高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气溶胶对新疆冰雹形成物理过程影响的数值模拟研究

石茹琳 银燕 陈倩 王旭 况祥 张昕 王智敏

石茹琳, 银燕, 陈倩, 等. 2021. 气溶胶对新疆冰雹形成物理过程影响的数值模拟研究[J]. 大气科学, 45(1): 1−16 doi: 10.3878/j.issn.1006-9895.2005.19214
引用本文: 石茹琳, 银燕, 陈倩, 等. 2021. 气溶胶对新疆冰雹形成物理过程影响的数值模拟研究[J]. 大气科学, 45(1): 1−16 doi: 10.3878/j.issn.1006-9895.2005.19214
SHI Rulin, YIN Yan, CHEN Qian, et al. 2021. Numerical Simulation of Aerosol Effects on the Physical Processes of Hail Formation in Xinjiang [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 1−16 doi: 10.3878/j.issn.1006-9895.2005.19214
Citation: SHI Rulin, YIN Yan, CHEN Qian, et al. 2021. Numerical Simulation of Aerosol Effects on the Physical Processes of Hail Formation in Xinjiang [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 1−16 doi: 10.3878/j.issn.1006-9895.2005.19214

气溶胶对新疆冰雹形成物理过程影响的数值模拟研究

doi: 10.3878/j.issn.1006-9895.2005.19214
基金项目: 国家自然科学基金项目41590873、41775136,西北人工影响天气过程项目ZQC-R18211
详细信息
    作者简介:

    石茹琳,女,1994年出生,硕士研究生,主要研究方向为深对流。E-mail: shirulin8499@163.com

    通讯作者:

    银燕,E-mail: yinyan@nuist.edu.cn

  • 中图分类号: P482

Numerical Simulation of Aerosol Effects on the Physical Processes of Hail Formation in Xinjiang

Funds: National Natural Science Foundation of China (Grant 41590873, 41775136), Weather Modification Project in Northwest China (Grant ZQC-R18211)
  • 摘要: 利用带有分档微物理方案的中尺度模式(WRF-SBM)模拟了一次新疆夏季的冰雹天气过程,并通过敏感性试验研究了气溶胶浓度变化对雹云微物理特征、降水过程及冰雹形成机制的影响。结果表明:初始气溶胶浓度越大,对流云发展越旺盛。雹云发展阶段,云中液水含量随气溶胶浓度增加而增多,冰水含量在中度污染时最多。冰雹的含量随气溶胶浓度的增加呈现先增加后减小的趋势,相较而言中度污染条件下,云滴尺度适当,过冷云水含量相对充足,更有利于液相水成物向冰粒子的转化,也更有利于冰雹的生长。冰雹最初几乎全部由冰晶碰冻过冷水生成,随后该过程迅速减弱,液滴冻结过程短暂地成为主要来源,但冰雹一旦形成,自身就会迅速收集过冷水开始生长,成为冰雹生长的主导过程。重度污染条件导致各种成雹过程推迟发生。气溶胶浓度增大导致地面液相累积降水增加,冰相累积降水先增加减少,并且气溶胶浓度适当增大可使降雹量及冰相降水中冰雹的比重增加,过量则会减小。在此基础上,本文提出最适合冰雹生长的“最优气溶胶浓度”,同时也是人工防雹工作中应重点关注的浓度。
  • 图  1  (a)2016年7月7日20:00 500 hPa位势高度场(蓝色实线;单位:dagpm)和温度场(红色实线;单位:°C);(b)模式模拟区域及地形高度的分布

    Figure  1.  (a) Geopotential height (blue solid lines, units: dagpm) and temperature (red lines, units: °C) at 500 hPa at 2000 BJT (Beijing time) on July 7, 2016; (b) model domains and the distribution of terrain height

    图  2  2016年7月8日观测(a)15:38、(b)17:03、(c)18:00与模拟(d)15:00、(e)16:30、(f)17:30的雷达组合反射率对比(图中黑框表示此次对流主要范围)

    Figure  2.  Observed radar combined reflectivity at (a) 1538 BJT, (b) 1703 BJT, and (c) 1800 BJT on July 08, 2016 and simulated combined reflectivity at (d) 1500 BJT, (e) 1630 BJT, and (f) 1730 BJT on July 08, 2016 (black box: main range of this convection)

    图  3  不同CCN浓度试验中在2016年7月8日12:00~18:30(a)平均上升气流速度(>2 m s‒1)和(b)平均下沉气流速度(<−0.5 m s‒1)随高度的变化

    Figure  3.  Variation of (a) mean updraft velocity (>2 m s‒1) and (b) mean downdraft velocity (<−0.5 m s‒1) with height in different CCN (cloud condensation nuclei) concentration tests from 1200 BJT to 1830 BJT July 8, 2016

    图  6  不同CCN浓度试验中(a1–a3)云水、(b1–b3)雨水、(c1–c3)云冰、(d1–d3)雪、(e1–e3)霰、(f1–f3)冰雹在模拟区域(D02)的平均质量混合比(阴影,单位:g kg‒1)随时间和高度的变化:C-case(左列);M-case(中间列);P-case(右列)。黑色等值线代表温度

    Figure  6.  Time–height variations of simulation regional (D02) average mass mixing ratio (shaded, units: g kg‒1) of (a1–a3) cloud droplets, (b1–b3) rain drops, (c1–c3) ice crystals, (d1–d3) snow, (e1–e3) graupel, and (f1–f3) hail in different tests: C-case (left column), M-case (middle column), and P-case (right column). Black contours represent temperatures

    图  4  不同CCN浓度试验的雷达组合反射率及近地面风场在2016年7月8日14:30(左列)、16:30(中间列)、18:30(右列)的水平分布(黑色阴影为地形高度):(a–c)C-case;(d–f)M-case;(g–i)P-case

    Figure  4.  Horizontal distribution of simulated combined reflectivity and surface wind at 1430 BJT (left column), 1630 BJT (middle column), and 1830 BJT (right column) on July 8, 2016 in different tests (black shadow: height): (a–c) C-case test; (d–f) M-case test; (g–i) P-case test

    图  7  不同CCN浓度试验中(a)云水、(b)雨水、(c)云冰、(d)雪、(e)霰、(f)冰雹的平均数浓度(单位:g‒1)随高度的变化

    Figure  7.  Height variations of the average number concentration (units: g−1) of (a) cloud droplets, (b) rain drops, (c) ice crystals, (d) snow, (e) graupel, and (f) hail in different tests

    图  5  不同试验中液水路径(LWP)、冰水路径(IWP)和总水路径(TWP)在模拟区域(D02)的平均随时间的变化,单位:kg m‒2

    Figure  5.  Temporal variations of simulation regional (D02) average liquid water path (LWP), ice water path (IWP), and total water path (TWP) in different tests. Units: kg m‒2

    图  8  不同CCN浓度试验中各微物理过程(a)液滴与霰碰冻生成雹(COLGRAU)、(b)液滴与冰雹碰冻增加雹的质量(COLHAIL)、(c)液滴与冰晶碰冻生成雹(COLICE)、(d)液滴自身的冻结过程(FREE)的相对贡献(RC)随时间的变化

    Figure  8.  Temporal variations of the relative contribution (RC) of microphysical processes in different tests: (a) Drop-graupel collisions (COLGRAU); (b) drop-hail collisions (COLHAIL); (c) drop-ice crystal collisions (COLICE); (d) freeze (FREE)

    图  9  冰雹在模拟区域(D02)的平均质量混合比(单位:10−4 g kg−1)和平均数浓度(单位:10−3 g−1)随初始CCN数浓度的变化(图中红色三角代表质量混合比,黑色圆圈代表数浓度;横坐标的数值依次为新疆背景大气中气溶胶浓度的1、2、3、5、10倍)

    Figure  9.  Simulation regional (D02) average mass mixing ratio (units: 10−4 g kg−1) and the number concentration (units: 10−3 g−1) of hail varying with the initial CCN concentration (red triangle: mass mixing ratio, black circle: number concentration, and horizontal axis: 1, 2, 3, 5, 10 times the background aerosol concentration in Xinjiang

    表  1  气溶胶粒子谱分布参数

    Table  1.   Parameters for aerosol size distribution

    i气溶胶粒子谱分布参数
    Ni/cm−3Ri/μmlgσi
    114000.09750.28
    267.90.48250.56
    30.722.250.32
    下载: 导出CSV

    表  2  三次试验中上升气流的特征

    Table  2.   Characteristics of updraft in three tests

    时间C-case中上升气流M-case中上升气流P-case中上升气流
    峰值/m s‒1高度/km峰值/m s‒1高度/km峰值/m s‒1高度/km
    12:305.07255.575.93855.575.57795.57
    14:305.38587.366.42827.955.99337.36
    16:304.29336.764.57496.764.91317.36
    下载: 导出CSV

    表  3  雹云不同发展时刻云滴有效半径的值

    Table  3.   Effective radius of cloud drops at different moments of hailstorm cloud

    14:3016:3018:30rave_all/μm
    rave/μmrave/μmrave/μm
    C-case43.4745.0850.8548.22
    M-case34.7235.2942.1340.05
    P-case21.1521.8126.4827.99
    注:rave是某一时刻云滴有效半径的区域平均值,rave_all是雹云发展时间段内总的云滴有效半径的平均值,
    下载: 导出CSV

    表  4  12:00~18:00三组试验中液相、冰相降水量及其相对变化

    Table  4.   Precipitation and relative changes in liquid and ice phases in three tests from 1200 BJT to 1800 BJT

    试验液相降水量
    /mm
    液相降水
    变化率
    冰相降水量
    /mm
    冰相降水
    变化率
    C-case9.88550.1815
    M-case11.2593+13.90%0.1904+4.94%
    P-case11.9910+21.30%0.1099−39.44%
    下载: 导出CSV

    表  5  12:00~18:00三组试验中降雹量、降霰量及其对冰相降水的贡献和冰雹、霰、雪的平均融化量

    Table  5.   Accumulated hail and graupel shootings and their contribution to ice-phase precipitation and the melting amounts of hail, graupel, and snow in three tests from 1200 BJT to 1800 BJT

    试验降雹量/mm(对冰相降水的贡献)降霰量/mm(对冰相降水的贡献)冰雹融化量/kg霰融化量/kg雪融化量/kg
    C-case0.0780(42.98%)0.1035(57.02%)1.35×1057.08×1050.82×106
    M-case0.0949(49.82%)0.0956(50.18%)1.97×1055.29×1051.11×106
    P-case0.0241(21.89%)0.0858(78.11%)0.91×1052.66×1051.35×106
    下载: 导出CSV
  • [1] 陈洪武, 马禹, 王旭, 等. 2003. 新疆冰雹天气的气候特征分析 [J]. 气象, 29(11): 25−28. doi: 10.3969/j.issn.1000-0526.2003.11.005

    Chen Hongwu, Ma Yu, Wang Xu, et al. 2003. Climatic characteristics of hail weather in Xinjiang [J]. Meteorological Monthly (in Chinese), 29(11): 25−28. doi: 10.3969/j.issn.1000-0526.2003.11.005
    [2] Chen Q, Yin Y, Jiang H, et al. 2019. The roles of mineral dust as cloud condensation nuclei and ice nuclei during the evolution of a hail storm [J]. J. Geophys. Res. Atmos., 124(24): 14262−14284. doi: 10.1029/2019JD031403
    [3] Chen Q, Fan J W, Yin Y, et al. 2020. Aerosol impacts on mesoscale convective systems forming under different vertical wind shear conditions [J]. J. Geophys. Res. Atmos., 125(3): e2018JD030027. doi: 10.1029/2018JD030027
    [4] Cotton W R, Anthes R A. 1989. Storm and Cloud Dynamics [M]. San Diego: Academic Press, 883pp.
    [5] Dagan G, Koren I, Altaratz O. 2015. Competition between core and periphery-based processes in warm convective clouds-from invigoration to suppression [J]. Atmos. Chem. Phys., 15(5): 2749−2760. doi: 10.5194/acp-15-2749-2015
    [6] Duvall R M, Majestic B J, Shafer M M, et al. 2008. The water-soluble fraction of carbon, sulfur, and crustal elements in Asian aerosols and Asian soils [J]. Atmos. Environ., 42(23): 5872−5884. doi: 10.1016/j.atmosenv.2008.03.028
    [7] Fan J W, Zhang R Y, Li G H, et al. 2007. Effects of aerosols and relative humidity on cumulus clouds [J]. J. Geophys. Res. Atmos., 112(D14): D14204. doi: 10.1029/2006JD008136
    [8] Fan J W, Yuan T L, Comstock J M, et al. 2009. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds [J]. J. Geophys. Res. Atmos., 114(D22): D22206. doi: 10.1029/2009JD012352
    [9] 付烨, 刘晓莉, 丁伟. 2016. 一次冰雹过程及雹云物理结构的数值模拟研究 [J]. 热带气象学报, 32(4): 546−557. doi: 10.16032/j.issn.1004-4965.2016.04.012

    Fu Ye, Liu Xiaoli, Ding Wei. 2016. A numerical simulation study of a severe hail event and physical structure of hail cloud [J]. Journal of Tropical Meteorology (in Chinese), 32(4): 546−557. doi: 10.16032/j.issn.1004-4965.2016.04.012
    [10] Gayatri K, Patade S, Prabha T V. 2017. Aerosol-cloud interaction in deep convective clouds over the Indian Peninsula using spectral (Bin) microphysics [J]. J. Atmos. Sci., 74(10): 3145−3166. doi: 10.1175/JAS-D-17-0034.1
    [11] 郭学良, 黄美元, 洪延超, 等. 2001a. 三维冰雹分档强对流云数值模式研究Ⅰ. 模式建立及冰雹的循环增长机制 [J]. 大气科学, 25(5): 707−720. doi: 10.3878/j.issn.1006-9895.2001.05.13

    Guo Xueliang, Huang Meiyuan, Hong Yanchao, et al. 2001a. A study of three-dimensional hail-category hailstorm model. Part Ⅰ: Model description and the mechanism of hail recirculation growth [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25(5): 707−720. doi: 10.3878/j.issn.1006-9895.2001.05.13
    [12] 郭学良, 黄美元, 洪延超, 等. 2001b. 三维冰雹分档强对流云数值模式研究Ⅱ. 冰雹粒子的分布特征 [J]. 大气科学, 25(6): 856−864. doi: 10.3878/j.issn.1006-9895.2001.06.13

    Guo Xueliang, Huang Meiyuan, Hong Yanchao, et al. 2001b. A study of three-dimensional hail-category hailstorm model. Part Ⅱ: Characteristics of hail-category size distribution [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25(6): 856−864. doi: 10.3878/j.issn.1006-9895.2001.06.13
    [13] 何观芳, 胡志晋. 1998. 不同云底温度雹云成雹机制及其引晶催化的数值研究 [J]. 气象学报, 56(1): 31−35, 37-45. doi: 10.11676/qxxb1998.003

    He Guanfang, Hu Zhijin. 1998. Numerical study on ice seeding in hailstorms with various cloud base temperatures [J]. Acta Meteor. Sinica (in Chinese), 56(1): 31−35, 37-45. doi: 10.11676/qxxb1998.003
    [14] 洪延超. 1998. 三维冰雹云催化数值模式 [J]. 气象学报, 56(6): 641−653. doi: 10.11676/qxxb1998.060

    Hong Yanchao. 1998. A 3-D hail cloud numerical seeding model [J]. Acta Meteor. Sinica (in Chinese), 56(6): 641−653. doi: 10.11676/qxxb1998.060
    [15] 洪延超. 1999. 冰雹形成机制和催化防雹机制研究 [J]. 气象学报, 57(1): 30−44. doi: 10.11676/qxxb1999.003

    Hong Yanchao. 1999. Study on mechanism of hail formation and hail suppression with seeding [J]. Acta Meteor. Sinica (in Chinese), 57(1): 30−44. doi: 10.11676/qxxb1999.003
    [16] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134(9): 2318−2341. doi: 10.1175/MWR3199.1
    [17] 胡金磊, 郭学良, 侯灵. 2014. 下垫面对雹云形成发展的影响 [J]. 气候与环境研究, 19(4): 407−418. doi: 10.3878/j.issn.1006-9585.2013.12026

    Hu Jinlei, Guo Xueliang, Hou Ling. 2014. Effect of underlying surface on the formation and evolution of hail cloud [J]. Climatic and Environmental Research (in Chinese), 19(4): 407−418. doi: 10.3878/j.issn.1006-9585.2013.12026
    [18] 黄艳, 裴江文. 2014. 2012年新疆喀什一次罕见冰雹天气的中尺度特征 [J]. 干旱气象, 32(6): 989−995.

    Huang Yan, Pei Jiangwen. 2014. Mesoscale characteristics of a rare hailstorm in Kashi of Xinjiang in 2012 [J]. Journal of Arid Meteorology (in Chinese), 32(6): 989−995.
    [19] Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models [J]. J. Geophys. Res. Atmos., 113(D13): D13103. doi: 10.1029/2008JD009944
    [20] Ilotoviz E, Khain A P, Benmoshe N, et al. 2016. Effect of aerosols on freezing drops, hail, and precipitation in a midlatitude storm [J]. J. Atmos. Sci., 73(1): 109−144. doi: 10.1175/JAS-D-14-0155.1
    [21] Ilotoviz E, Khain A, Ryzhkov A V, et al. 2018. Relationship between aerosols, hail microphysics, and ZDR columns [J]. J. Atmos. Sci., 75(6): 1755−1781. doi: 10.1175/JAS-D-17-0127.1
    [22] Kain J S. 2004. The Kain-Fritsch convective parameterization: An update [J]. J. Appl. Meteor., 43(1): 170−181. doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    [23] Khain A, Ovtchinnikov M, Pinsky M, et al. 2000. Notes on the state-of-the-art numerical modeling of cloud microphysics [J]. Atmos. Res., 55(3-4): 159−224. doi: 10.1016/S0169-8095(00)00064-8
    [24] Khain A, Pokrovsky A, Pinsky M, et al. 2004. Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible application [J]. J. Atmos. Sci., 61(24): 2963−2982. doi: 10.1175/JAS-3350.1
    [25] Khain A, Rosenfeld D, Pokrovsky A. 2005. Aerosol impact on the dynamics and microphysics of deep convective clouds [J]. Quart. J. Roy. Meteor. Soc., 131(611): 2639−2663. doi: 10.1256/qj.04.62
    [26] Khain A and Lynn B. 2009. Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecast model with spectral bin microphysics [J]. J. Geophys. Res., 114: D19209. doi: 10.1029/2009JD011827
    [27] Khain A, Rosenfeld D, Pokrovsky A, et al. 2011. The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame [J]. Atmos. Res., 99(1): 129−146. doi: 10.1016/j.atmosres.2010.09.015
    [28] 孔凡铀, 黄美元, 徐华英. 1990. 对流云中冰相过程的三维数值模拟Ⅰ: 模式建立及冷云参数化 [J]. 大气科学, 14(4): 441−453. doi: 10.3878/j.issn.1006-9895.1990.04.07

    Kong Fanyou, Huang Meiyuan, Xu Huaying. 1990. Three-dimensional numerical simulation of ice phase microphysics in cumulus clouds. Part Ⅰ: Model establishment and ice phase parameterization [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 14(4): 441−453. doi: 10.3878/j.issn.1006-9895.1990.04.07
    [29] 况祥, 银燕, 陈景华, 等. 2018. 基于WRF模式和CloudSat卫星资料对黄淮下游一次强对流天气过程的诊断分析和数值模拟 [J]. 气象科学, 38(3): 331−341.

    Kuang Xiang, Yin Yan, Chen Jinghua, et al. 2018. Simulation analysis of strong convective weather processes in Huanghuai River based on WRF model and CloudSat satellite data [J]. Journal of the Meteorological Sciences, 38(3): 331−341.
    [30] 李照荣, 丁瑞津, 董安祥, 等. 2005. 西北地区冰雹分布特征 [J]. 气象科技, 33(2): 160−162, 166. doi: 10.3969/j.issn.1671-6345.2005.02.014

    Li Zhaorong, Ding Ruijin, Dong Anxiang, et al. 2005. Characteristics of hail distribution in Northwest China [J]. Meteorological Science and Technology (in Chinese), 33(2): 160−162, 166. doi: 10.3969/j.issn.1671-6345.2005.02.014
    [31] Lim K S S, Hong S Y, Yum S S, et al. 2011. Aerosol effects on the development of a supercell storm in a double‐moment bulk‐cloud microphysics scheme [J]. J. Geophys. Res. Atmos., 116(D2): D02204. doi: 10.1029/2010JD014128
    [32] 刘德祥, 白虎志, 董安祥. 2004. 中国西北地区冰雹的气候特征及异常研究 [J]. 高原气象, 23(6): 795−803. doi: 10.3321/j.issn:1000-0534.2004.06.009

    Liu Dexiang, Bai Huzhi, Dong Anxiang. 2004. Studies on climatic characteristic and anomaly of hail in Northwest China [J]. Plateau Meteorology (in Chinese), 23(6): 795−803. doi: 10.3321/j.issn:1000-0534.2004.06.009
    [33] Loftus A M, Cotton W R. 2014. Examination of CCN impacts on hail in a simulated supercell storm with triple-moment hail bulk microphysics [J]. Atmos. Res., 147−148: 183−204. doi: 10.1016/j.atmosres.2014.04.017
    [34] 满苏尔·沙比提. 2012. 南疆近60a来冰雹灾害时空变化特征分析 [J]. 冰川冻土, 34(4): 795−801.

    Sabit M. 2012. Analyzing the spatio-temporal variations of hail disasters in southern Xinjiang region during recent 60 years [J]. Journal of Glaciology and Geocryology (in Chinese), 34(4): 795−801.
    [35] Noppel H, Blahak U, Seifert A, et al. 2010. Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme [J]. Atmos. Res., 96(2-3): 286−301. doi: 10.1016/j.atmosres.2009.09.008
    [36] Osada K. 2013. Water soluble fraction of Asian dust particles [J]. Atmos. Res., 124: 101−108. doi: 10.1016/j.atmosres.2013.01.001
    [37] 热苏力·阿不拉, 牛生杰, 阿不力米提江·阿布力克木, 等. 2015. 新疆冰雹分区预报方法研究 [J]. 冰川冻土, 37(4): 1041−1049.

    Abla R, Shengjie N, Ablikim A, et al. 2015. Study of the method of partitional hail forecast in Xinjiang region [J]. Journal of Glaciology and Geocryology (in Chinese), 37(4): 1041−1049.
    [38] 史莲梅, 赵智鹏, 王旭. 2015. 1961~2014年新疆冰雹灾害时空分布特征 [J]. 冰川冻土, 37(4): 898−904.

    Shi Lianmei, Zhao Zhipeng, Wang Xu. 2015. Temporal and spatial distribution features of hail disaster in Xinjiang from 1961 to 2014 [J]. Journal of Glaciology and Geocryology (in Chinese), 37(4): 898−904.
    [39] Tao W K, Li X W, Khain A, et al. 2007. Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations [J]. J. Geophys. Res. Atmos., 112(D24): D24S18. doi: 10.1029/2007JD008728
    [40] 王秋香, 任宜勇. 2006. 51 a新疆雹灾损失的时空分布特征 [J]. 干旱区地理, 29(1): 65−69. doi: 10.3321/j.issn:1000-6060.2006.01.011

    Wang Qiuxiang, Ren Yiyong. 2006. Temporal and spatial distribution features of hail disasters in Xinjiang in recent 51 years [J]. Arid Land Geography (in Chinese), 29(1): 65−69. doi: 10.3321/j.issn:1000-6060.2006.01.011
    [41] 王雨, 银燕, 陈倩, 等. 2017. 沙尘气溶胶作为冰核对阿克苏地区一次多单体型强对流风暴降水及其微物理过程影响的数值模拟研究 [J]. 大气科学, 41(1): 15−29. doi: 10.3878/j.issn.1006-9895.1605.15246

    Wang Yu, Yin Yan, Chen Qian, et al. 2017. A numerical study of the effect of aerosols acting as ice nuclei on the precipitation and microphysical processes in a multi-size convective storm occurring in Aksu in Xinjiang, Northwest China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(1): 15−29. doi: 10.3878/j.issn.1006-9895.1605.15246
    [42] 徐戈, 孙继明, 牛生杰, 等. 2016. 冻滴微物理过程的分档数值模拟试验研究 [J]. 大气科学, 40(6): 1297−1319. doi: 10.3878/j.issn.1006-9895.1601.15156

    Xu Ge, Sun Jiming, Niu Shengjie, et al. 2016. A numerical study for the microphysical processes of ice pellets with a spectral (bin) cloud model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(6): 1297−1319. doi: 10.3878/j.issn.1006-9895.1601.15156
    [43] 杨慧玲, 肖辉, 洪延超. 2011. 气溶胶对冰雹云物理特性影响的数值模拟研究 [J]. 高原气象, 30(2): 445−460.

    Yang Huiling, Xiao Hui, Hong Yanchao. 2011. Numerical simulation of aerosol impact on cloud physics of hailstorm [J]. Plateau Meteorology (in Chinese), 30(2): 445−460.
    [44] Yang H L, Xiao H, Guo C W, et al. 2017. Comparison of aerosol effects on simulated spring and summer hailstorm clouds [J]. Adv. Atmos. Sci., 34(7): 877−893. doi: 10.1007/s00376-017-6138-y
    [45] 杨莲梅. 2002. 新疆的冰雹气候特征及其防御 [J]. 灾害学, 17(4): 26−31. doi: 10.3969/j.issn.1000-811X.2002.04.006

    Yang Lianmei. 2002. Climatic characteristics of hail in Xinjiang and the prevention [J]. Journal of Catastrophology (in Chinese), 17(4): 26−31. doi: 10.3969/j.issn.1000-811X.2002.04.006
    [46] Yin Y, Levin Z, Reisin T G, et al. 2000. The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study [J]. Atmos. Res., 53(1−3): 91−116. doi: 10.1016/S0169-8095(99)00046-0
    [47] 张俊兰, 张莉. 2011. 新疆阿克苏地区50 a来强冰雹天气的气候特征 [J]. 中国沙漠, 31(1): 236−241.

    Zhang Junlan, Zhang Li. 2011. Climate characteristics of severe hail events during 50 years in Aksu, Xinjiang, China [J]. Journal of Desert Research (in Chinese), 31(1): 236−241.
    [48] 张俊兰, 罗继. 2012. 新疆天山南麓一次冰雹天气成因分析 [J]. 气象科技, 40(3): 436−444. doi: 10.3969/j.issn.1671-6345.2012.03.021

    Zhang Junlan, Luo Ji. 2012. Comprehensive analysis of a severe hail event in Xinjiang [J]. Meteorological Science and Technology (in Chinese), 40(3): 436−444. doi: 10.3969/j.issn.1671-6345.2012.03.021
    [49] 张培昌, 杜秉玉, 戴铁丕. 2001. 雷达气象学 [M]. 2版. 北京: 气象出版社.

    Zhang Peichang, Du Bingyu, Dai Tiepei. 2001. Radar Meteorology [M]. Second Edition. Beijing: China Meteorological Press.
    [50] 张喆, 丁建丽, 王瑾杰. 2017. 中亚地区气溶胶时空分布及其对云和降水的影响 [J]. 环境科学学报, 37(1): 61−72. doi: 10.13671/j.hjkxxb.2016.0187

    Zhang Zhe, Ding Jianli, Wang Jinjie. 2017. Temporal distribution of cloud and precipitation and their possible relationships with surface aerosols in central Asia [J]. Acta Scientiae Circumstantiae (in Chinese), 37(1): 61−72. doi: 10.13671/j.hjkxxb.2016.0187
    [51] 张小娟, 陶玥, 刘国强, 等. 2019. 一次冰雹天气过程的云系发展演变及云物理特征研究 [J]. 气象, 45(3): 415−425. doi: 10.7519/j.issn.1000-0526.2019.03.011

    Zhang Xiaojuan, Tao Yue, Liu Guoqiang, et al. 2019. Study on the evolution of hailstorm and its cloud physical characteristics [J]. Meteor. Mon. (in Chinese), 45(3): 415−425. doi: 10.7519/j.issn.1000-0526.2019.03.011
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  1
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 录用日期:  2020-05-06
  • 网络出版日期:  2020-05-06

目录

    /

    返回文章
    返回