高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增强副热带高压对西南涡影响的数值试验

卢萍 李跃清

卢萍, 李跃清. 2021. 增强副热带高压对西南涡影响的数值试验[J]. 大气科学, 45(4): 851−862 doi: 10.3878/j.issn.1006-9895.2008.20161
引用本文: 卢萍, 李跃清. 2021. 增强副热带高压对西南涡影响的数值试验[J]. 大气科学, 45(4): 851−862 doi: 10.3878/j.issn.1006-9895.2008.20161
LU Ping, LI Yueqing. 2021. Simulation of Effect of Subtropical High Enhancement on Southwest Vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 851−862 doi: 10.3878/j.issn.1006-9895.2008.20161
Citation: LU Ping, LI Yueqing. 2021. Simulation of Effect of Subtropical High Enhancement on Southwest Vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 851−862 doi: 10.3878/j.issn.1006-9895.2008.20161

增强副热带高压对西南涡影响的数值试验

doi: 10.3878/j.issn.1006-9895.2008.20161
基金项目: 国家自然科学基金项目91937301,成都高原气象研究所开放实验室基金项目BROP202014,气象预报业务关键技术发展专项子项目YBGJXM(2020)2A-14
详细信息
    作者简介:

    卢萍,女,1976年出生,副研究员,主要从事天气分析、数值模拟研究。E-mail: abc-123@mail.iap.ac.cn

  • 中图分类号: P447

Simulation of Effect of Subtropical High Enhancement on Southwest Vortex

Funds: National Natural Science Foundation of China (Grant 91937301), Open Lab Foundation of Institute of Plateau Meteorology, China Meteorological Administration (Grant BROP202014), Sub-project for the Development of Key Technologies in Meteorological Forecasting Operations (Grant YBGJXM(2020)2A-14)
  • 摘要: 本文通过对伴随副热带高压(简称“副高”)东退而东移的一次典型西南涡天气过程(简称“20150721”过程)进行数值模拟,采用数值敏感性对比试验探讨了增大副高强度对这次东移西南涡的影响,得到以下结论:(1)副高强度增大以后,可长时间稳定维持,能对西南涡中尺度天气系统整个发展演变过程造成持续影响。西南涡路径和强度的变化直接改变了降水的落区和强度。(2)副高强度增大率先改变了环流场,使入侵的北风偏弱,西南引导气流偏强,最终导致西南涡发展偏弱、移速偏快。(3)环流场的改变直接影响到水汽输送、辐合辐散,从而进一步影响西南涡的发展演变过程。(4)副高强度增大以后,西南涡移速过快,导致了低涡中心与低层热力中心偏离,使得动力和热力中心不完全匹配,由此削弱西南涡发展强度。
  • 图  2  2015年7月21日00时至24日00时72 h累计降水量分布(阴影,单位:mm):(a)实况;(b)对照试验;(c)敏感性试验

    Figure  2.  Accumulated 72–h precipitation from 0000 UTC on 21 July to 0000 on 24 July 2015 (shaded, units: mm): (a) Observations; (b) control test; (c) sensitivity test

    图  1  2015年7月21日00时500 hPa位势高度(a)对照试验、(b)敏感性试验、(c)敏感性试验与对照试验之差以及(d)沿20°N的纬向剖面(单位:gpm)

    Figure  1.  The potential height at 500 hPa at 0000 on 21 July 2015: (a) Control test; (b) sensitivity test; (c) difference in the potential heights obtained by the sensitivity and control tests; (d) difference in the zonal profiles of potential height along 20°N (units: gpm)

    图  3  “20150721”过程中,7月23日00时500 hPa位势高度(阴影,单位:gpm)和风场(矢量,单位:m s−1):(a)ERA5再分析资料;(b)对照试验结果;(c)敏感性试验结果

    Figure  3.  Geopotential height (shaded, unit: gpm) and the wind field (vector, unit: m s-1) at 500 hPa at0000 on July 23 in case 20150721: (a) ERA5 reanalysis data; (b) results of the control test; (c) results of the sensitivity test

    图  4  “20150721”过程中,700 hPa西南涡系统随时间的演变:(a,b,c)对照试验结果;(d,e,f)敏感性试验结果。阴影为位势高度(单位:gpm),矢量是风场(单位:m s−1

    Figure  4.  Evolution in the geopotential height (shaded, units: gpm) and wind field (vector, units: m s−1) at 700 hPa in case 20150721: (a, b, c) Results of the control test; (d, e, f) results of the sensitivity test

    图  5  “20150721”过程中,ERA5再分析资料(ERA5)、对照试验(control)以及敏感性试验(sensitivity)模拟的700 hPa西南涡的移动路径(12Z21表示7月21日12时,18Z21表示7月21日18时,标志点间隔6小时,以此类推)。相同颜色的方块、圆点和叉号代表同一时次,粉色阴影为模式地形(单位:m)

    Figure  5.  Movement track of the Southwest vortex at 700 hPa base on ERA5 reanalysis data(ERA5), the control test results (control) and the sensitivity test results (sensitivity) in case 20150721. The squares, dots and crosses of the same color indicates the same time, and the pink shadow indicates the model terrain (units:m).

    图  6  “20150721”过程中,ERA5再分析资料(ERA5)以及对照试验(control)、敏感性试验(sensitivity)模拟的700 hPa西南涡中心位势高度随时间的演变(单位:gpm)

    Figure  6.  Evolution of the center potential height of the Southwest vortex at 700 hPa over time base on ERA5 reanalysis data(ERA5),the control test results(control) and the sensitivity test results(sensitivity) in case 20150721 (units: gpm).

    图  7  2015年7月22日00时和06时的整层水汽通量(阴影和流线,单位:kg m−1 s−1):(a,b)对照试验结果;(c,d)敏感性试验结果。白色圆点是700 hPa低涡中心位置

    Figure  7.  Water vapor flux for the whole layer (shaded and streamline, units: kg m−1 s−1) at 0000 UTC and 0600 UTC 22 Jul 2015: (a, b) Results of the control test; (c, d) results of the sensitivity test. The white dot is the center of the Southwest vortex at 700 hPa

    图  8  经过西南涡中心的假相当位温经向剖面(阴影,单位:K):(a,b)对照试验结果;(c,d)敏感性试验结果。竖虚线是700 hPa西南涡中心位置

    Figure  8.  Meridional section of pseudo-equivalent potential temperature (units: K) passing through the center of the Southwest vortex: (a, b) Results of the control test; (c, d) results of the sensitivity test. The vertical dotted line is the center of the Southwest vortex at 700 hPa

    图  9  图8,但为水汽通量经向剖面(单位:g cm−1 hPa−1 s−1),其中阴影为南北向通量,等值线为东西向的水汽通量

    Figure  9.  Same as Fig. 8, but for the meridional section of the water vapor flux (units: g cm−1 hPa−1 s−1). The shaded area is the north–south flux and the contour line is the east–west water vapor flux

    图  10  图9,但为纬向剖面(单位:g cm−1 hPa−1 s−1),其中阴影为东西向通量,等值线为南北向的水汽通量

    Figure  10.  Same as Fig. 9, but for the zonal section of water vapor flux (units: g.cm−1 hPa−1 s−1). The shaded area is the east–west flux, and the contour line is the south–north water vapor flux.

    图  11  图8,但为涡度和散度(单位:10−4 s−1)。其中阴影为散度,等值线为涡度

    Figure  11.  Same as Fig. 8, but for vorticity and divergence (units: 10−4 s−1). The shaded area is the divergence and the contour is the vorticity

  • [1] 陈忠明. 1989. 环境场作用与西南低涡移动的初步分析 [J]. 高原气象, 8(4): 301−312.

    Chen Zhongming. 1989. The preliminary study of effect of environment flow fields on movement of Southwest vortex [J]. Plateau Meteorology (in Chinese), 8(4): 301−312.
    [2] 陈忠明, 闵文彬, 崔春光. 2004. 西南低涡研究的一些新进展 [J]. 高原气象, 23(S1): 1−5.

    Chen Zhongming, Min Wenbin, Cui Chunguang. 2004. New advances in Southwest China vortex research [J]. Plateau Meteorology (in Chinese), 23(S1): 1−5.
    [3] 丁治英, 吕君宁. 1991. 西南低涡动态的合成诊断 [J]. 高原气象, 10(2): 156−165.

    Ding Zhiying, Lv Junning. 1991. Composite diagnoses of the SW China vortexes [J]. Plateau Meteorology (in Chinese), 10(2): 156−165.
    [4] 公颖, 林春泽, 李俊. 2010. AREM模式预报体系对2010年5月我国南方连续暴雨过程预报效果评估 [J]. 暴雨灾害, 29(4): 356−362, 376. doi: 10.3969/j.issn.1004-9045.2010.04.010

    Gong Ying, Lin Chunzhe, Li Jun. 2010. The forecast effect evaluation of AREM prediction system for successive heavy rain courses in South China in May 2010 [J]. Torrential Rain and Disasters (in Chinese), 29(4): 356−362, 376. doi: 10.3969/j.issn.1004-9045.2010.04.010
    [5] 何光碧. 2012. 西南低涡研究综述 [J]. 气象, 38(2): 155−163.

    He Guangbi. 2012. Review of the Southwest vortex research [J]. Meteorological Monthly (in Chinese), 38(2): 155−163.
    [6] 黄明政, 凌艺, 梁卫芳, 等. 2005. 多尺度天气系统的共同作用与暴雨成因分析 [J]. 气象, 31(6): 67−70. doi: 10.3969/j.issn.1000-0526.2005.06.015

    Huang Mingzheng, Ling Yi, Liang Weifang, et al. 2005. Interaction of different scale weather systems of a heavy rainfall event in East China [J]. Meteorological Monthly (in Chinese), 31(6): 67−70. doi: 10.3969/j.issn.1000-0526.2005.06.015
    [7] 雷丽娟, 雷小途. 2018. 东海台风对四川东部暴雨的影响研究 [J]. 热带气象学报, 34(3): 314−323. doi: 10.16032/j.issn.1004-4965.2018.03.004

    Lei Lijuan, Lei Xiaotu. 2018. Influence of typhoon in the East China Sea on the Southwest vortex rainstorm in Sichuan Province [J]. Journal of Tropical Meteorology (in Chinese), 34(3): 314−323. doi: 10.16032/j.issn.1004-4965.2018.03.004
    [8] 李国平, 陈佳. 2018. 西南涡及其暴雨研究新进展 [J]. 暴雨灾害, 37(4): 293−302. doi: 10.3969/j.issn.1004-9045.2018.04.001

    Li Guoping, Chen Jia. 2018. New progresses in the research of heavy rain vortices formed over the Southwest China [J]. Torrential Rain and Disasters (in Chinese), 37(4): 293−302. doi: 10.3969/j.issn.1004-9045.2018.04.001
    [9] 李跃清, 徐祥德. 2016. 西南涡研究和观测试验回顾及进展 [J]. 气象科技进展, 6(3): 134−140. doi: 10.3969/j.issn.2095-1973.2016.03.018

    Li Yueqing, Xu Xiangde. 2016. A review of the research and observing experiment on Southwest China vortex [J]. Advances in Meteorological Science and Technology (in Chinese), 6(3): 134−140. doi: 10.3969/j.issn.2095-1973.2016.03.018
    [10] 卢敬华. 1986. 西南低涡概论[M]. 北京: 气象出版社, 63–64.

    Lu Jinghua. 1986. The Introduction of Southwest Vortex (in Chinese)[M]. Beijing: China Meteorological Press, 63–64.
    [11] 卢敬华, 雷小途. 1996. 西南低涡移动的初步分析 [J]. 成都气象学院学报, 11(1-2): 40−49.

    Lu Jinghua, Lei Xiaotu. 1996. Preliminary analysis of movement of Southwest vortex [J]. Journal of Chengdu University of Information Technology (in Chinese), 11(1-2): 40−49.
    [12] 卢萍, 李跃清, 郑伟鹏, 等. 2014. 影响华南持续性强降水的西南涡分析和数值模拟 [J]. 高原气象, 33(6): 1457−1467. doi: 10.7522/j.issn.1000-0534.2013.00137

    Lu Ping, Li Yueqing, Zheng Weipeng, et al. 2014. Analysis and numerical simulation of Southwest vortex on continuous heavy rain processes in South China [J]. Plateau Meteorology (in Chinese), 33(6): 1457−1467. doi: 10.7522/j.issn.1000-0534.2013.00137
    [13] Luo Yu, Zhang Lifeng. 2011. A case study of the error growth and predictability of a Meiyu frontal heavy precipitation event [J]. Acta Meteor. Sinica, 25(4): 430−440. doi: 10.1007/s13351-011-0404-1
    [14] 马勋丹, 智协飞, 王静, 等. 2018. 1979–2016年夏季西南涡活动及其与降水的关系 [J]. 大气科学学报, 41(2): 198−206. doi: 10.13878/j.cnki.dqkxxb.20171015001

    Ma Xudan, Zhi XieFei, Wang Jing, et al. 2018. Analysis of the Southwest vortex activities in summer and their relationship with precipitation during the period of 1979-2016 [J]. Transactions of Atmospheric Sciences (in Chinese), 41(2): 198−206. doi: 10.13878/j.cnki.dqkxxb.20171015001
    [15] 慕丹, 李跃清. 2017. 西南涡统计特征研究综述 [J]. 干旱气象, 35(2): 175−181. doi: 10.11755/j.issn.1006-7639(2017)-02-0175

    Mu Dan, Li Yueqing. 2017. Statistical characteristics summary of the Southwest China vortex [J]. Journal of Arid Meteorology (in Chinese), 35(2): 175−181. doi: 10.11755/j.issn.1006-7639(2017)-02-0175
    [16] 潘旸, 李建, 宇如聪. 2011. 东移西南低涡空间结构的气候学特征 [J]. 气候与环境研究, 16(1): 60−70. doi: 10.3878/j.issn.1006-9585.2011.01.06

    Pan Yang, Li Jian, Yu Rucong. 2011. Climatic characteristics of the spatial structure of the eastward-moving Southwest vortex [J]. Climatic and Environmental Research (in Chinese), 16(1): 60−70. doi: 10.3878/j.issn.1006-9585.2011.01.06
    [17] 沈新勇, 沙莎, 刘靓珂, 等. 2018. 大气中多尺度相互作用的研究进展 [J]. 暴雨灾害, 37(3): 197−203. doi: 10.3969/j.issn.1004-9045.2018.03.001

    Shen Xinyong, Sha Sha, Liu Liangke, et al. 2018. Research progress on atmospheric multiscale interaction [J]. Torrential Rain and Disasters (in Chinese), 37(3): 197−203. doi: 10.3969/j.issn.1004-9045.2018.03.001
    [18] 王金虎, 李栋梁, 王颖. 2015. 西南低涡活动特征的再分析 [J]. 气象科学, 35(2): 133−139. doi: 10.3969/2014jms.0039

    Wang Jinhu, Li Dongliang, Wang Ying. 2015. Characteristics reanalysis on Southwest vortex [J]. Journal of the Meteorological Sciences (in Chinese), 35(2): 133−139. doi: 10.3969/2014jms.0039
    [19] Wang Qiwei, Tan Zhemin. 2014. Multi-scale topographic control of Southwest vortex formation in Tibetan Plateau region in an idealized simulation [J]. J. Geophys. Res., 119(20): 11543−11561. doi: 10.1002/2014JD021898
    [20] Wang Xinmin, Liu Yong. 2017. Causes of extreme rainfall in May 2013 over Henan Province: The role of the Southwest vortex and low-level jet [J]. Theor. Appl. Climatol., 129(1-2): 701−709. doi: 10.1007/s00704-017-2054-4
    [21] 宇如聪. 1994. LASG-REM对1994年中国汛期降水的实时预报试验 [J]. 大气科学, 18(S1): 801−809. doi: 10.3878/j.issn.1006-9895.1994.z1.04

    Yu Rucong. 1994. Real-time precipitation forecasting experiments in the summer China of 1994 by the LASG-REM [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 18(S1): 801−809. doi: 10.3878/j.issn.1006-9895.1994.z1.04
    [22] Zhong Rui, Zhong Linhao, Hua Lijuan, et al. 2014. A climatology of the Southwest vortex during 1979-2008 [J]. Atmos. Oceanic Sci. Lett., 7(6): 577−583. doi: 10.3878/AOSL20140042
  • 加载中
图(11)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  30
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-27
  • 录用日期:  2020-09-08
  • 网络出版日期:  2020-09-11
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回