高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台风“山竹”(2018)远距离暴雨的成因分析

陈淑琴 李英 范悦敏 徐哲永 李帆

陈淑琴, 李英, 范悦敏, 等. 2021. 台风“山竹”(2018)远距离暴雨的成因分析[J]. 大气科学, 45(2): 1−15 doi: 10.3878/j.issn.1006-9895.2009.20126
引用本文: 陈淑琴, 李英, 范悦敏, 等. 2021. 台风“山竹”(2018)远距离暴雨的成因分析[J]. 大气科学, 45(2): 1−15 doi: 10.3878/j.issn.1006-9895.2009.20126
CHEN Shuqin, LI Ying, FAN Yuemin, et al. 2021. Analysis of Long-Distance Heavy Rainfall Caused by Typhoon Mangosteen (2018) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 1−15 doi: 10.3878/j.issn.1006-9895.2009.20126
Citation: CHEN Shuqin, LI Ying, FAN Yuemin, et al. 2021. Analysis of Long-Distance Heavy Rainfall Caused by Typhoon Mangosteen (2018) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 1−15 doi: 10.3878/j.issn.1006-9895.2009.20126

台风“山竹”(2018)远距离暴雨的成因分析

doi: 10.3878/j.issn.1006-9895.2009.20126
基金项目: 国家自然科学基金项目41930972、41775055,国家重点基础研究发展计划(973计划)项目2015CB452804,浙江省气象科技计划项目2019YB16、2020YB22,舟山市公益性科技项目2019C31054,上海台风研究基金项目TFJJ201912
详细信息
    作者简介:

    陈淑琴,女,1975年出生,硕士、正高级工程师,主要从事热带气旋天气研究。E-mail:457920850@qq.com

    通讯作者:

    李英,E-mail: yli@cma.gov.cn

  • 中图分类号: P458

Analysis of Long-Distance Heavy Rainfall Caused by Typhoon Mangosteen (2018)

Funds: National Natural Science Foundation of China (Grants 41930972, 41775055), National Basic Research Program of China (973 Program) (Grant 2015CB452804), Zhejiang Meteorological Science and Technology Planning Project (Grants 2019YB16, 2020YB22), Zhoushan Public Welfare Science and Technology Project (Grant 2019C31054), Shanghai Typhoon Research Foundation (Grant TFJJ201912)
  • 摘要: 热带气旋远距离暴雨(TRP)往往成为高影响天气,是业务预报难点。本文用地面、探空观测资料、雷达遥感资料以及NCEP一日四次0.5°×0.5°再分析资料,对2018年第22号台风“山竹”登陆广东期间在长江三角洲(简称长三角)地区引起的远距离暴雨过程进行分析。结果表明:(1)这是一次发生在副热带高压(简称副高)控制范围内的热带气旋远距离暴雨,低层受台风倒槽影响。(2)这次过程第一阶段暴雨主要是在强的对流不稳定条件下,由对流层低层“山竹”倒槽中的辐合线触发对流产生,同时对流层高层“山竹”的极向流出汇入加大了中纬度西风风速,在长三角地区上空产生辐散,有利于上升运动的维持。第二阶段,对流不稳定条件有所减弱,但前一阶段强回波产生的低层偏北外出气流与东南风形成辐合线,辐合线上还有中γ尺度的涡旋产生,又促进了对流发展。850 hPa台风倒槽北端形成一个低涡,500 hPa副高边缘发展出一个短波槽,暴雨的动力条件更为有利。(3)长三角的3个强降水中心分别在长江口、杭州湾北岸的嘉兴沿海及宁波沿海,都是在水陆边界附近。(4)远距离暴雨区的涡度收支诊断发现:暴雨的初始扰动主要由近地层水平辐合辐散项提供,850 hPa的水平辐合辐散项和扭曲项共同作用形成和加强低涡,并通过垂直运动上传使中层700~500 hPa附近涡度增长,进而发展出500 hPa短波槽。850 hPa涡度来自于台风倒槽和副高边缘的偏南急流。(5)在这次远距离暴雨过程中,台风“山竹”与海上西太平洋副高之间形成偏南低空急流,向长三角输送水汽,这与典型TRP事件相似。不同之处在于:典型TRP中暴雨的初始扰动一般由西风槽提供,而这次过程主要由低空台风倒槽和偏南急流提供,涡度上传形成高空短波槽,是不同于典型TRP事件的一个物理过程。
  • 图  1  (a)台风“山竹”的移动路径(黑色实线)及2018年9月15日20时(北京时,下同)至17日20时累计降水量(单位:mm),台风标志处为2018年9月16日20时台风位置,方框区表示远距离降水区;(b)2018年9月16日20时葵花8号红外卫星云图,方框区表示远距离暴雨云区;(c)2018年9月16~17日嘉兴海宁站、上海明珠湖站、宁波上阳小学站小时雨量时间序列

    Figure  1.  (a) Movement path (black solid line) of typhoon Mangosteen and accumulated precipitation (units: mm) from 2000 BJT (Beijing time) 15 September to 2000 BJT 17 September 2018, typhoon mark represents typhoon location at 2000 BJT on 16 September 2018, box represents remote precipitation area; (b) infrared cloud image of satellite GMS-8 at 2000 BJT 16 September 2018, box represents remote rainstorm cloud area; (c) time series of 1-h accumulated precipitation at Haining station in Jiaxing, Mingzhuhu station in Shanghai, and Shangyang primary school station in Ningbo during 16–17 September 2018

    图  2  2018年9月16日20时NCEP再分析资料的(a)850 hPa流场(带箭头实线)和水汽通量散度(虚线,单位:10−7 g s−1 hPa−1 cm−2),(b)500 hPa位势高度场(实线,单位:dagpm)、温度场(虚线,单位: °C),(c)垂直涡度(实、虚线表示正、负值,单位:10−5 s−1)和水平风沿北纬31°N的剖面。图a中实线椭圆表示暴雨区大致位置;图c中方框区表示暴雨区大致位置

    Figure  2.  (a) Stream lines (solid lines with arrows) and vapor fluxes divergence (dashed lines, units: 10−7 g s−1 hPa−1 cm−2) at 850 hPa, (b) geopotential height (solid lines, units: dagpm), temperature (dashed lines, units: °C) at 500 hPa, (c) vertical vorticity (solid and dashed lines represent positive and negative values, units: 10−5 s−1) and cross section of horizontal wind along 31°N obtained from NCEP reanalysis data at 2000 BJT on 16 September 2018. In Fig. a, solid line ellipse represent approximate location of heavy rain; in Fig. c, box indicates approximate location of heavy rain

    图  3  2018年9月16日(a)17时、(b)20时观测的地面气压(黑色等值线,单位:hPa)、风(风向杆,单位:m s−1)、假相当位温(红色等值线,单位:K)

    Figure  3.  Surface pressure (black lines, units: hPa), wind (wind shafts, units: m s−1), pseudo-equivalent potential temperature (red lines, units: K) at (a) 1700 BJT and (b) 2000 BJT on 16 September 2018

    图  4  2018年9月16日(a、b)18:12、(c、d)19:30、(e、f)21:06南通雷达1.5°仰角的(a、c、e)反射率因子和(b、d、f)径向速度。图b、d、f中箭头表示雷达站附近低层气流方向,图d中方框、图f中圆圈表示中尺度气旋

    Figure  4.  (a, c, e) Reflectivity factor and (b, d, f) radial velocity with 1.5° elevation from Nantong radar at (a, b) 1812 BJT, (c, d) 1930 BJT, (e, f) 2106 BJT on 16 September 2018. The arrows in Figs. b, d and f indicate the direction of the low-level airflow near the radar station, the box in Fig. d and the circle in Fig. f indicate mesoscale cyclones

    图  5  2018年9月17日(a、b)01:30、(c、d)02:54湖州雷达0.5°仰角(a、c)反射率因子和(b、d)径向速度。2018年9月17日12:23舟山雷达0.5°仰角(e)反射率因子和(f)径向速度。图中圆圈表示中尺度对流系统

    Figure  5.  (a, c) Reflectivity factor and (b, d) radial velocity with 0.5° elevation from Huzhou radar at (a, b) 0130 BJT, (c, d) 0254 BJT on 17 September 2018. (e) Reflectivity factor and (f) radial velocity with 0.5° elevation from Zhoushan radar at 1223 BJT on 17 September 2018. The circles represent mesoscale convective systems

    图  6  2018年9月17日(a)02时、(b)08时观测的地面气压(黑色等值线,单位:hPa)、风(风向杆,单位:m s−1)、假相当位温(红色等值线,单位:K)。(c)2018年9月17日08时500 hPa位势高度(黑色等值线,单位:dagpm)、温度(红色等值线,单位:°C),棕色粗实线为槽线。(d)2018年9月17日02时假相当位温(黑色实线,单位:K)、垂直速度(红色虚线,单位:10−1 hPa s−1)、风矢量(垂直速度放大100倍)沿121°E的垂直剖面

    Figure  6.  Surface pressure (black lines, units: hPa), wind (wind shafts, units: m s−1), pseudo-equivalent potential temperature (red lines, units: K) at (a) 0200 BJT and (b) 0800 BJT on 17 September 2018. (c) Geopotential height (black lines, units: dagpm), temperature (red lines, units: °C) at 500 hPa at 0800 BJT on 17 September 2018, the thick brown line is a trough line. (d) Vertical cross section of pseudo-equivalent potential temperature (black solid lines, units: K), vertical velocity (red dashed lines, units: 10−1 hPa s−1), wind vector (vertical velocity magnified by 100 times) along 121°E on 0200 BJT 17 September 2018

    图  7  2018年9月(a)16日14时、(b)16日20时、(c)17日02时、(d)17日08时降水区(29°~33°N,118°~123°E)绝对涡度水平平流项(用A表示)、相对涡度垂直输送项(用B表示)、水平辐合辐散项(用C表示)、扭曲项(用D表示)收支及总涡度收支(E)平均的垂直分布(单位:10−9 s−2

    Figure  7.  Vertical distributions (units: 10−9 s−2) of horizontal advections for absolute vorticity budget (A), vertical transport for relative vorticity budget (B), horizontal convergence and divergence for relative vorticity budget (C), distorted relative vorticity budget (D), and the total vorticity budget (E) averaged in the heavy rain area (29°–33°N, 118°–123°E) at (a) 1400 BJT, (b) 2000 BJT on 16 September 2018, (c) 0200 BJT, (d) 0800 BJT on 17 September 2018

    图  8  (a)2018年9月16日14时1000 hPa流场和涡度辐散辐合项(阴影,单位:10−9 s−2)分布,(b)2018年9月16日20时850 hPa流场和涡度扭曲项(阴影,单位:10−9 s−2)分布,2018年9月17日02时(c)850 hPa流场和涡度辐散辐合项(阴影,单位:10−9 s−2)分布、(d)500 hPa流场和涡度垂直输送项(阴影,单位:10−9 s−2)分布。绿色椭圆表示整个过程暴雨区大致位置

    Figure  8.  (a) Stream lines, divergence and convergence vorticity term (shadings, units: 10−9 s−2) at 1000 hPa at 1400 BJT 16 September 2018, (b) stream lines and distorted vorticity term (shadings, units: 10−9 s−2) at 850 hPa at 2000 BJT 16 September 2018, (c) stream lines, divergence and convergence vorticity term (shadings, units: 10−9 s−2) at 850 hPa and (d) stream lines and vertical vorticity transport term (shadings, units: 10−9 s−2) at 500 hPa at 0200 BJT 17 September 2018. Green ellipses represent the approximate location of the rainstorm area during the whole process

  • [1] Byun K Y, Lee T Y. 2012. Remote effects of tropical cyclones on heavy rainfall over the Korean peninsula—Statistical and composite analysis [J]. Tellus A: Dyn. Meteor. Oceanogr., 64(1): 14983. doi: 10.3402/tellusa.v64i0.14983
    [2] 曹晓岗, 王慧. 2016. “8·23–24”上海远距离台风大暴雨影响分析 [J]. 气象, 42(10): 1184−1196. doi: 10.7519/j.issn.1000-0526.2016.10.003

    Cao Xiaogang, Wang Hui. 2016. Analysis on a tropical cyclone remote rain event in Shanghai in 23−24 August 2015 [J]. Meteorological Monthly (in Chinese), 42(10): 1184−1196. doi: 10.7519/j.issn.1000-0526.2016.10.003
    [3] 陈联寿. 2007. 登陆热带气旋暴雨的研究和预报 [C]//第十四届全国热带气旋科学讨论会论文集. 上海: 中国气象学会年会, 3–7.

    Chen Lianshou. 2007. Study and forecast of tropical cyclone Rainstorm landing [C]//14th National Symposium on Tropical Cyclone Science (in Chinese). Shanghai: Chinese Meteorological Society, 3–7.
    [4] 陈联寿, 孟智勇, 丛春华. 2017. 台风暴雨落区研究综述 [J]. 海洋气象学报, 37(4): 1−7. doi: 10.19513/j.cnki.issn2096-3599.2017.04.001

    Chen Lianshou, Meng Zhiyong, Cong Chunhua. 2017. An overview on the research of typhoon rainfall distribution [J]. Journal of Marine Meteorology (in Chinese), 37(4): 1−7. doi: 10.19513/j.cnki.issn2096-3599.2017.04.001
    [5] 丛春华. 2011. 热带气旋远距离暴雨的研究 [D]. 中国气象科学研究院博士学位论文.

    Cong Chunhua. 2011. On the study of the mechanism of tropical cyclone remote precipitation [D]. Ph. D. dissertation (in Chinese), Chinese Academy of Meteorological Sciences.
    [6] 丛春华, 雷小途, 陈佩燕. 2016. 山东两次台风远距离暴雨对比分析 [J]. 中国海洋大学学报, 46(12): 21−31. doi: 10.16441/j.cnki.hdxb.20160034

    Cong Chunhua, Lei Xiaotu, Chen Peiyan. 2016. A comparative study on two processes of typhoon remote rainfall over Shandong Province [J]. Periodical of Ocean University of China (in Chinese), 46(12): 21−31. doi: 10.16441/j.cnki.hdxb.20160034
    [7] Cote M R. 2007. Predecessor rain events in advance of tropical cyclones [D]. M. S. thesis, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York.
    [8] 董美莹, 陈锋, 许娈, 等. 2017. 浙江省热带气旋倒槽暴雨气候特征研究 [J]. 热带气象学报, 33(1): 84−92. doi: 10.16032/j.issn.1004-4965.2017.01.009

    Dong Meiying, Chen Feng, Xu Luan, et al. 2017. Climatic characteristics of rainstorm associated with inverted trough of tropical cyclone in Zhejiang Province [J]. Journal of Tropical Meteorology (in Chinese), 33(1): 84−92. doi: 10.16032/j.issn.1004-4965.2017.01.009
    [9] 段丽, 陈联寿. 2005. 热带风暴“菲特” (0114) 特大暴雨的诊断研究 [J]. 大气科学, 29(3): 343−353. doi: 10.3878/j.issn.1006-9895.2005.03.02

    Duan Li, Chen Lianshou. 2005. Diagnostic analysis and numerical study of torrential rain associated with the tropical storm Fitow (0114) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(3): 343−353. doi: 10.3878/j.issn.1006-9895.2005.03.02
    [10] 范学峰, 吴蓁, 席世平. 2007. AERE台风远距离降水形成机制分析 [J]. 气象, 33(8): 12−16. doi: 10.3969/j.issn.1000-0526.2007.08.002

    Fan Xuefeng, Wu Zhen, Xi Shiping. 2007. Mechanism analysis of rainfall in the far distance of typhoon AERE [J]. Meteorological Monthly (in Chinese), 33(8): 12−16. doi: 10.3969/j.issn.1000-0526.2007.08.002
    [11] Galarneau Jr T J, Bosart L F, Schumacher R S. 2010. Predecessor rain events ahead of tropical cyclones [J]. Mon. Wea. Rev., 138(8): 3272−3297. doi: 10.1175/2010MWR3243.1
    [12] 黄克慧, 陈宣淼, 楼茂园, 等. 2019. 台风倒槽浙江暴雨的“配料法”研究 [J]. 科技通报, 35(9): 12−21. doi: 10.13774/j.cnki.kjtb.2019.09.003

    Huang Kehui, Chen Xuanmiao, Lou Maoyuan, et al. 2019. Study of ingredients-based methodology of Zhejiang torrential rainfall in typhoon inverted trough [J]. Bulletin of Science and Technology (in Chinese), 35(9): 12−21. doi: 10.13774/j.cnki.kjtb.2019.09.003
    [13] 李改琴, 梁海河, 王树文, 等. 2007. 台风海棠远距离暴雨中尺度系统特征 [J]. 气象, 33(8): 17−22. doi: 10.7519/j.issn.1000-0526.2007.08.003

    Li Gaiqin, Liang Haihe, Wang Shuwen, et al. 2007. The mesoscale system character analysis of far distance typhoon Haitang rainstorm [J]. Meteorological Monthly (in Chinese), 33(8): 17−22. doi: 10.7519/j.issn.1000-0526.2007.08.003
    [14] 李明, 高维英, 杜继稳, 等. 2011. 远距离台风影响下的陕西大暴雨分析 [J]. 干旱区研究, 28(3): 514−523. doi: 10.13866/j.azr.2011.03.023

    Li Ming, Gao Weiying, Du Jiwen, et al. 2011. Analysis on the heavy rainstorms in Shaanxi Province in relation to typhoon far away [J]. Arid Zone Research (in Chinese), 28(3): 514−523. doi: 10.13866/j.azr.2011.03.023
    [15] 梁军, 李英, 张胜军, 等. 2015. 影响辽东半岛两个台风Meari和Muifa暴雨环流特征的对比分析 [J]. 大气科学, 39(6): 1215−1224. doi: 10.3878/j.issn.1006-9895.1503.14191

    Liang Jun, Li Ying, Zhang Shengjun, et al. 2015. Comparison of synoptic circulations of heavy rain associated with typhoons Meari and Muifa over Liaodong Peninsula [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(6): 1215−1224. doi: 10.3878/j.issn.1006-9895.1503.14191
    [16] 潘劲松, 周玲丽, 陆玮, 等. 2019. 两个相似路径台风残余造成局地特大暴雨的成因机制和能量收支对比分析 [J]. 大气科学, 43(6): 1399−1412. doi: 10.3878/j.issn.1006-9895.1901.18239

    Pan Jinsong, Zhou Lingli, Lu Wei, et al. 2019. Comparative analyses of mechanisms and energy budgets of local extreme rainfall events caused by remnant clouds of two typhoons with similar tracks [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1399−1412. doi: 10.3878/j.issn.1006-9895.1901.18239
    [17] 孙欣, 陈传雷. 2009. “环高”热带风暴登陆后路径分析及其对辽宁暴雨影响 [J]. 气象科学, 29(4): 536−540. doi: 10.3969/j.issn.1009-0827.2009.04.017

    Sun Xin, Chen Chuanlei. 2009. Analysis of the path of “Huangao” tropical storm and its contribution to the regional rainstrom in Liaoning [J]. Scientia Meteorologica Sinica (in Chinese), 29(4): 536−540. doi: 10.3969/j.issn.1009-0827.2009.04.017
    [18] 孙力, 董伟, 药明, 等. 2015. 1215号“布拉万”台风暴雨及降水非对称性分布的成因分析 [J]. 气象学报, 73(1): 36−49. doi: 10.11676/qxxb2015.004

    Sun Li, Dong Wei, Yao Ming, et al. 2015. A diagnostic analysis of the causes of the torrential rain and precipitation asymmetric distribution of Typhoon Bolaven (2012) [J]. Acta Meteorologica Sinica (in Chinese), 73(1): 36−49. doi: 10.11676/qxxb2015.004
    [19] 孙兴池, 吴炜, 孙莎莎. 2019. 登陆北上山东台风暴雨非对称分布的成因对比分析 [J]. 海洋气象学报, 39(3): 55−63. doi: 10.19513/j.cnki.issn2096-3599.2019.03.007

    Sun Xingchi, Wu Wei, Sun Shasha. 2019. Causal–comparative study of asymmetric distribution of rainstorm by typhoon crossing Shandong [J]. Journal of Marine Meteorology (in Chinese), 39(3): 55−63. doi: 10.19513/j.cnki.issn2096-3599.2019.03.007
    [20] Wang Y Q, Wang Y Q, Fudeyasu H. 2009. The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan [J]. Mon. Wea. Rev., 137(11): 3699−3716. doi: 10.1175/2009mwr2933.1
    [21] 汪亚萍, 崔晓鹏, 冉令坤, 等. 2015. 动力因子对2006“碧利斯”台风暴雨的诊断分析 [J]. 大气科学, 39(4): 747−756. doi: 10.3878/j.issn.1006-9895.1411.14184

    Wang Yaping, Cui Xiaopeng, Ran Lingkun, et al. 2015. Diagnosis of dynamical parameters in torrential rain associated with typhoon "Bilis" in 2006 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(4): 747−756. doi: 10.3878/j.issn.1006-9895.1411.14184
    [22] 杨晓霞, 陈联寿, 刘诗军, 等. 2008. 山东省远距离热带气旋暴雨研究 [J]. 气象学报, 66(2): 236−250. doi: 10.11676/qxxb2008.023

    Yang Xiaoxia, Chen Lianshou, Liu Shijun, et al. 2008. A study of the far distance tropical cyclone torrential rainfalls in Shandong Province [J]. Acta Meteorologica Sinica (in Chinese), 66(2): 236−250. doi: 10.11676/qxxb2008.023
    [23] 周玲丽, 翟国庆, 王东法, 等. 2009. 0505号“海棠”台风暴雨数值模拟试验和分析 [J]. 大气科学, 33(3): 489−500. doi: 10.3878/j.issn.1006-9895.2009.03.07

    Zhou Lingli, Zhai Guoqing, Wang Dongfa, et al. 2009. Numerical simulation and analysis of typhoon Haitang (0505) heavy rainfall [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(3): 489−500. doi: 10.3878/j.issn.1006-9895.2009.03.07
    [24] 周玲丽, 翟国庆, 王东海, 等. 2011. 0713号“韦帕”台风暴雨的中尺度数值研究和非对称性结构分析 [J]. 大气科学, 35(6): 1046−1056. doi: 10.3878/j.issn.1006-9895.2011.06.05

    Zhou Lingli, Zhai Guoqing, Wang Donghai, et al. 2011. Mesoscale numerical study of the rainstorm and asymmetric structure of 0713 typhoon Wipha [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(6): 1046−1056. doi: 10.3878/j.issn.1006-9895.2011.06.05
    [25] 朱洪岩, 陈联寿, 徐祥德. 2000. 中低纬度环流系统的相互作用及其暴雨特征的模拟研究 [J]. 大气科学, 24(5): 669−675. doi: 10.3878/j.issn.1006-9895.2000.05.11

    Zhu Hongyan, Chen Lianshou, Xu Xiangde. 2000. A numerical study of the interactions between typhoon and mid-latitude circulation and its rainfall characteristics [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24(5): 669−675. doi: 10.3878/j.issn.1006-9895.2000.05.11
  • 加载中
图(8)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  11
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-09
  • 录用日期:  2020-11-24
  • 网络出版日期:  2020-11-30

目录

    /

    返回文章
    返回