高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国东部夏季极端降水年代际变化特征及成因分析

杨涵洧 龚志强 王晓娟 封国林

杨涵洧, 龚志强, 王晓娟, 等. 2021. 中国东部夏季极端降水年代际变化特征及成因分析[J]. 大气科学, 45(2): 1−14 doi: 10.3878/j.issn.1006-9895.2007.19247
引用本文: 杨涵洧, 龚志强, 王晓娟, 等. 2021. 中国东部夏季极端降水年代际变化特征及成因分析[J]. 大气科学, 45(2): 1−14 doi: 10.3878/j.issn.1006-9895.2007.19247
YANG Hanwei, GONG Zhiqiang, WANG Xiaojuan, et al. 2021. Analysis of the Characteristics and Causes of Interdecadal Changes in the Summer Extreme Precipitation over Eastern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 1−14 doi: 10.3878/j.issn.1006-9895.2007.19247
Citation: YANG Hanwei, GONG Zhiqiang, WANG Xiaojuan, et al. 2021. Analysis of the Characteristics and Causes of Interdecadal Changes in the Summer Extreme Precipitation over Eastern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 1−14 doi: 10.3878/j.issn.1006-9895.2007.19247

中国东部夏季极端降水年代际变化特征及成因分析

doi: 10.3878/j.issn.1006-9895.2007.19247
基金项目: 国家重点研发专项2018YFA0606301、2018YFC1507702,国家自然科学基金项目41875100、41875093,上海市气象局科技开发项目YJ201804
详细信息
    作者简介:

    杨涵洧,男,1988年出生,硕士,工程师,主要从事气候与气候变化研究。E-mail: Harvey_Young@163.com

    通讯作者:

    王晓娟,E-mail: mouse0903@126.com

  • 中图分类号: P467

Analysis of the Characteristics and Causes of Interdecadal Changes in the Summer Extreme Precipitation over Eastern China

Funds: National Key Research and Development Program of China (Grants 2018YFA0606301, 2018YFC1507702), National Natural Science Foundation of China (NSFC) (Grants 41875100, 41875093), Science and Technology Development Project of Shanghai Meteorological Bureau (Grant YJ201804)
  • 摘要: 本研究利用逐日降水资料对中国东部夏季极端降水进行检测,并对转变前后的特征进行对比分析,进而从海、陆对增温的响应不同导致的环流调整给出成因分析。结果表明,(1)中国东部夏季极端降水在1990年前后出现显著的年代际转变,极端降水由偏少转为偏多。转折后与转折前相比,中国东部夏季极端降水落区南移,南方偶极子分布型加强,南方极端降水增加、北方极端降水减少,其中华南和华东地区,极端降水量和降水日数增加,对夏季降水的贡献率增大;华北地区,极端降水量和降水日数减少,对夏季降水的贡献率减小。(2)西太平洋暖池区异常升温造成的海陆温差减小是中国东部夏季极端降水1990年前后转变的重要驱动因素之一。它造成1990年之后低纬度季风强度减弱、西太平洋副热带高压增强并南移、南海副高增强,而中高纬度气旋性环流异常被破坏、东亚大槽增强,进而导致华北经向水汽输送减弱,下沉运动显著加强,极端降水量和降水日数减少。于此同时,华南和华东地区则水汽输送加强,上升运动显著,有利于降水偏多,并伴随极端降水量和降水日数有所增加。
  • 图  1  1961~2015年中国东部夏季极端降水阈值分布(单位:mm)

    Figure  1.  Threshold value distribution of the summer extreme precipitation (SEP) over eastern China from 1961 to 2015 (units: mm)

    图  2  1961~2015年中国东部夏季极端降水(a)逐年距平变化及其(b)M-K突变检验结果和(c)滑动t检验结果

    Figure  2.  (a) Annual anomaly variation of SEP, (b) its M-K test results, and (c) moving t test results over eastern China from1961 to 2015

    图  3  中国东部夏季极端降水转折前后(a,c)EOF1和(b,d)EOF2空间模态:(a,b)转折前(1961~1990年);(c,d)转折后(1991~2015年)。红实线为0线;“+”表示通过0.05显著性水平检验

    Figure  3.  (a, c) EOF1 and (b, d) EOF2 before and after the climate shift for the SEP in eastern China: (a, b) Before the shift (1961–1990); (c, d) after the shift (1991–2015). Red line indicates 0 value; +: significance level of 0.05

    图  4  转折前后中国东部夏季极端降水量距平及差值分布(单位:mm):(a)1961~1990;(b)1991~2010;(c)降水量差值(转折后-转折前)。“+”表示通过0.05显著性水平检验

    Figure  4.  Distribution of precipitation anomalies and difference in the SEP before and after the climate shift in eastern China (units: mm): (a) 1961–1990; (b): 1991–2010; (c) difference (SEP after the shift minus before). +: significance level of 0.05

    图  5  转折前后中国东部夏季(a)极端降水量贡献率和(b)极端降水日数(单位:d)的差值分布。“+”表示通过0.05显著性水平检验

    Figure  5.  Difference in (a) the contribution rate and (b) rainfall days (units: d) of SEP before and after the climate shift in eastern China. +: significance level of 0.05

    图  6  (a)1961~2015年中国东部夏季极端降水时间序列与同期夏季平均海温相关及转折(b)前、(c)后海温距平。“+”表示相关性通过0.05显著性水平检验

    Figure  6.  (a) Correlation between the summer SST and the SEP time series for eastern China during the 1961–2015 period and (b, c) the SSTA before and after the climate shift (+: significance level of 0.05)

    图  7  转折前、后中国东部夏季区域平均气温与(a)关键区I、(b)关键区II夏季区域平均海温差值距平和(c)时间平均的东亚夏季风指数

    Figure  7.  Anomalies of differences between area-averaged temperature in summer over eastern China and summer area-averaged SST in (a) key region I and (b) key region II, and (c) time-averaged East Asia summer monsoon index before and after the climate shift

    图  8  1961~2015年中国东部夏季区域平均气温与夏季关键区海温差值的距平和东亚夏季风指数

    Figure  8.  Anomalies of differences between area-averaged temperatures over eastern China and SSTs in key regions and annual East Asia summer monsoon index during the 1961–2015 period

    图  9  1961~2015年北半球500 hPa高度场与中国东部区域平均夏季极端降水时间序列相关。“+”表示通过0.05显著性水平检验

    Figure  9.  Correlation between the summer 500-hPa geopotential height field in North Hemisphere and the area-averaged SEP time series over eastern China during the 1961–2015 period. +: significance level of 0.05

    图  10  转折前后(a)Walker环流(0°~20°N平均)、(b)Hadley环流(130°~150°E平均)和(c)经向环流(100°~120°E平均)差值的垂直剖面(阴影:垂直速度;实心圆点:通过0.05显著性水平检验)

    Figure  10.  Differences in the (a) Walker circulation (0°–20°N), (b) Hadley circulation (130°–150°E), and (c) meridional circulation (100°–120°E) before and after the climate shift (Shaded area: vertical velocity; dots: significance level of 0.05)

    图  11  转折前后西太副高、南海副高和东亚大槽各指标夏季平均距平变化:(a)西太副高面积指数;(b)西太副高强度指数;(c)西太副高脊线指数;(d)南海副高面积指数;(e)南海副高强度指数;(f)东亚大槽强度指数

    Figure  11.  Variation of index anomalies of the western Pacific subtropical high, South China Sea high, and East Asia Trough before and after the climate shift: (a) Area index of the West Pacific subtropical high; (b) intensity index of the West Pacific subtropical high; (c) ridge line index of the West Pacific subtropical high; (d) area index of the South China Sea high; (e) intensity index of the South China Sea high; (f) intensity index of the East Asia trough

    图  12  转折前后夏季平均水汽通量距平(矢量:整层水汽通量;阴影:经向整层水汽通量;单位:kg·m−1·s−1

    Figure  12.  Water vapor flux anomalies before and after the climate shift (units: kg·m−1·s−1). Vector: total water vapor flux; shaded area: total water vapor flux in meridional direction

  • [1] Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation [J]. J. Geophys. Res., 111(D5): D05109. doi: 10.1029/2005JD006290
    [2] Chow K C, Tong H W, Chan J C L. 2008. Water vapor sources associated with the early summer precipitation over China [J]. Climate Dyn., 30(5): 497−517. doi: 10.1007/s00382-007-0301-6
    [3] Ding R Q, Ha K J, Li J P. 2010. Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean [J]. Climate Dyn., 34(7-8): 1059−1071. doi: 10.1007/s00382-009-0555-2
    [4] Duan A M, Sui C, Wu G X. 2008. Simulation of local air–sea interaction in the great warm pool and its influence on Asian monsoon [J]. J. Geophys. Res., 113(D22): D22105. doi: 10.1029/2008JD010520
    [5] Feng G L, Gong Z Q, Zhi R, et al. 2008. Analysis of precipitation characteristics of South and North China based on the power-law tail exponents [J]. Chinese Physics B, 17(7): 2745−2752. doi: 10.1088/1674-1056/17/7/065
    [6] 龚志强, 封国林. 2008. 中国近1000年旱涝的持续性特征研究 [J]. 物理学报, 57(6): 3920−3931. doi: 10.3321/j.issn:1000-3290.2008.06.102

    Gong Z Q, Feng G L. 2008. The research of durative characteristics of dry/wet series of China during the past 1000 years [J]. Acta Physica Sinica (in Chinese), 57(6): 3920−3931. doi: 10.3321/j.issn:1000-3290.2008.06.102
    [7] 龚志强, 赵俊虎, 封国林. 2013. 中国东部2012年夏季降水及年代际转型的可能信号分析 [J]. 物理学报, 62(9): 099205. doi: 10.7498/aps.62.099205

    Gong Z Q, Zhao J H, Feng G L. 2013. Analysis of the summer precipitation of 2012 in East China and its possibility of decadal shift [J]. Acta Physica Sinica (in Chinese), 62(9): 099205. doi: 10.7498/aps.62.099205
    [8] Goswami B N, Venugopal V, Sengupta D, et al. 2006. Increasing trend of extreme rain events over India in a warming environment [J]. Science, 314(5804): 1442−1445. doi: 10.1126/science.1132027
    [9] 何光碧. 2012. 西南低涡研究综述 [J]. 气象, 38(2): 155−163. doi: 10.7519/j.issn.1000-0526.2012.2.003

    He G B. 2012. Review of the Southwest vortex research [J]. Meteorological Monthly (in Chinese), 38(2): 155−163. doi: 10.7519/j.issn.1000-0526.2012.2.003
    [10] 黄荣辉, 蔡榕硕, 陈际龙, 等. 2006. 我国旱涝气候灾害的年代际变化及其与东亚气候系统变化的关系 [J]. 大气科学, 30(5): 730−743. doi: 10.3878/j.issn.1006-9895.2006.05.02

    Huang R H, Cai R S, Chen J L, et al. 2006. Interdecaldal variations of drought and flooding disasters in China and their association with the East Asian climate system [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 730−743. doi: 10.3878/j.issn.1006-9895.2006.05.02
    [11] 黄荣辉, 陈际龙, 刘永. 2011. 我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系 [J]. 大气科学, 35(4): 589−606. doi: 10.3878/j.issn.1006-9895.2011.04.01

    Huang R H, Chen J L, Liu Y. 2011. Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(4): 589−606. doi: 10.3878/j.issn.1006-9895.2011.04.01
    [12] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 1535pp.
    [13] 江漫, 漆梁波. 2016. 1959~2012年我国极端降水台风的气候特征分析 [J]. 气象, 42(10): 1230−1236. doi: 10.7519/j.issn.1000-0526.2016.10.007

    Jiang M, Qi L B. 2016. Analysis on climatic characteristics of extreme precipitating typhoon in China during 1959-2012 [J]. Meteorological Monthly (in Chinese), 42(10): 1230−1236. doi: 10.7519/j.issn.1000-0526.2016.10.007
    [14] 江志红, 陈威霖, 宋洁, 等. 2009. 7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估 [J]. 大气科学, 33(1): 109−120. doi: 10.3878/j.issn.1006-9895.2009.01.10

    Jiang Z H, Chen W L, Song J, et al. 2009. Projection and evaluation of the precipitation extremes indices over China based on seven IPCC AR4 coupled climate models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(1): 109−120. doi: 10.3878/j.issn.1006-9895.2009.01.10
    [15] Jiang X M, Yuan H L, Xue M, et al. 2014. Analysis of a heavy rainfall event over Beijing during 21-22 July 2012 based on high resolution model analyses and forecasts [J]. Journal of Meteorological Research, 28(2): 199−212. doi: 10.1007/s13351-014-3139-y
    [16] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [17] Li J, Wang B. 2018. Predictability of summer extreme precipitation days over eastern China [J]. Climate Dyn., 51(11): 4543−4554. doi: 10.1007/s00382-017-3848-x
    [18] Lu R Y. 2002. Indices of the summertime western North Pacific subtropical high [J]. Adv. Atmos. Sci., 19(6): 1004−1028. doi: 10.1007/s00376-002-0061-5
    [19] Lu R Y, Lu S. 2015. Asymmetric relationship between Indian ocean SST and the western North Pacific summer monsoon [J]. J. Climate, 28(4): 1383−1395. doi: 10.1175/JCLI-D-14-00289.1
    [20] North G R, Bell T L, Cahalan R F, et al. 1982. Sampling errors in the estimation of empirical orthogonal functions [J]. Mon. Wea. Rev., 110(7): 699−706. doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
    [21] Overland J E, Wang M Y. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice [J]. Tellus A, 62(1): 1−9. doi: 10.1111/j.1600-0870.2009.00421.x
    [22] Qian W, Lin X. 2005. Regional trends in recent precipitation indices in China [J]. Meteorology and Atmospheric Physics, 90(3-4): 193−207. doi: 10.1007/s00703-004-0101-z
    [23] 任国玉, 封国林, 严中伟. 2010. 中国极端气候变化观测研究回顾与展望 [J]. 气候与环境研究, 15(4): 337−353. doi: 10.3878/j.issn.1006-9585.2010.04.01

    Ren G Y, Feng G L, Yan Z W. 2010. Progresses in observation studies of climate extremes and changes in the mainland of China [J]. Climatic and Environmental Research (in Chinese), 15(4): 337−353. doi: 10.3878/j.issn.1006-9585.2010.04.01
    [24] 任珂, 何金海, 祁莉. 2010. 东亚副热带季风雨带建立特征及其降水性质分析 [J]. 气象学报, 68(4): 550−558. doi: 10.11676/qxxb2010.053

    Ren K, He J H, Qi L. 2010. The establishment characteristics of the East Asian subtropical monsoon rain-belt and an analysis of its nature of precipitation [J]. Acta Meteor. Sinica (in Chinese), 68(4): 550−558. doi: 10.11676/qxxb2010.053
    [25] 沈柏竹, 张世轩, 杨涵洧, 等. 2012. 2011年春夏季长江中下游地区旱涝急转特征分析 [J]. 物理学报, 61(10): 109202. doi: 10.7498/aps.61.109202

    Shen B Z, Zhang S X, Yang H W, et al. 2012. Analysis of characteristics of a sharp turn from drought to flood in the middle and lower reaches of the Yangtze River in spring and summer in 2011 [J]. Acta Physica Sinica (in Chinese), 61(10): 109202. doi: 10.7498/aps.61.109202
    [26] 施能. 2009. 气象统计预报 [M]. 北京: 气象出版社, 128–145.

    Shi N. 2009. Meteorological Statistics and Forecast (in Chinese) [M]. Beijing: China Meteorological Press, 128–145.
    [27] 施能, 朱乾根, 吴彬贵. 1996. 近40年东亚夏季风及我国夏季大尺度天气气候异常 [J]. 大气科学, 20(5): 575−583. doi: 10.3878/j.issn.1006-9895.1996.05.08

    Shi N, Zhu Q G, Wu B G. 1996. The East Asian summer monsoon in relation to summer large scale weather–climate anomaly in China for last 40 years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 20(5): 575−583. doi: 10.3878/j.issn.1006-9895.1996.05.08
    [28] 孙建奇, 敖娟. 2013. 中国冬季降水和极端降水对变暖的响应 [J]. 科学通报, 58(12): 1395−1401. doi: 10.1007/s11434-012-5542-z

    Sun J Q, Ao J. 2013. Changes in precipitation and extreme precipitation in a warming environment in China [J]. Chinese Science Bulletin, 58(12): 1395−1401. doi: 10.1007/s11434-012-5542-z
    [29] 王万里, 王颢樾, 谢应齐, 等. 2012. 夏季东亚大槽和副热带高压年代际变化的分析 [J]. 地球科学进展, 27(3): 304−320.

    Wang W L, Wang H Y, Xie Y Q, et al. 2012. Analysis of decade variation of East Asia trough and western Pacific subtropical high in summer [J]. Advances in Earth Science (in Chinese), 27(3): 304−320.
    [30] 魏凤英. 2007. 现代气候统计诊断与预测技术 [M]. 2版. 北京: 气象出版社, 296

    pp. Wei F Y. 2007. Modern Statistical Diagnosis and Prediction Technology on Climate (in Chinese) [M]. 2nd ed. Beijing: China Meteorological Press, 296pp.
    [31] Wu R G, Wen Z P, Yang S, et al. 2010. An interdecadal change in southern China summer rainfall around 1992/93 [J]. J. Climate, 23(9): 2389−2403. doi: 10.1175/2009JCLI3336.1
    [32] 吴佳, 周波涛, 徐影. 2015. 中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估 [J]. 地球物理学报, 58(9): 3048−3060. doi: 10.6038/cjg20150903

    Wu J, Zhou B T, Xu Y. 2015. Response of precipitation and its extremes over China to Warming: CMIP5 simulation and projection [J]. Chinese Journal of Geophysics (in Chinese), 58(9): 3048−3060. doi: 10.6038/cjg20150903
    [33] Yang H, Sun S Q. 2003. Longitudinal displacement of the subtropical high in the western Pacific in summer and its influence [J]. Adv. Atmos. Sci., 20(6): 921−933. doi: 10.1007/BF02915515
    [34] You Q L, Kang S C, Aguilar E, et al. 2011. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003 [J]. Climate Dyn., 36(11-12): 2399−2417. doi: 10.1007/s00382-009-0735-0
    [35] Yu R C, Zhou T J. 2007. Seasonality and three-dimensional structure of interdecadal change in the East Asian monsoon [J]. J. Climate, 20(21): 5344−5355. doi: 10.1175/2007JCLI1559.1
    [36] 翟盘茂, 潘晓华. 2003. 中国北方近50年温度和降水极端事件变化 [J]. 地理学报, 58(S1): 1−10. doi: 10.3321/j.issn:0375-5444.2003.z1.001

    Zhai P M, Pan X H. 2003. Change in extreme temperature and precipitation over northern China during the second half of the 20th century [J]. Acta Geographica Sinica (in Chinese), 58(S1): 1−10. doi: 10.3321/j.issn:0375-5444.2003.z1.001
    [37] Zhai P M, Zhang X B, Wan H, et al. 2005. Trends in total precipitation and frequency of daily precipitation extremes over China [J]. J. Climate, 18(7): 1096−1108. doi: 10.1175/JCLI-3318.1
    [38] 翟盘茂, 李蕾, 周佰铨, 等. 2016. 江淮流域持续性极端降水及预报方法研究进展 [J]. 应用气象学报, 27(5): 631−640. doi: 10.11898/1001-7313.20160511

    Zhai P M, Li L, Zhou B Q, et al. 2016. Progress on mechanism and prediction methods for persistent extreme precipitation in the Yangtze–Huai River valley [J]. Journal of Applied Meteorological Science (in Chinese), 27(5): 631−640. doi: 10.11898/1001-7313.20160511
    [39] 张勇, 许吟隆, 董文杰, 等. 2006. 中国未来极端降水事件的变化——基于气候变化预估结果的分析 [J]. 自然灾害学报(S1): 228−234.

    Zhang Y, Xu Y L, Dong W J, et al. 2006. Change of extreme precipitation events in China in future: An analysis based on prediction of climate change [J]. Journal of Natural Disasters(S1): 228−234.
    [40] Zhou T J, Zou L W. 2010. Understanding the predictability of East Asian summer monsoon from the reproduction of land–sea thermal contrast change in AMIP-Type simulation [J]. J. Climate, 23(22): 6009−6026. doi: 10.1175/2010jcli3546.1
  • 加载中
图(12)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  68
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-16
  • 录用日期:  2020-07-31
  • 网络出版日期:  2020-08-03

目录

    /

    返回文章
    返回