高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

观测分析El Niño衰减早晚对南亚与青藏高原夏季降水和气温的影响

梁涵洲 吴其冈 任雪娟 姚永红 刘师佐

梁涵洲, 吴其冈, 任雪娟, 等. 2021. 观测分析El Niño衰减早晚对南亚与青藏高原夏季降水和气温的影响[J]. 大气科学, 45(4): 777−798 doi: 10.3878/j.issn.1006-9895.2005.20141
引用本文: 梁涵洲, 吴其冈, 任雪娟, 等. 2021. 观测分析El Niño衰减早晚对南亚与青藏高原夏季降水和气温的影响[J]. 大气科学, 45(4): 777−798 doi: 10.3878/j.issn.1006-9895.2005.20141
LIANG Hanzhou, WU Qigang, REN Xuejuan, et al. 2021. Impacts of Decay of Different El Niño Types on Boreal Summer Rainfall and Surface Air Temperature in South Asian Monsoon Region and Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 777−798 doi: 10.3878/j.issn.1006-9895.2005.20141
Citation: LIANG Hanzhou, WU Qigang, REN Xuejuan, et al. 2021. Impacts of Decay of Different El Niño Types on Boreal Summer Rainfall and Surface Air Temperature in South Asian Monsoon Region and Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 777−798 doi: 10.3878/j.issn.1006-9895.2005.20141

观测分析El Niño衰减早晚对南亚与青藏高原夏季降水和气温的影响

doi: 10.3878/j.issn.1006-9895.2005.20141
基金项目: 国家自然科学基金项目91837206
详细信息
    作者简介:

    梁涵洲,男,1995年出生,硕士研究生,主要从事气候变化研究。E-mail: supertyphoon1995@163.com

    通讯作者:

    吴其冈,E-mail: qigangwu@fudan.edu.cn

  • 中图分类号: P466

Impacts of Decay of Different El Niño Types on Boreal Summer Rainfall and Surface Air Temperature in South Asian Monsoon Region and Tibetan Plateau

Funds: National Natural Science Foundation of China (Grant 91837206)
  • 摘要: El Niño(厄尔尼诺)事件对东亚和南亚次年夏季降水影响及其机理已经得到充分研究,但其对夏季青藏高原降水是否有显著影响还不清楚。本研究根据1950年后El Niño事件次年衰减期演变速度,对比分析衰减早型与晚型El Niño事件对南亚季风区与青藏高原夏季(6~9月)季节平均和月平均气候影响差异。结果显示在衰减早型次年夏季热带太平洋海温转为La Niña(拉尼娜)型且持续发展,引起Walker环流上升支西移,印度洋和南亚季风区上升运动加强,同时激发异常西北太平洋反气旋(NWPAC),阿拉伯海异常气旋和伊朗高原异常反气旋性环流响应,增加7~9月对流层偏南气流和印度洋水汽输送,导致南亚和高原西南侧降水偏多。衰减晚型次年6~8月热带太平洋El Niño型海温仍维持,印度洋暖异常海温显著,对应的印度洋和南亚季风区上升运动较弱,NWPAC西伸控制南亚季风区,阿拉伯海和中西亚分别呈现异常反气旋和气旋性环流,导致青藏高原西风加强,水汽输送减少,南亚北部和高原降水一致偏少。结果表明:(1)El Niño显著影响次年青藏高原西南部夏季季节和月平均降水与温度,是印度和高原西南部夏季降水显著相关的重要原因;(2)El Niño衰减快慢速度对南亚和青藏高原西南部夏季季节内降水的影响有着重要差异。
  • 图  1  两类衰减型El Niño事件的海洋性El Niño指数(ONI)的时间演变合成结果。蓝(红)色粗线代表衰减早(晚)型平均演变。相应颜色的虚线为对应分类的样本年份。黑色横线为厄尔尼诺事件阈值(+0.5°C)。El Niño发展当年季节标记为(0),发展次年季节标记为(1)。详细分类见表1

    Figure  1.  Composite of time-series evolution of Oceanic Niño Index (ONI) events with different El Niño decay types. The blue (red) thick line represents the mean ONI of the early (late) decay type, and the dashed lines with corresponding colors indicate individual years. The black horizontal line is the threshold of El Niño events (+0.5°C). The El Niño developing years are marked by (0), while the following years are marked by (1). Detailed classifications are shown in Table 1.

    图  2  南亚季风区与青藏高原夏季季节平均(a)衰减早型、(c)衰减晚型El Niño事件的降水距平(填色,单位:mm month−1)与(b)衰减早型、(d)衰减晚型厄尔尼诺事件的地表气温距平(填色,单位:K)的合成分析。打点区域为通过90%显著性检验,绿色实线为3000 m海拔等高线

    Figure  2.  Composite of summer mean precipitation anomalies (shaded, units: mm month−1) in El Niño events with (a) early decay and (c) late decay. Bottom panels show the mean surface air temperature anomalies (shaded, units: K) for (b) early-decay and (d) late-decay types over the South Asian Monsoon (SAM) and Tibetan Plateau (TP) regions. The dots indicate areas that pass a test of statistical significance at 90% confidence level. The green solid line is the 3000-m elevation contour

    图  3  印度洋—太平洋区域夏季(a,d)季节平均海表温度距平(填色,单位:K)与700 hPa风场(矢量,单位:m s−1,标出风速超过0.2 m s−1区域),(b,e)OLR距平(单位:W m−2),(c,f)500 hPa垂直速度(填色,单位:10−2 Pa s−1)、200 hPa速度势(等值线,单位:m2 s−1,间隔:5×105 m2 s−1)与辐散风(矢量,单位:m s−1)在(a–c)衰减早型与(d-f)衰减晚型合成分析。图(a,d)、(b,e)与(c,f)打点区域分别为海表温度距平、OLR与500 hPa垂直速度通过90%显著性水平检验区域,图(a, d), 加粗箭头表明矢量风场至少一个分量通过90%显著性检验,C与AC分别代表异常气旋与反气旋

    Figure  3.  (a, d) Composites of summer mean SSTAs (shaded, units: K) and 700-hPa winds field (vector, units: m s−1, magnitude exceeding 0.2 m s−1 are displayed), (b, e) OLR (units: W m−2), (c, f) 500-hPa vertical velocity (shaded, units: 10−2 Pa s−1) and 200-hPa velocity potential (contour, units: m2 s−1, interval = 5×105 m2 s−1) during (a–c) early-decay and (d–f) late-decay El Niño events in the Indo-Pacific Ocean. The dots in (a, d), (b, e) and (c, f) indicate areas in which the SSTA, OLR, and 500-hPa vertical velocity pass a test of statistical significance at 90% confidence level, respectively. Bold arrows in (a, d) indicate that at least one component of the vector wind passes a test of significance at 90% confidence level, and the anomalous cyclones and anticyclonesare labeled C and AC, respectively

    图  4  南亚季风区与青藏高原(a–c)衰减早型与(d–f)衰减晚型El Niño事件的(a,d)600 hPa、(b,e)500 hPa与(c、f)400 hPa夏季季节平均比湿距平(填色,单位:10−2 g kg−1)与矢量风距平(矢量,单位:m s−1,标出风速超过0.2 m s−1区域)合成。图中打点区域为比湿通过90%显著性检验,加粗箭头表示矢量风场至少一个分量通过90%显著性检验。红色实线为3000 m海拔等高线

    Figure  4.  Summer seasonal mean composites of (a, d) 500-hPa, (b, e) 400-hPa, and (c, f) 300-hPa specific humidity anomalies (shaded, units: 10−2 g kg−1) and vector wind anomalies (vector, units: m s−1, magnitude exceeding 0.2 m s−1 are displayed) in (a–c) early-decay and (d–f) late-development El Niño events over the SAM region and TP. The dots indicate areas in which the specific humidity passes a test of significance at 90% confidence level, and bold arrows indicate that at least one component of vector wind passes the test of significance at 90% confidence level. The red solid line is the 3000-m elevation contour

    图  5  南亚季风区与青藏高原(a–d)衰减早型与(e–h)衰减晚型El Niño事件的6~9月逐月降水距平(填色,单位:mm month−1)合成。打点区域为通过90%显著性检验

    Figure  5.  Monthly composites of summer precipitation anomalies (shaded, units: mm month−1) from June to September in (a–d) early-decay and (e–h) late-decay El Niño events over the SAM region and TP. The dots indicate areas that pass a test of significance at the 90% confidence level

    图  6  图5,但为地表气温距平(填色,单位:K)合成

    Figure  6.  Same as Fig. 5, except for the composite of surface air temperature anomalies (shaded, units: K)

    图  7  印度洋—太平洋区域(a–d)衰减早型与(e–h)衰减晚型依次的6~9月海表温度距平(填色,单位:K)与700 hPa矢量风距平(矢量,单位:m s−1,标出风速超过0.2 m s−1区域)合成分析。图中打点区域为海表温度距平通过90%显著性检验,加粗箭头表明矢量风场至少一个分量通过90%显著性检验。异常气旋与反气旋分别用C与AC标记

    Figure  7.  Monthly composite of SSTA (shaded, units: K) and 700-hPa vector wind anomalies (vector, units: m s−1, magnitude exceeding 0.2 m s−1 are displayed) from June to September in (a–d) early-decay and (e–h) late-decay El Niño events in the Indo-Pacific Ocean. The dots indicate areas of SSTA that pass a test of significance at the 90% confidence level, and bold arrows indicate that at least one component of vector wind passes a test of significance at the 90% confidence level. Anomalous cyclones and anticyclones are labeled C and AC, respectively

    图  9  图7,但为衰减早型逐月500 hPa垂直速度(填色,单位:10−2 Pa s−1)、200 hPa速度势(等值线,单位:m2 s−1,间隔:5×105 m2 s−1)与辐散风(矢量,单位:m s−1)距平合成分析。打点区域为500 hPa垂直速度通过90%显著性检验

    Figure  9.  Same as Fig. 7, except for monthly composites of 500-hPa vertical velocity (shaded, units: 10−2 Pa s−1) and 200-hPa velocity potential (contour, units: m2 s−1, interval=5×105 m2 s−1) and divergent wind (vector, units: m s−1). The dots indicate areas of 500-hPa vertical velocity that pass a test of statistical significance at the 0.10 level.

    图  10  南亚季风区与青藏高原(a–d)衰减早型与(e–h)衰减晚型6~9月逐月的500 hPa比湿距平(填色,单位:10−2 g kg−1)与矢量风距平(矢量,单位:m s−1, 标出风速超过0.2 m s−1区域)合成。打点区域为500 hPa比湿通过90%显著性检验, 加粗箭头表明矢量风至少一个分量通过90%显著性检验。异常气旋与反气旋分别用C与AC标记

    Figure  10.  Monthly composites of 500-hPa specific humidity anomalies (shaded, units: 10−2 g kg−1) and vector wind anomalies (vector, unit: m s−1, magnitude exceeding 0.2 m s−1 are displayed) from June to September in (a–d) early-decay and (e–h) late-development El Niño events over the SAM region and the TP. The dots indicate areas in which the 500-hPa specific humidity passes a test of statistical significance at the 0.10 level, and bold arrows indicate that at least one component of vector wind passes a test of significance at the 90% level. Anomalous cyclones and anticyclones are labeled C and AC, respectively

    图  8  图7,但为(a–d)衰减早型和(e–h)衰减晚型逐月OLR距平(单位:W m−2)合成分析。打点区域为OLR合成结果通过90%显著性检验

    Figure  8.  Same as Fig. 7, except for monthly OLR (shaded, units: W m−2). The dots indicate areas of OLR that pass a test of statistical significance at the 0.10 level.

    表  1  1950~2018年夏季El Niño事件衰减期分类

    Table  1.   Classification of the decay phases of El Niño events during boreal summers from 1950 to 2018

    位相阶段类型年份
    El Niño衰减阶段衰减早型1952, 1954, 1959, 1964, 1970, 1973,
    1978, 1988, 1995, 2003, 2005, 2007,
    2010
    衰减晚型1958, 1966, 1969, 1980, 1983, 1992,
    1998, 2016
    气候态1952, 1960, 1961, 1962, 1967, 1968,
    1978, 1979, 1981, 1984, 1990, 1993,
    2001, 2012, 2013, 2014, 2017
    下载: 导出CSV
  • [1] Bejarano L, Jin F F. 2008. Coexistence of equatorial coupled modes of ENSO [J]. J. Climate, 21(12): 3051−3067. doi: 10.1175/2007JCLI1679.1
    [2] Boschat G, Terray P, Masson S. 2012. Robustness of SST teleconnections and precursory patterns associated with the Indian summer monsoon [J]. Climate Dyn., 38(11–12): 2143−2165. doi: 10.1007/s00382-011-1100-7
    [3] Chen B, Xu X D, Yang S, et al. 2012. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau [J]. Theor. Appl. Climatol., 110(3): 423−435. doi: 10.1007/s00704-012-0641-y
    [4] Chen W, Park J K, Dong B W, et al. 2012. The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases [J]. J. Geophys. Res., 117(D12): D12111. doi: 10.1029/2011JD017385
    [5] Chen Z S, Wen Z P, Wu R G, et al. 2016. Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years [J]. Climate Dyn., 46(3–4): 1027−1041. doi: 10.1007/s00382-015-2630-1
    [6] Chowdary J S, Xie S P, Tokinaga H, et al. 2012. Interdecadal variations in ENSO teleconnection to the Indo-western Pacific for 1870–2007 [J]. J. Climate, 25(5): 1722−1744. doi: 10.1175/JCLI-D-11-00070.1
    [7] Chowdary J S, Gnanaseelan C, Chakravorty S. 2013. Impact of Northwest Pacific anticyclone on the Indian summer monsoon region [J]. Theor. Appl. Climatol., 113(1–2): 329−336. doi: 10.1007/s00704-012-0785-9
    [8] Chowdary J S, Harsha H S, Gnanaseelan C, et al. 2016. Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño [J]. Climate Dyn., 48(7–8): 2707−2727. doi: 10.1007/s00382-016-3233-1
    [9] Ding Q H, Wang B. 2005. Circumglobal teleconnection in the Northern Hemisphere summer [J]. J. Climate, 18(17): 3483−3505. doi: 10.1175/JCLI3473.1
    [10] Ding Q H, Wang B, Wallace J M, et al. 2011. Tropical–extratropical teleconnections in boreal summer: Observed interannual variability [J]. J. Climate, 24(7): 1878−1896. doi: 10.1175/2011JCLI3621.1
    [11] Dong W H, Lin Y L, Wright J S, et al. 2016. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent [J]. Nat. Commun., 7(1): 10925. doi: 10.1038/ncomms10925
    [12] Dong W H, Lin Y L, Wright J S, et al. 2018. Connections between a late summer snowstorm over the southwestern Tibetan Plateau and a concurrent Indian monsoon low-pressure system [J]. J. Geophys. Res., 123(24): 13676−13691. doi: 10.1029/2018JD029710
    [13] Du Y, Xie S P, Huang G, et al. 2009. Role of air–sea interaction in the long persistence of El Niño-induced North Indian Ocean warming [J]. J. Climate, 22(8): 2023−2038. doi: 10.1175/2008JCLI2590.1
    [14] Feng L, Zhou T J. 2012. Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis [J]. J. Geophys. Res., 117(D20): D20114. doi: 10.1029/2011JD017012
    [15] 高东, 牛海山. 2018. 青藏高原夏季降水与东亚、南亚夏季风相关程度的空间格局 [J]. 中国科学院大学学报, 35(4): 500−505. doi: 10.7523/j.issn.2095-6134.2018.04.012

    Gao Dong, Niu Haishan. 2018. Spatial pattern of correlation of summer precipitation in Qinghai–Tibetan Plateau with East Asian and South Asian summer monsoon indices [J]. Journal of University of Chinese Academy of Sciences (in Chinese), 35(4): 500−505. doi: 10.7523/j.issn.2095-6134.2018.04.012
    [16] Gill A E. 1980. Some simple solutions for heat-induced tropical circulation [J]. Quart. J. Roy. Meteor. Soc., 106(449): 447−462. doi: 10.1002/qj.49710644905
    [17] Gill E C, Rajagopalan B, Molnar P. 2015. Subseasonal variations in spatial signatures of ENSO on the Indian summer monsoon from 1901 to 2009 [J]. J. Geophys. Res., 120(16): 8165−8185. doi: 10.1002/2015JD023184
    [18] Goswami B N. 1998. Interannual variations of Indian summer monsoon in a GCM: External conditions versus internal feedbacks [J]. J. Climate, 11(4): 501−522. doi:10.1175/1520-0442(1998)011<0501:IVOISM>2.0.CO;2
    [19] Harris I, Jones P D, Osborn T J, et al. 2014. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset [J]. Int. J. Climatol., 34(3): 623−642. doi: 10.1002/joc.3711
    [20] Hu K M, Huang G, Zheng X T, et al. 2014. Interdecadal variations in ENSO influences on Northwest Pacific–East Asian early summertime climate simulated in CMIP5 models [J]. J. Climate, 27(15): 5982−5998. doi: 10.1175/JCLI-D-13-00268.1
    [21] 黄刚, 胡开明. 2008. 夏季北印度洋海温异常对西北太平洋低层反气旋异常的影响 [J]. 南京气象学院学报, 31(6): 749−757. doi: 10.3969/j.issn.1674-7097.2008.06.001

    Huang Gang, Hu Kaiming. 2008. Impact of North Indian Ocean SSTA on Northwest Pacific lower layer anomalous anticyclone in summer [J]. J. Nanjing Inst. Meteor. (in Chinese), 31(6): 749−757. doi: 10.3969/j.issn.1674-7097.2008.06.001
    [22] Huang G, Hu K M, Xie S P. 2010. Strengthening of tropical Indian Ocean teleconnection to the Northwest Pacific since the Mid-1970s: An atmospheric GCM study [J]. J. Climate, 23(19): 5294−5304. doi: 10.1175/2010JCLI3577.1
    [23] Huang B Y, Thorne P W, Banzon V F, et al. 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons [J]. J. Climate, 30(20): 8179−8205. doi: 10.1175/JCLI-D-16-0836.1
    [24] 黄平, 黄荣辉. 2010. El Niño事件对其衰减阶段夏季中国降水季节内演变的影响及其机理 [J]. 大气科学学报, 33(5): 513−519. doi: 10.3969/j.issn.1674-7097.2010.05.001

    Huang Ping, Huang Ronghui. 2010. Effects of El Niño events on intraseasonal variations of following summer rainfall in China and its mechanism [J]. Trans. Atmos. Sci. (in Chinese), 33(5): 513−519. doi: 10.3969/j.issn.1674-7097.2010.05.001
    [25] Huang R H, Sun F Y. 1992. Impact of the tropical western Pacific on the East Asian summer monsoon [J]. J. Meteor. Soc. Japan, 70: 213−256. doi: 10.2151/jmsj1965.70.1B_243
    [26] Huang R H., W. Chen, B. L. Yang, et al 2004. Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle. [J]. Adv. Atmos. Sci., 21: 407−424. doi: 10.1007/BF02915568
    [27] Immerzeel W W, van Beek L P H, Bierkens M F P. 2010. Climate change will affect the Asian Water Towers [J]. Science, 328(5984): 1382−1385. doi: 10.1126/science.1183188
    [28] Jiang X W, Ting M F. 2017. A dipole pattern of summertime rainfall across the Indian Subcontinent and the Tibetan Plateau [J]. J. Climate, 30(23): 9607−9620. doi: 10.1175/JCLI-D-16-0914.1
    [29] Jiang W P, Huang G, Huang P, et al. 2019. Northwest Pacific anticyclonic anomalies during post–El Niño summers determined by the pace of El Niño decay [J]. J. Climate, 32(12): 3487−3503. doi: 10.1175/JCLI-D-18-0793.1
    [30] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [31] Kosaka Y, Nakamura H. 2010. Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific-Japan pattern [J]. J. Climate, 23(19): 5085−5108. doi: 10.1175/2010JCLI3413.1
    [32] Kothawale D R, Munot A A, Kumar K K. 2010. Surface air temperature variability over India during 1901–2007, and its association with ENSO [J]. Climate Res., 42(2): 89−104. doi: 10.3354/cr00857
    [33] Krishna Kumar K, Soman M K, Kumar K R. 1995. Seasonal forecasting of Indian summer monsoon rainfall: A review [J]. Weather, 50(12): 449−467. doi: 10.1002/j.1477-8696.1995.tb06071.x
    [34] Cuo L, Zhang Y X, Wang Q C, et al. 2013. Climate change on the northern Tibetan Plateau during 1957–2009: Spatial patterns and possible mechanisms [J]. J. Climate, 26(1): 85−109. doi: 10.1175/JCLI-D-11-00738.1
    [35] Lau K M, Wu H T. 2001. Principal modes of rainfall–SST variability of the Asian summer monsoon: A reassessment of the monsoon-ENSO relationship [J]. J. Climate, 14(13): 2880−2895. doi:10.1175/1520-0442(2001)014<2880:PMORSV>2.0.CO;2
    [36] Lengaigne M, Vecchi G A. 2010. Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models [J]. Climate Dyn., 35(2–3): 299−313. doi: 10.1007/s00382-009-0562-3
    [37] 李慧敏, 徐海明, 李智玉. 2017. 厄尔尼诺年西北太平洋异常反气旋的年际变化特征及其影响 [J]. 气象学报, 75(4): 581−595. doi: 10.11676/qxxb2017.042

    Li Huimin, Xu Haiming, Li Zhiyu. 2017. Inter-annual variation of the western North Pacific anomalous anticyclone during El Niño years and its impact [J]. Acta Meteor. Sinica (in Chinese), 75(4): 581−595. doi: 10.11676/qxxb2017.042
    [38] Li T, Wang B, Wu B, et al. 2017. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review [J]. J. Meteor. Res., 31: 987−1006. doi: 10.1007/s13351-017-7147-6
    [39] Liebmann B, Smith C A. 1996. Description of a complete (Interpolated) outgoing longwave radiation dataset [J]. Bull. Amer. Meteor. Soc., 77: 1275−1277.
    [40] Maussion F, Scherer D, Mölg T, et al. 2014. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis [J]. J. Climate, 27(5): 1910−1927. doi: 10.1175/JCLI-D-13-00282.1
    [41] Nitta T. 1987. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation [J]. J. Meteor. Soc. Japan, 65(3): 373−390. doi: 10.2151/jmsj1965.65.3_373
    [42] Palmer T N, Branković Č, Viterbo P, et al. 1992. Modeling interannual variations of summer monsoons [J]. J. Climate, 5(5): 399−417. doi:10.1175/1520-0442(1992)005<0399:MIVOSM>2.0.CO;2
    [43] Park H S, Chiang J C H, Lintner B R, et al. 2010. The delayed effect of major El Niño events on Indian monsoon rainfall [J]. J. Climate, 23(4): 932−946. doi: 10.1175/2009JCLI2916.1
    [44] 普布卓玛, 周顺武, 伏阳虎. 2002. ENSO事件对西藏夏季降水影响 [J]. 西藏科技(2): 41−47. doi: 10.3969/j.issn.1004-3403.2002.02.017

    Pubu Zhuoma, Zhou Shunwu, Fu Yanghu. 2002. Reflection from the ENSO event on precipitation during the summer of Tibet [J]. Tibet’s Sci. Technol. (in Chinese)(2): 41−47. doi: 10.3969/j.issn.1004-3403.2002.02.017
    [45] Schneider U, Becker A, Finger B, et al. 2018. GPCC full data monthly product version 2018 at 1.0°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historical data [R]. doi: 10.5676/DWD_GPCC/FD_M_V2018_100
    [46] Shukla J, Mooley D. 1987. Empirical prediction of the summer monsoon rainfall over India [J]. Mon. Wea. Rev., 115(3): 695−704. doi:10.1175/1520-0493(1987)115<0695:EPOTSM>2.0.CO;2
    [47] Shukla J, Wallace J M. 1993. Numerical simulation of the atmospheric response to equatorial Pacific sea surface temperature anomalies [J]. J. Atmos. Sci., 40(7): 1613−1630. doi:10.1175/1520-0469(1983)040<1613:NSOTAR>2.0.CO;2
    [48] Soman M K, Slingo J. 1997. Sensitivity of the Asian summer monsoon to aspects of sea-surface-temperature anomalies in the tropical Pacific Ocean [J]. Quart. J. Roy. Meteor. Soc., 123(538): 309−336. doi: 10.1002/qj.49712353804
    [49] Sugimoto S, Ueno K. 2010. Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts [J]. J. Geophys. Res., 115(D16): D16105. doi: 10.1029/2009JD013609
    [50] 唐颢苏, 胡开明, 黄刚. 2019. El Niño衰退年夏季西北太平洋异常反气旋季节内演变特征及其机制 [J]. 气候与环境研究, 24(4): 525−536. doi: 10.3878/j.issn.1006-9585.2019.18156

    Tang Haosu, Hu Kaiming, Huang Gang. 2019. Characteristics and mechanisms of sub-seasonal evolution of Northwest Pacific anomalous anticyclone during the El Niño decaying summer [J]. Climatic Environ. Res. (in Chinese), 24(4): 525−536. doi: 10.3878/j.issn.1006-9585.2019.18156
    [51] Tao S Y, Ding Y H. 1981. Observational evidence of the influence of the Qinghai–Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China [J]. Bull. Amer. Meteor. Soc., 62(1): 23−30. doi:10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2
    [52] Tao W C, Huang G, Wu R G, et al. 2017. Asymmetry in summertime atmospheric circulation anomalies over the Northwest Pacific during decaying phase of El Niño and La Niña [J]. Climate Dyn., 49(5–6): 2007−2023. doi: 10.1007/s00382-016-3432-9
    [53] Turner A G, Annamalai H. 2012. Climate change and the South Asian summer monsoon [J]. Nat. Climate Change, 2(8): 587−595. doi: 10.1038/nclimate1495
    [54] Wang B, Wu R G, Fu X H. 2000. Pacific–East Asian teleconnection: How does ENSO affect East Asian climate [J]. J. Climate, 13(9): 1517−1536. doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    [55] Wang B, Wu R G, Li Tim. 2003. Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation [J]. J. Climate, 16(8): 1195−1211. doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2
    [56] Wang B, Xiang B Q, Lee J Y. 2013. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions [J]. Proc. Natl. Acad. Sci., 110(8): 2718−2722. doi: 10.1073/pnas.1214626110
    [57] Wang B, Li J, He Q. 2017. Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016) [J]. Adv. Atmos. Sci., 34(10): 1235−1248. doi: 10.1007/s00376-017-7016-3
    [58] Wang Z Q, Duan A M, Yang S, et al. 2017. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau [J]. J. Geophys. Res., 122(2): 614−630. doi: 10.1002/2016JD025515
    [59] Wen N, Liu Z, Li L. 2019. Direct ENSO impact on East Asian summer precipitation in the developing summer [J]. Climate Dyn., 52: 6799−6815. doi: 10.1007/s00382-018-4545-0
    [60] Wu B, Zhou T J, Li T. 2009. Seasonally evolving dominant interannual variability modes of East Asian climate [J]. J. Climate, 22(11): 2992−3005. doi: 10.1175/2008JCLI2710.1
    [61] Wu B, Li T, Zhou T J. 2010. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer [J]. J. Climate, 23(11): 2974−2986. doi: 10.1175/2010JCLI3300.1
    [62] Wu G X, Zhang Y S. 1998. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea [J]. Mon. Wea. Rev., 126(4): 913−927. doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2
    [63] Xie S P, Hu K M, Hafner J, et al. 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño [J]. J. Climate, 22(3): 730−747. doi: 10.1175/2008JCLI2544.1
    [64] Xie S P, Kosaka Y, Du Y, et al. 2016. Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review [J]. Adv. Atmos. Sci., 33(4): 411−432. doi: 10.1007/s00376-015-5192-6
    [65] Xie S P, Zhou Z Q. 2017. Seasonal modulations of El Niño–related atmospheric variability: Indo–western Pacific Ocean feedback [J]. J. Climate, 30(9): 3461−3472. doi: 10.1175/JCLI-D-16-0713.1
    [66] Xie S P, Peng Q H, Kamae Y, et al. 2018. Eastern Pacific ITCZ dipole and ENSO diversity [J]. J. Climate, 31(11): 4449−4462. doi: 10.1175/JCLI-D-17-0905.1
    [67] Yang J L, Liu Q Y, Xie S P, et al. 2007. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon [J]. Geophys. Res. Lett., 34(2): L02708. doi: 10.1029/2006GL028571
    [68] Yang X X, Yao T D, De ji, et al. 2018. Possible ENSO influences on the northwestern Tibetan Plateau revealed by annually resolved ice core records [J]. J. Geophys. Res., 123(8): 3857−3870. doi: 10.1002/2017JD027755
    [69] Yao T D, Thompson L, Yang W, et al. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings [J]. Nat. Climate Change, 2(9): 663−667. doi: 10.1038/nclimate1580
    [70] Yatagai A, Kamiguchi K, Arakawa O, et al. 2012. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges [J]. Bull. Amer. Meteor. Soc., 93(9): 1401−1415. doi: 10.1175/BAMS-D-11-00122.1
    [71] Yun K S, Ha K J, Yeh S W, et al. 2015. Critical role of boreal summer North Pacific subtropical highs in ENSO transition [J]. Climate Dyn., 44(7–8): 1979−1992. doi: 10.1007/s00382-014-2193-6
    [72] Zhang R H, Sumi A, Kimoto M. 1996. Impact of El Niño on the East Asian monsoon: A diagnostic study of the '86/87 and '91/92 events [J]. J. Meteor. Res. Japan, 74(1): 49−62. doi: 10.2151/jmsj1965.74.1_49
    [73] Zheng X T, Xie S P, Liu Q Y. 2011. Response of the Indian Ocean basin mode and its capacitor effect to global warming [J]. J. Climate, 24(23): 6146−6164. doi: 10.1175/2011JCLI4169.1
    [74] 张人禾, 闵庆烨, 苏京志. 2017. 厄尔尼诺对东亚大气环流和中国降水年际变异的影响: 西北太平洋异常反气旋的作用 [J]. 中国科学: 地球科学, 47: 544−553. doi: 10.1007/s11430-016-9026-x

    Zhang R H, Min Q Y, Su J Z. 2017. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone [J]. Science China Earth Sciences (in Chinese), 47: 544−553. doi: 10.1007/s11430-016-9026-x
    [75] 周顺武, 假拉, 杜军. 2001. 西藏高原夏季降水对ENSO的响应 [J]. 南京气象学院学报, 24(4): 570−575.

    Zhou Shunwu, Jia La, Du Jun. 2001. Response of the summer precipitation over the Tibetan Plateau to ENSO events [J]. J. Nanjing Inst. Meteor. (in Chinese), 24(4): 570−575.
    [76] 周天军, 高晶, 赵寅, 等. 2019. 影响“亚洲水塔”的水汽输送过程 [J]. 中国科学院院刊, 34(11): 1210−1219. doi: 10.16418/j.issn.1000-3045.2019.11.004

    Zhou Tianjun, Gao Jing, Zhao Yin, et al. 2019. Water vapor transport processes on Asian water tower [J]. Bulletin of Chinese Academy of Sciences (in Chinese), 34(11): 1210−1219. doi: 10.16418/j.issn.1000-3045.2019.11.004
    [77] Zhou X Y, Liu F, Wang B, et al. 2019. Different responses of East Asian summer rainfall to El Niño decays [J]. Climate Dyn., 53: 1497−1515. doi: 10.1007/s00382-019-04684-6
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  57
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-06
  • 录用日期:  2020-08-31
  • 网络出版日期:  2020-09-02
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回