) simulation. The contours represent geopotential height (units: dagpm)

    图  3  2014年4月15日16:00(a)模拟的云带(垂直积分总水量,单位:mm)与(b)FY2卫星反演的云光学厚度对比

    Figure  3.  Comparison between (a) the cloud band (vertical integration of liquid water, units: mm) simulated by the model and (b) the cloud optical thickness retrieved from the FY2 satellite at 1600 BT on April 15, 2014

    图  4  2014年4月15日(a1–a3)实况与(b1–b3)模式模拟的不同时刻的雷达组合反射率(单位:dBZ)的对比:(a1)17:30;(a2)18:00;(a3)18:42;(b1)18:35;(b2)19:00;(b3)19:40

    Figure  4.  Comparison of radar compositive reflectivity (units: dBZ) between observation (top line) and simulation (bottom line) results at different moments on April 15, 2014: (a1) 1730 BT, (a2) 1800 BT, (a3) 1842 BT; (b1) 1835 BT, (b2) 1900 BT, and (b3) 1940 BT

    图  5  模式模拟的2014年4月15日22:00的4 h累积降水与实况21:00的4 h累积降水对比:(a)雨量站点为实际位置;(b)雨量站点向东平移0.5经度和向南平移0.3纬度。图中填色圆圈表示雨量站点及其降水量,阴影为模拟降水量

    Figure  5.  Comparison between the simulated 4-h accumulative rainfall at 2200 BT and the measured 4-h accumulative rainfall at 2100 BT on April 15, 2014: (a) Actual rainfall stations, (b) rainfall stations that were shifted by 0.5 longitude to the east and 0.3 latitude to the south. Colored circles represent stations and the amount of rainfall, and the shaded area represents simulated rainfall

    图  6  2014年4月15日探测云区垂直结构的模式模拟结果(18:15~18:40时段)与飞机探测结果(17:12~17:36时段)的对比:(a)温度;(b)模拟的冰晶浓度与2D-C探测的大云粒子浓度;(c)模拟的降水粒子(雪+霰+雨)浓度与2D-P探测的降水粒子浓度。图中黑色实线为飞机探测结果,带圆圈的黑色实线为模拟结果,(a)中的黑色虚线为20:00的邢台探空站的温度数据

    Figure  6.  Comparison between simulated results (time period: 1815 BT−1840 BT) by the model and observed results (time period: 1712 BT−1736 BT) by the aircraft of vertical structure in clouds on April 15, 2014: (a) Temperature; (b) simulated concentration of ice crystals and large cloud particles measured by 2D-C probe; (c) simulated total concentration of snow, graupel, and raindrops and concentration of precipitation particles measured by 2D-P probe. The solid lines denote the probe results of the aircraft, and the solid lines with circle represent the simulated results. The dashed line in (a) shows the temperature taken from the sounding of Xingtai station at 2000 BT

    图  7  模式模拟的2014年4月15日18:45不同高度的云水混合比(单位:g kg‒1,阴影区)和冰晶浓度(单位:L‒l,绿色等值线)分布与飞机轨迹:(a)4500 m;(b)4800 m(催化作业层);(c)5300 m;(d)5700 m。图中红色虚线为第一次催化的作业轨迹,红色实线为第二次催化的作业轨迹,环形的黑色虚线和实线为飞机垂直探测时的轨迹

    Figure  7.  Cloud water mixing ratio (units: g kg−1, shaded) and ice crystal number concentration (units: L−1, green contours) simulated by the model on (a) 4500 m, (b) 4800 m (the seeding operation layer), (c) 5300 m, and (d) 5700 m at 1845 BT on April 15, 2014 and overlayed aircraft trajectory. The red dash line denotes the first seeding operation trajectory, the red solid line denotes the second seeding operation trajectory, and the circular black dash line and solid line indicate the vertical detection trajectory of aircraft

    图  8  2014年4月15日催化作业开始后1 h(19:45,左列)和2 h(20:45,右列),沿播撒层(a、b)主导风向(西南—东北)和(c、d)垂直主导风向(东南—西北)的垂直剖面(具体位置参见图14)。其中填色区为AgI粒子数浓度(单位:L‒1),蓝色等值线为0.001 g kg‒1的云水混合比,绿色等值线为0.04的冰面过饱和比,黑色等值线是值为‒0.05和0的水面过饱和比,红色等值线为0.1 m s‒1的上升气流速度,灰色等值线为温度(单位:°C)

    Figure  8.  Vertical sections (see Fig. 14 for locations) along the (a, b) prevailing wind direction (from southwest to northeast) and (c, d) perpendicular to the prevailing wind direction (from southeast to northwest) of the seeding layer at 1 h (1945 BT, left column) and 2 h (2045 BT, right column) after the seeding operation starts on April 15, 2014 (including the number concentration of AgI (units: L‒1, shaded areas), cloud water with a mixing ratio of 0.001 g kg−1 (blue contours), ice supersaturation ratio with a value of 0.04 (green contours), water supersaturation ratio with values of −0.05 and 0 (black contours), updraft speed with a value of 0.1 m s−1 (red contours) and temperature (units: °C, gray contours)

    图  9  2014年4月15日19:00~22:00的AgI数浓度的(a)频率等值线随高度分布(CFAD)和(b)CFAD差值(CFDAD)。(a)中填色区和等值线为催化试验的AgI分档频率,(b)中填色区和等值线为催化试验与示踪试验的AgI分档频率的差值(催化试验减示踪试验)

    Figure  9.  (a) CFAD (contoured frequency by altitude diagram) and (b) CFDAD (contoured frequency difference by altitude diagram) of the simulated AgI number concentration from 1900 BT to 2200 BT on April 15, 2014. The shaded area and contours indicate the binned frequency of AgI in (a) and AgI binned frequency difference between the seeding and tracer tests in (b)

    图  14  模式时间2014年4月15日19:00~22:00地面降水的累积变化(ST−CT,填色区,单位:mm)和自然云累积降雨量(等值线,单位:mm)。图中绿色实线方框为本研究确定的评估区范围,红色短划线方框为飞机第二次播撒作业的区域,黑色短划线为图8中两个剖面和图11图16中剖面所对应的位置

    Figure  14.  Accumulative rainfall difference (ST–CT, shaded area, units: mm) and accumulative rainfall of nature cloud (contours, units: mm) from 0900 BT to 2200 BT in the model on April 15, 2014. The green solid-lined box shows the evaluation area determined in this case, and the red dash-lined box denotes the region of the second seeding operation. Two black dash lines correspond to the positions of the vertical sections in Fig. 8, Fig. 11, and Fig.16

    图  10  2014年4月15日19:00~22:00评估区内云中各微物理量的频率差(CFDAD,填色区)随高度的分布。图中黑色实线为微物理量混合比综合平均值的差值相对控制试验的变化,竖直黑色短划线对应该相对变化的零值,绿色实线为控制试验微物理量混合比的综合平均值(单位:kg kg‒1),水平黑色点划线为评估区平均零度层高度。图中综合平均值指在整个时间段内,在同一高度层上,相应物理量所有样本的平均值

    Figure  10.  CFDADs (shaded areas) of the simulated microphysical parameters in the evaluation area from 1900 BT to 2200 BT on April 15, 2014. Black solid lines denote changes in the difference of the composite averages of every microphysical parameter mixing ratio relative to the control test. Vertical black dash lines correspond to the zero value of relative change above-mentioned. Green solid lines indicate the composite averages of the microphysical parameter mixing ratio (units: kg kg−1) in the control test. Horizontal black dash-dot-lines denote the mean height of zero degree centigrade level in the evaluation area. The composite average in the figure refers to the average value of all samples of corresponding microphysical parameters at the same height level in the whole time period

    图  15  2014年4月15日,催化云过冷云区内雪(第一行)和霰(第二行)的(a1, b1)主要源项转化率、(a2, b2)各源项转化率、粒子总数和平均质量与自然云的差值(ST–CT)随时间的演变

    Figure  15.  In the supercooled cloud area of the seeding cloud, time series of (a1, b1) conversion rates of main source terms and (a2, b2) the difference (ST–CT) of source term conversion rates, number and average mass of particles for snow (the first row) and graupel (the second row) on April 15, 2014

    图  11  2014年4月15日(a)19:20、(b)19:45、(c)20:40和(d)21:15沿降水变化中心(西南—东北走向,位置参见图14)的雷达反射率垂直剖面对比。图中阴影区和黑色等值线分别为自然云和催化云的雷达反射率强度(单位:dBZ),等值线值与阴影色标等级一致,灰色等值线为温度(单位:°C),灰色条带的位置指示催化云中雷达反射率的主要变化区域所对应的横坐标区间

    Figure  11.  Comparison of the vertical sections of radar reflectivities (units: dBZ) along the center of precipitation change (form southwest to northeast, see Fig. 14 for location) at (a) 1920 BT, (b) 1945 BT, (c) 2040 BT, and (d) 2115 BT on April 15, 2014, including natural cloud (shaded area) and seeding cloud (black contours); all contour values are consistent with the shaded color bar. The gray contours represent temperature (units: °C). The position of gray shaded belts indicates the abscissa range corresponding to the main change region of the radar reflectivity in the seeded cloud

    图  12  图10a,但为雷达反射率的CFDAD

    Figure  12.  Same as in Fig.10a, but for CFDAD of radar reflectivity

    图  13  2014年4月15日评估区内(a)区域平均降水强度、(b)空中水汽和水凝物总量以及地面降水的总量、(c)雨滴主要源汇项总转化率的差值(催化试验减控制试验,以ST−CT表示,下同)、(d)暖层中霰和雨滴总粒子数差值(ST−CT)随时间的变化。(a) 图中,黑色实线和红色实线分别为催化云和自然云的区域平均降水强度,蓝色实线为催化云降水强度相对自然云的变化,黑色虚线指示相对变化为零的位置。(b)中缩写名称分别为降水(Prep.)、水汽(Qv)、云水(Qc)、冰晶(Qi)、雪(Qs)、霰(Qg)和雨水(Qr)。(c)中实线为雨的源项,虚线为雨的汇项。(b)、(c)和(d)中点划线为零值对应位置。图中阴影区对应第二次催化的作业时间段,下同

    Figure  13.  In the evaluation area, time series of (a) regional average precipitation intensity, (b) the total mass of water vapor and hydrometeor in the air, the total mass of precipitation, (c) the difference (seeding test minus control test, expressed in ST–CT, the same below) of the total conversion rate in the main source and sink of raindrops, and (d) the difference (ST–CT) of the total number of graupel and raindrop particles in the warm layer of cloud on April 15, 2014. The lines in (a) represent the average precipitation intensity of seeded (black solid line) and natural clouds (red solid line), the change (blue solid line) of seeded cloud precipitation intensity of natural cloud, and the position (black dotted line) where the relative change is zero. The abbreviations in (b) denote precipitation (Prep.), water vapor (Qv), cloud water (Qc), ice crystal (Qi), snow (Qs), graupel (Qg), and rain (Qr) . The solid line is the source term of rain, and the dotted line is the sink term of rain in (c). The dot-dash lines in (b), (c) and (d) correspond to zero value (zero line). The shaded area denotes the second seeding operation period, the same below

    图  16  2014年4月15日催化作业开始后1 h(19:45,第一行)和2 h(20:45,第二行),沿降水变化中心的垂直剖面(西南—东北)。图中黑色等值线为雨滴混合比的变化(单位:g kg−1,ST−CT),绿色等值线为碘化银数浓度(单位:L−1),蓝色等值线为催化云0.001 g kg−1的云水混合比,黑色粗实线对应作业区;红色等值线分别为(a1,b1)霰粒数浓度变化(单位:L−1,ST−CT)、(a2,b2)霰粒质量中值直径变化(μm,ST−CT);填色区分别对应(a1,b1)催化云霰粒混合比(单位:g kg−1),(a2,b2)催化云雨滴混合比(单位:g kg−1

    Figure  16.  Vertical sections along the precipitation variation center (from southwest to northeast) at 1 h (19:45, the first row) and 2 h (20:45, the second row) after the seeding operation starts (including rain mixing ratio variation (units: g kg−1, ST–CT, black contours), number concentration of AgI (units: L−1, green contours), cloud water with a mixing ratio of 0.001 g kg−1 (blue contours) and seeding area position (bold black lines). (a1, b1) graupel number concentration variation (units: g kg−1, ST–CT, red contours) and graupel mixing ratio of seeding clouds (units: g kg−1, shaded areas). (a2, b2) mass median diameter variation of graupel (units: μm, ST–CT, red contours) and rain mixing ratio of seeding cloud (units: g kg−1, shaded areas)

    表  1  模式时间2014年4月15日19:00~22:00的评估区内自然降水和催化作业效果统计

    Table  1.   Statistics of natural precipitation and seeding operation effect in the evaluation area during the model time 1900 BT–2200 BT on April 15, 2014

    评估区
    总雨量/
    106 kg
    催化影响区
    总雨量/
    106 kg
    总增雨量/
    106 kg
    催化影响区 平均增雨率增雨区平
    均增雨率
    局地
    增雨率
    9863.73375.435.61.1%3.0%−12.4%~
    13.1%
    下载: 导出CSV
  • [1] 蔡淼. 2013. 中国空中云水资源和降水效率的评估研究 [D]. 南京信息工程大学博士学位论文, 79–104

    Cai Miao. 2013. Cloud water resources and precipitation efficiency evaluation over China [D]. Ph. D. dissertation (in Chinese), Nanjing University of Information Science & Technology, 79–104.
    [2] Chu X, Xue L L, Geerts B., et al 2014. A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on Orographic clouds and precipitation. Part I: Observations and model validations [J]. J. Appl. Meteor. Climatol., 53(10): 2264−2286. doi: 10.1175/JAMC-D-14-0017.1
    [3] Chu X, Geerts B, Xue L L, et al. 2017. Large-eddy simulations of the impact of ground-based glaciogenic seeding on shallow orographic convection: A case study [J]. J. Appl. Meteor. Climatol., 56(1): 69−84. doi: 10.1175/JAMC-D-16-0191.1
    [4] DeMott P J. 1995. Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols [J]. Atmos. Res., 38(1-4): 63−99. doi: 10.1016/0169-8095(94)00088-U
    [5] Gao W H, Zhao F S, Hu Z J, et al. 2011. A two-moment bulk microphysics coupled with a mesoscale model WRF: Model description and first results [J]. Adv. Atmos. Sci., 28(5): 1184−1200. doi: 10.1007/s00376-010-0087-z
    [6] Guo X L, Zheng G G, Jin D Z. 2006. A numerical comparison study of cloud seeding by silver iodide and liquid carbon dioxide [J]. Atmos. Res., 79(3-4): 183−226. doi: 10.1016/j.atmosres.2005.04.005
    [7] Hashimoto A, Murakami M. 2016. Numerical simulations of glaciogenic cloud seeding with dry ice pellets and liquid carbon dioxide under simplified conditions [J]. SOLA, 12: 22−26. doi: 10.2151/sola.2016-005
    [8] 何观芳, 胡志晋, 李淑日. 2001. 鄂西北对流云及其人工催化的三维数值模拟个例研究 [J]. 应用气象学报, 12(S1): 96−106.

    He Guanfang, Hu Zhijin, Li Shuri. 2001. Numerical simulation of rain enhancement experiment in northwestern Hubei Province of China [J]. Quart. J. Appl. Meteor. (in Chinese), 12(S1): 96−106.
    [9] 何晖, 金华, 李宏宇, 等. 2012. 2008年奥运会开幕式日人工消减雨作业中尺度数值模拟的初步结果 [J]. 气候与环境研究, 17(1): 46−58. doi: 10.3878/j.issn.1006-9585.2011.10043

    He Hui, Jin Hua, Li Hongyu, et al. 2012. Preliminary study of the mesoscale numerical simulation of the rain mitigation operation during the opening ceremony of the 2008 Beijing Olympic Games [J]. Climatic Environ. Res. (in Chinese), 17(1): 46−58. doi: 10.3878/j.issn.1006-9585.2011.10043
    [10] 何晖, 高茜, 李宏宇. 2013. 北京层状云人工增雨数值模拟试验和机理研究 [J]. 大气科学, 37(4): 905−922. doi: 10.3878/j.issn.1006-9895.2012.12097

    He Hui, Gao Qian, Li Hongyu. 2013. Numerical simulation of stratiform precipitation enhancement in Beijing area and its mechanism [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(4): 905−922. doi: 10.3878/j.issn.1006-9895.2012.12097
    [11] 洪延超, 周非非. 2006. 层状云系人工增雨潜力评估研究 [J]. 大气科学, 30(5): 913−926. doi: 10.3878/j.issn.1006-9895.2006.05.20

    Hong Yanchao, Zhou Feifei. 2006. The study of evaluation of potential of artificial precipitation enhancement in stratiform cloud system [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 913−926. doi: 10.3878/j.issn.1006-9895.2006.05.20
    [12] Hsie E Y, Farley R D, Orville H D. 1980. Numerical simulation of ice-phase convective cloud seeding [J]. J. Appl. Meteor., 19(8): 950−977. doi:10.1175/1520-0450(1980)019<0950:NSOIPC>2.0.CO;2
    [13] 胡志晋. 2001. 层状云人工增雨机制、条件和方法的探讨 [J]. 应用气象学报, 12(S1): 10−13. doi: 10.3969/j.issn.1001-7313.2001.z1.002

    Hu Zhijin. 2001. Discussion on mechanisms, conditions and methods of precipitation enhancement in stratiform clouds [J]. Quart. J. Appl. Meteor. (in Chinese), 12(S1): 10−13. doi: 10.3969/j.issn.1001-7313.2001.z1.002
    [14] 黄燕, 徐华英. 1994. 播撒碘化银粒子进行人工防雹的数值试验 [J]. 大气科学, 18(5): 612−622. doi: 10.3878/j.issn.1006-9895.1994.05.12

    Huang Yan, Xu Huaying. 1994. Numerical experiments on hail suppression by AgI seeding [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 18(5): 612−622. doi: 10.3878/j.issn.1006-9895.1994.05.12
    [15] Koenig L R, Murray F W. 1983. Theoretical experiments on cumulus dynamics [J]. J. Atmos. Sci., 40(5): 1241−1256. doi:10.1175/1520-0469(1983)040<1241:TEOCD>2.0.CO;2
    [16] Kopp F J, Orville H D, Farley R D, et al. 1983. Numerical simulation of dry ice cloud seeding experiments [J]. J. Climate Appl. Meteor., 22(9): 1542−1556. doi:10.1175/1520-0450(1983)022<1542:NSODIC>2.0.CO;2
    [17] 李红莉, 崔春光, 王志斌, 等. 2009. 中尺度分析系统LAPS应用雷达资料的个例研究 [J]. 高原气象, 28(6): 1443−1425.

    Li Hongli, Cui Chunguang, Wang Zhibin, et al. 2009. A study on application of dopplar radar data in LAPS [J]. Plateau Meteorology, 28(6): 1443−1425.
    [18] 李泽椿, 周毓荃, 李庆祥, 等. 2006. 人工增雨是缓和干旱半干旱地区水资源匮乏的一个补充途径 [J]. 新疆气象, 29(1): 1−6, 11. doi: 10.3969/j.issn.1002-0799.2006.01.001

    Li Zechun, Zhou Yuquan, Li Qingxiang, et al. 2006. A additional way for alleviating water resources shortage in arid and semi-arid region: Precipitation stimulation [J]. Bimonthly of Xinjiang Meteorology (in Chinese), 29(1): 1−6, 11. doi: 10.3969/j.issn.1002-0799.2006.01.001
    [19] 刘诗军, 胡志晋, 游来光. 2005. 碘化银核化过程的数值模拟研究 [J]. 气象学报, 63(1): 30−40. doi: 10.11676/qxxb2005.004

    Liu Shijun, Hu Zhijin, You Laiguang. 2005. The numerical simulation of AgI nucleation in cloud [J]. Acta Meteor. Sinica (in Chinese), 63(1): 30−40. doi: 10.11676/qxxb2005.004
    [20] 刘卫国, 陶玥, 党娟, 等. 2016. 2014年春季华北两次降水过程的人工增雨催化数值模拟研究 [J]. 大气科学, 40(4): 669−688. doi: 10.3878/j.issn.1006-9895.1508.15138

    Liu Weiguo, Tao Yue, Dang Juan, et al. 2016. Seeding modeling study of two precipitation processes over northern China in the spring of 2014 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(4): 669−688. doi: 10.3878/j.issn.1006-9895.1508.15138
    [21] 刘玉芝, 常姝婷, 华珊, 等. 2018. 东亚干旱半干旱区空中水资源研究进展 [J]. 气象学报, 76(3): 485−492. doi: 10.11676/qxxb2018.004

    Liu Yuzhi, Chang Shuting, Hua Shan, et al. 2018. A review of the research on atmospheric water resources over arid and semi-arid regions of East Asia [J]. Acta Meteor. Sinica (in Chinese), 76(3): 485−492. doi: 10.11676/qxxb2018.004
    [22] Lou X F, Shi Y Q, Sun J, et al. 2012. Cloud-resolving model for weather modification in China [J]. Chinese Sci. Bull., 57(9): 1055−1061. doi: 10.1007/s11434-011-4934-9
    [23] 楼小凤, 孙晶, 史月琴, 等. 2014. 减弱对流云降水的AgI催化原理的数值模拟研究 [J]. 气象学报, 72(4): 782−793. doi: 10.11676/qxxb2014.044

    Lou Xiaofeng, Sun Jing, Shi Yueqin, et al. 2014. Numerical study of the AgI seeding principle for decreasing the convective cloud rainfall [J]. Acta Meteor. Sinica (in Chinese), 72(4): 782−793. doi: 10.11676/qxxb2014.044
    [24] Meyers M P, DeMott P J, Cotton W R. 1995. A comparison of seeded and nonseeded orographic cloud simulations with an explicit cloud model [J]. J. Appl. Meteor., 34(4): 834−846. doi:10.1175/1520-0450(1995)034<0834:ACOSAN>2.0.CO;2
    [25] National Research Council. 2003. Critical Issues in Weather Modification Research [M]. Washington: National Academies Press, 144pp.
    [26] Orville H D, Farley R D, Hirsch J H. 1984. Some surprising results from simulated seeding of stratiform-type clouds [J]. J. Climate Appl. Meteor., 23(12): 1585−1600. doi:10.1175/1520-0450(1984)023<1585:SSRFSS>2.0.CO;2
    [27] 盛裴轩, 毛节泰, 李建国, 等. 2003. 大气物理学 [M]. 北京: 北京大学出版社, 334pp.

    Sheng Peixuan, Mao Jietai, Li Jianguo, et al. 2003. Atmospheric Physics (in Chinese) [M]. Beijing: Peking University Press, 334pp.
    [28] 孙晶, 史月琴, 楼小凤, 等. 2010. 人工缓减梅雨锋暴雨的数值试验 [J]. 大气科学, 34(2): 337−350. doi: 10.3878/j.issn.1006-9895.2010.02.08

    Sun Jing, Shi Yueqin, Lou Xiaofeng, et al. 2010. Numerical experiments on artificial seeding of decreasing the Meiyu heavy rainfall [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(2): 337−350. doi: 10.3878/j.issn.1006-9895.2010.02.08
    [29] 孙玉稳, 银燕, 孙霞, 等. 2017. 冷云催化宏微观物理响应的探测与研究 [J]. 高原气象, 36(5): 1290−1303. doi: 10.7522/j.issn.1000-0534.2016.00113

    Sun Yuwen, Yin Yan, Sun Xia, et al. 2017. Observation and study of macro and micro response in cold cloud catalysis [J]. Plateau Meteorology, 36(5): 1290−1303. doi: 10.7522/j.issn.1000-0534.2016.00113
    [30] Xue L L, Hashimoto A, Murakami M, et al. 2013a. Implementation of a silver iodide cloud-seeding parameterization in WRF. Part I: Model description and idealized 2D sensitivity tests [J]. J. Appl. Meteor. Climatol., 52(6): 1433−1457. doi: 10.1175/JAMC-D-12-0148.1
    [31] Xue L L, Tessendorf S A, Nelson E, et al. 2013b. Implementation of a silver iodide cloud-seeding parameterization in WRF. Part II: 3D simulations of actual seeding events and sensitivity tests [J]. J. Appl. Meteor. Climatol., 52(6): 1458−1476. doi: 10.1175/JAMC-D-12-0149.1
    [32] Xue L L, Chu X, Rasmussen R, et al. 2016. A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part II: AgI dispersion and seeding signals simulated by WRF [J]. J. Appl. Meteor. Climatol., 55(2): 445−464. doi: 10.1175/JAMC-D-15-0115.1
    [33] Yuter S E, Houze Jr R A. 1995. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity [J]. Mon. Wea. Rev., 123(7): 1941−1963. doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2
    [34] 张雨芳, 刘卫国, 周毓荃. 2017. 一次对流云团过程结构特征的观测和模拟研究 [J]. 气象与环境科学, 40(4): 9−18.

    Zhang Yufang, Liu Weiguo, Zhou Yuquan. 2017. Numerical simulation and observation research on the structure characteristics of one convective cloud cluster process [J]. Meteorological and Environmental Sciences, 40(4): 9−18.
    [35] 周毓荃, 陈英英, 李娟, 等. 2008. 用FY-2C/D卫星等综合观测资料反演云物理特性产品及检验 [J]. 气象, 34(12): 27−35. doi: 10.7519/j.issn.1000-0526.2008.12.004

    Zhou Yuquan, Chen Yingying, Li Juan, et al. 2008. Retrieval and preliminary test of cloud physical parameters from combination of FY-2C/D geostationary satellite data and other observation data [J]. Meteor. Mon., 34(12): 27−35. doi: 10.7519/j.issn.1000-0526.2008.12.004
    [36] 周毓荃, 蔡淼, 欧建军, 等. 2011. 云特征参数与降水相关性的研究 [J]. 大气科学学报, 34(6): 641−652. doi: 10.3969/j.issn.1674-7097.2011.06.002

    Zhou Yuquan, Cai Miao, Ou Jianjun, et al. 2011. Correlation between cloud characteristic parameters and precipitation [J]. Trans. Atmos. Sci., 34(6): 641−652. doi: 10.3969/j.issn.1674-7097.2011.06.002
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 录用日期:  2020-05-06
  • 网络出版日期:  2019-07-28

目录

    /

    返回文章
    返回