高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北太平洋副热带高压的不同指数及其与中国东部夏季降水关系的探讨

聂俊 刘鹏 赵灿

聂俊, 刘鹏, 赵灿. 2021. 西北太平洋副热带高压的不同指数及其与中国东部夏季降水关系的探讨[J]. 大气科学, 45(4): 833−850 doi: 10.3878/j.issn.1006-9895.2009.20160
引用本文: 聂俊, 刘鹏, 赵灿. 2021. 西北太平洋副热带高压的不同指数及其与中国东部夏季降水关系的探讨[J]. 大气科学, 45(4): 833−850 doi: 10.3878/j.issn.1006-9895.2009.20160
NIE Jun, LIU Peng, ZHAO Can. 2021. Research on Relationship between Various Indexes of the Western North Pacific Subtropical High and Summer Precipitation in Eastern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 833−850 doi: 10.3878/j.issn.1006-9895.2009.20160
Citation: NIE Jun, LIU Peng, ZHAO Can. 2021. Research on Relationship between Various Indexes of the Western North Pacific Subtropical High and Summer Precipitation in Eastern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 833−850 doi: 10.3878/j.issn.1006-9895.2009.20160

西北太平洋副热带高压的不同指数及其与中国东部夏季降水关系的探讨

doi: 10.3878/j.issn.1006-9895.2009.20160
基金项目: 国家重点研发计划专项项目 2016YFA0600402
详细信息
    作者简介:

    聂俊,男,1999年出生,硕士生,主要研究方向为季风与海气相互作用。E-mail: niejun1999@163.com

    通讯作者:

    刘鹏,E-mail: liupeng1998@nuist.edu.cn

  • 中图分类号: P467

Research on Relationship between Various Indexes of the Western North Pacific Subtropical High and Summer Precipitation in Eastern China

Funds: National Key Research and Development Program of China 2016YFA0600402
  • 摘要: 本文利用再分析资料与台站降水资料,比较了不同副高指数的变化特征,分析了不同指数与中国东部夏季降水的关系及相应环流变化。结果表明,副高指数可分为三类:绝对强度指数、相对强度指数和南北指数。绝对强度指数有上升趋势,对应5870 gpm等值线向西的扩张;相对强度指数有下降趋势,对应扰动位势0线的缩小;南北指数无明显趋势变化,表现为副高脊线基本围绕25°N振荡。不同副高指数对应的环流与降水异常表明,绝对强度指数虽然不能较好的描述副高局地的涡度变化,但其与东亚EAP(East Asia–Pacific,东亚—太平洋)型遥相关关系较好,在这种情况下,该指数与长江流域降水存在高相关,指数正异常时,华北偏干,长江中下游水汽辐合降水增加;反之降水型相反。相对强度指数能较好的描述副高局地的涡度变化,但其与EAP型遥相关关系较弱,因此相对强度指数与降水关系较弱,指数正异常时,降水中心仅出现在长江中游;反之,受异常偏北风影响,我国降水体现为北旱南涝。南北指数对副高局地的涡度变化以及EAP型遥相关都有较好表征,该指数与长江以南以及华北的降水有较好的相关性,指数正异常时,水汽大量向北运输,造成华北多雨而长江干旱;反之,相反的环流型使雨带移至华南。
  • 图  1  位势高度度量下(柱状图,对应左侧纵坐标)以及扰动位势度量下(绿色实线,对应右侧纵坐标)副高指数的时间序列:(a)面积指数(AI);(b)强度指数(INI);(c)西脊点指数(WBI);(d)脊线指数(RI)。“r”为同一图内两组指数之间的相关系数

    Figure  1.  The time series of the WPSHI (western North Pacific subtropical high indexes): (a) Area indices (AI), (b) intensity indices (INI), (c) western boundary indices (WBI), and (d) ridge indices (RI) as defined by the geopotential height (GH) metric (bars; with left y axis) and the eddy geopotential height (EGH) metric green lines; with right y axis). “r” represents the correlation coefficient between two groups of indices in the same graph

    图  2  (a)绝对强度指数在偏高时(红色)以及偏低时(蓝色)位势高度5870 gpm等值线分布;(b)相对强度指数在偏高与偏低时扰动位势高度0 gpm等值线分布;(c)南北指数在偏高与偏低时位势高度5870 gpm等值线分布。细实线表示指数数值最高(最低)3年相应等值线分布,粗虚线表示指数数值最高(最低)3年相应等值线平均状态,黑色实线表示1951~2018年相应等值线气候态

    Figure  2.  (a) 5870 gpm isolines of the geopotential height in high-absolute intensity index (ASI) years (red) and low-ASI years (blue); (b) 0gpm isolines of the eddy geopotential height in high-relative intensity index (RLI) years and low-RLI years; (c) 5870 gpm isolines of geopotential height in high-north–south index (NSI) years and low-NSI years. The thin solid line represents the corresponding isoline of indexs in the highest (lowest) 3 years. The thick dotted line represents the average state of the corresponding isoline of indexs in the highest (lowest) 3 years. Lines in black indicate climatology results (averaged for the period of 1951–2018)

    图  3  (a、d)绝对强度指数、(b、e)相对强度指数以及(c、f)南北指数与500 hPa位势高度(左列)和扰动位势高度(右列)的相关系数。等值线间隔为0.1,虚线代表相关系数为负,粗线为相关系数0线。浅色(深色)填充代表相关系数置信水平超过95%(99%)的区域

    Figure  3.  Correlation coefficient between (a, d) ASI, (b, e) RLI, (c, f) NSI, 500 hPa GH (left panel), and EGH (right panel). The interval of the contour is 0.1. Negative values are shown with dashed lines and 0 lines are with overstrikes. Area shaded by light (dark) colors represents the correlation coefficient above 95% (99%) confidence level

    图  4  (a)绝对强度指数、(b)相对强度指数以及(c)南北指数与中国降水距平百分率相关系数。等值线间隔为0.1,虚线表示相关系数为负,粗线为相关系数0线,浅色(深色)填充代表相关系数置信水平超过90%(95%)的区域

    Figure  4.  Correlation coefficient between ASI (a), RLI (b), NSI (c), and precipitation anomaly percentage. The interval of the contour is 0.1. Negative values are shown with dashed lines and 0 lines are with overstrikes. Area shaded by light (dark) colors represents the correlation coefficient above 90% (95%) confidence level

    图  5  绝对强度指数中指数(a–c)数值最高的8年和(d–f)数值最低的8年(a、d)降水距平百分率(填色)、(b、e)500 hPa高度场异常(填色,单位:gpm)与850 hPa风场异常(绿色矢量,单位:m s−1)以及(c、f)850 hPa水汽通量异常(黑色矢量,单位:g cm−1 s−1 hPa−1)与水汽通量散度异常(填色,单位:10−8 g cm−2 s−1 hPa−1)合成图。(a、d)中加点区域表示降水距平百分率置信水平超过90%的区域。(b、e)中加点区域表示高度场异常置信水平超过90%,850 hPa风速小于0.5 m s−1的未绘出。(c、f)中小于0.5 g cm−1·s−1·hPa−1的异常水汽通量未绘出

    Figure  5.  Composites of (a, d) summer precipitation anomaly percentage (shaded) and 500 hPa GH anomalies (shaded, units: gpm) (b, e) with 850 hPa wind anomalies (green vectors, units: m s−1), and that of (c, f) 850 hPa vapor flux anomalies (black vectors, units: g cm−1 s−1 hPa−1) with vapor flux divergence anomalies (shaded, units: 10−8 g cm−2 s−1 hPa−1), for (a–c) the highest 8 years and (d–f) the lowest 8 years under ASI. Precipitation anomaly percentage above 90% confidence level in (a, d) and H anomaly above 90% confidence level in (b, e) are dotted. 850 hPa wind speed below 0.5 m s−1 in (b, e) and vapor flux below 0.5 g cm−1 s−1 hPa−1 in (c, f) are omitted

    图  6  图5,但为相对强度指数,(b、e)为对应时期扰动位势高度异常(单位:gpm)合成

    Figure  6.  Same as Fig.5, but for RLI. Shaded area in (b, e) stand for the composites of 500 hPa EGH (units: gpm)

    图  7  图5,但为南北指数

    Figure  7.  Same as Fig.5, but for NSI

    图  8  绝对强度指数中指数(a、b)数值最高的8年和(c、d)数值最低的8年(a、c)200 hPa纬向风场(单位:m s−1)分布与(b、d)纬向风异常合成。(a、c)中等值线间隔为2 m s−1,超过20 m s−1的区域已填色绘出。(b、d)中等值线间隔为1 m s−1,浅色(深色)填充表示纬向风异常通过置信水平为90%(95%)检验的区域

    Figure  8.  Composites of (a, c) 200 hPa zonal wind and (b, d) anomalous zonal wind, for (a, b) the highest 8 years and (c, d) the lowest 8 years under ASI. In (a, c), the contour interval is 2 m s−1 and wind speed over 20 m s−1 are highlighted. In (b, d), the contour interval is 1 m s−1 and the area shaded by light (dark) colors represents the zonal wind anomalies above 90% (95%) confidence level

    图  10  图8,但为南北指数

    Figure  10.  Same as Fig.8, but for NSI

    图  9  图8,但为相对强度指数

    Figure  9.  Same as Fig.8, but for RLI

    图  11  (a)相对强度指数与热带地区对流层上层(500~200 hPa)夏季平均扰动温度相关系数,等值线间隔为0.1,虚线表示相关系数为负,相关系数0线已加粗,浅色(深色)填充表示相关系数置信水平超过95%(99%);(b)标准化的相对强度指数(虚线)与副高核心区域内(15°N~25°N,120°E~140°E)对流层上层夏季平均扰动温度(实线)时间序列

    Figure  11.  (a) Correlation coefficient between RLI and summer mean upper-tropospheric (500–200 hPa) eddy temperature (Te) over tropical region. The interval of the contour is 0.1. Negative values are with dashed lines and 0 lines are with overstrikes. Area shaded by light (dark) colors represents the correlation coefficient above 95% (99%) confidence level; (b) Normalized time series of RLI (dashed line) and summer mean upper-tropospheric eddy temperature in WPSH core region (15°N–25°N,120°E–140°E)

    表  1  副高指数之间的相关系数

    Table  1.   The correlation coefficient among different WPSHI

    指数位势高度度量扰动位势度量
    面积指数强度指数西脊点指数脊线指数面积指数强度指数西脊点指数脊线指数
    位势高度度量面积指数-0.95**0.88**−0.26*0.12−0.030.25*−0.33**
    强度指数-0.79**−0.210.130.040.23−0.29*
    西脊点指数-−0.29*0.210.060.42**−0.39**
    脊线指数-−0.26*−0.16−0.230.89**
    扰动位势度量面积指数-0.74**0.71**−0.43**
    强度指数-0.35**−0.27*
    西脊点指数-−0.47**
    脊线指数-
    *代表相关系数置信水平超过95%。
    **代表相关系数置信水平超过99%。
    下载: 导出CSV

    表  2  1951~2018年间各类副高指数数值最高8年与最低8年

    Table  2.   The highest 8 years and the lowest 8 years of subtropical high index in 1951–2018

    高值年低值年
    绝对强度指数2010、1998、2017、2015、
    1983、2016、1987、2014
    1984、1967、1974、1956、
    1971、1972、1964、1965
    相对强度指数1983、1995、1998、1987、
    1988、1993、1980、1966
    2012、2016、2018、2006、
    2001、2002、2000、1986
    南北指数2007、1968、1974、1973、
    1966、2008、1959、1983
    1978、1961、2018、1984、
    1963、1981、2004、1971
    下载: 导出CSV

    表  3  副高指数与不同层次副高变化核心区域(15°N~25°N,120°E~140°E)平均涡度的相关系数

    Table  3.   Correlation coefficient between WPSHI and relative vorticity averaged over core region of WPSH (15°N–25°N, 120°E–140°E) in different levels

    相关系数
    绝对强度指数相对强度指数南北指数
    850 hPa涡度−0.26*−0.65**0.53**
    500 hPa涡度−0.41**−0.54**0.69**
    *代表相关系数置信水平超过95%。
    **代表相关系数置信水平超过99%。
    下载: 导出CSV

    表  4  副高指数与EAP指数之间的相关系数,括号中数值表示去除年代际趋势后的相关系数

    Table  4.   Correlation coefficient between WPSHI and EAP indice. The values in brackets indicate the correlation coefficient after removing decadal trend

    指数相关系数
    绝对强度指数相对强度指数南北指数
    EAP指数−0.46(−0.41)−0.33(−0.48)0.47(0.45)
    下载: 导出CSV
  • [1] 蔡学湛, 高建芸, 吴滨. 2003. 夏季东亚季风与西太平洋副高对福建旱涝影响的诊断分析 [J]. 应用气象学报, 14(3): 322−330. doi: 10.3969/j.issn.1001-7313.2003.03.007

    Cai Xuezhan, Gao Jianyun, Wu Bin. 2003. Impact of East Asian summer monsoon and subtropical anticyclone over western Pacific on droughts/floods in Fujian [J]. Journal of Applied Meteorological Science (in Chinese), 14(3): 322−330. doi: 10.3969/j.issn.1001-7313.2003.03.007
    [2] Gao Hui, Jiang Wei, Li Weijing. 2014. Changed relationships between the East Asian summer monsoon circulations and the summer rainfall in eastern China [J]. J. Meteor. Res., 28(6): 1075−1084. doi: 10.1007/s13351-014-4327-5
    [3] 高辉, 丁婷, 李维京. 2017. 三维副热带高压强度指数及对中国东部雨带异常表征的改进 [J]. 科学通报, 62(31): 3643−3654. doi: 10.1360/N972017-00280

    Gao Hui, Ding Ting, Li Weijing. 2017. The three-dimension intensity index for western Pacific subtropical high and its link to the anomaly of rain belt in eastern China [J]. Chinese Science Bulletin (in Chinese), 62(31): 3643−3654. doi: 10.1360/N972017-00280
    [4] He Xuezhao, Gong Daoyi. 2002. Interdecadal change in western Pacific Subtropical High and climatic effects [J]. Journal of Geographical Sciences, 12(2): 202−209. doi: 10.1007/BF02837475
    [5] He Jinhai, Zhou Bing, Wen Min, et al. 2001. Vertical circulation structure, interannual variation features and variation mechanism of western Pacific subtropical high [J]. Advances in Atmospheric Sciences, 18(4): 497−510. doi: 10.1007/s00376-001-0040-2
    [6] He Chao, Lin Ailan, Gu Dejun, et al. 2018. Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate [J]. Theor. Appl. Climatol., 131(1–2): 681−691. doi: 10.1007/s00704-016-2001-9
    [7] Hu Zengzhen, Yang Song, Wu Renguang. 2003. Long-term climate variations in China and global warming signals [J]. J. Geophys. Res. Atmos., 108(D19): 4614. doi: 10.1029/2003JD003651
    [8] 黄士松. 1963. 副热带高压的东西向移动及其预报的研究 [J]. 气象学报, 33(3): 320−332. doi: 10.11676/qxxb1963.030

    Huang Shisong. 1963. A study of the longitudinal movement and its forecasting of subtropical anticyclones [J]. Acta Meteorologica Sinica (in Chinese), 33(3): 320−332. doi: 10.11676/qxxb1963.030
    [9] Huang Ronghui. 1992. The East Asia/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia [J]. Acta Meteor. Sinica, 6(1): 25−37.
    [10] Huang Gang. 2004. An index measuring the interannual variation of the East Asian summer monsoon—the EAP index [J]. Advances in Atmospheric Sciences, 21(1): 41−52. doi: 10.1007/BF02915679
    [11] Huang Yanyan, Li Xiaofan. 2015. The interdecadal variation of the western Pacific subtropical high as measured by 500 hPa eddy geopotential height [J]. Atmospheric and Oceanic Science Letters, 8(6): 371−375. doi: 10.3878/AOSL20150038
    [12] 黄荣辉, 陈际龙, 刘永. 2011. 我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系 [J]. 大气科学, 35(4): 589−606. doi: 10.3878/j.issn.1006-9895.2011.04.01

    Huang Ronghui, Chen Jilong, Liu Yong. 2011. Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(4): 589−606. doi: 10.3878/j.issn.1006-9895.2011.04.01
    [13] Huang Gang, Hu Kaiming, Xie Shangping. 2010. Strengthening of tropical Indian ocean teleconnection to the Northwest Pacific since the Mid-1970s: An atmospheric GCM study [J]. J. Climate, 23(19): 5294−5304. doi: 10.1175/2010JCLI3577.1
    [14] Huang Yanyan, Wang Bin, Li Xiaofan, et al. 2018. Changes in the influence of the western Pacific subtropical high on Asian summer monsoon rainfall in the late 1990s [J]. Climate Dyn., 51(1–2): 443−455. doi: 10.1007/s00382-017-3933-1
    [15] Jiang Dabang, Wang Huijun. 2005. Natural interdecadal weakening of East Asian summer monsoon in the late 20th century [J]. Chinese Science Bulletin, 50(17): 1923−1929. doi: 10.1360/982005-36
    [16] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [17] Lee J Y, Kwon M H, Yun K S, et al. 2017. The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit [J]. Asia-Pacific Journal of Atmospheric Sciences, 53(2): 257−272. doi: 10.1007/s13143-017-0032-5
    [18] 刘屹岷, 吴国雄. 2000. 副热带高压研究回顾及对几个基本问题的再认识 [J]. 气象学报, 58(4): 500−512. doi: 10.3321/j.issn:0577-6619.2000.04.013

    Liu Yimin, Wu Guoxiong. 2000. Reviews on the study of the subtropical anticyclone and new insights on some fundamental problems [J]. Acta Meteorologica Sinica (in Chinese), 58(4): 500−512. doi: 10.3321/j.issn:0577-6619.2000.04.013
    [19] 刘芸芸, 李维京, 艾秀, 等. 2012. 月尺度西太平洋副热带高压指数的重建与应用 [J]. 应用气象学报, 23(4): 414−423. doi: 10.3969/j.issn.1001-7313.2012.04.004

    Liu Yunyun, Li Weijing, Ai Wanxiu, et al. 2012. Reconstruction and application of the monthly western Pacific subtropical high indices [J]. Journal of Applied Meteorological Science (in Chinese), 23(4): 414−423. doi: 10.3969/j.issn.1001-7313.2012.04.004
    [20] Lu Riyu. 2002. Indices of the summertime western North Pacific subtropical high [J]. Advances in Atmospheric Sciences, 19(6): 1004−1028. doi: 10.1007/s00376-002-0061-5
    [21] 罗绍华, 金祖辉. 1986. 南海海温变化与初夏西太平洋副高活动及长江中、下游汛期降水关系的分析 [J]. 大气科学, 10(4): 409−418. doi: 10.3878/j.issn.1006-9895.1986.04.08

    Luo Shaohua, Jin Zuhui. 1986. Statistical analyses for sea surface temperature over the South China Sea, behavior of subtropical high over the West Pacific and monthly mean over the Changjiang middle and lower reaches [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 10(4): 409−418. doi: 10.3878/j.issn.1006-9895.1986.04.08
    [22] Nitta T. 1987. Convective activities in the tropical western Pacific and their impact on the northern Hemisphere summer circulation [J]. J. Meteor. Soc. Japan, 65(3): 373−390. doi: 10.2151/jmsj1965.65.3_373
    [23] Ren Xuejuan, Yang Xiuqun, Sun Xuguang. 2013. Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events [J]. J. Climate, 26(22): 8929−8946. doi: 10.1175/JCLI-D-12-00861.1
    [24] 苏同华, 薛峰. 2010. 东亚夏季风环流和雨带的季节内变化 [J]. 大气科学, 34(3): 611−628. doi: 10.3878/j.issn.1006-9895.2010.03.13

    Su Tonghua, Xue Feng. 2010. The intraseasonal variation of summer monsoon circulation and rainfall in East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(3): 611−628. doi: 10.3878/j.issn.1006-9895.2010.03.13
    [25] Sui C H, Chung P H, Li T. 2007. Interannual and interdecadal variability of the summertime western North Pacific subtropical high [J]. Geophys. Res. Lett., 34(11): L11701. doi: 10.1029/2006GL029204
    [26] 陶诗言. 1963. 中国夏季副热带天气系统若干问题的研究 [M]. 北京: 科学出版社, 1–146.

    Tao Shiyan. 1963. Some Studies on Subtropical Synoptic Systems over China in Summer (in Chinese) [M]. Beijing: Science Press, 1–146.
    [27] 陶诗言, 卫捷. 2006. 再论夏季西太平洋副热带高压的西伸北跳 [J]. 应用气象学报, 17(5): 513−525. doi: 10.3969/j.issn.1001-7313.2006.05.001

    Tao Shiyan, Wei Jie. 2006. The westward, northward advance of the subtropical high over the West Pacific in summer [J]. Journal of Applied Meteorological Science (in Chinese), 17(5): 513−525. doi: 10.3969/j.issn.1001-7313.2006.05.001
    [28] Wang Huijun. 2001. The weakening of the Asian monsoon circulation after the end of 1970's [J]. Advances in Atmospheric Sciences, 18(3): 376−386. doi: 10.1007/BF02919316
    [29] Wang Bin, Xiang Baoqiang, Lee J Y. 2013. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions [J]. Proceedings of the National Academy of Sciences of the United States of America, 110(8): 2718−2722. doi: 10.1073/pnas.1214626110
    [30] Wu Liguang, Wang Chao. 2015. Has the western Pacific subtropical high extended westward since the late 1970s? [J]. J. Climate, 28(13): 5406−5413. doi: 10.1175/JCLI-D-14-00618.1
    [31] 徐海明, 何金海, 周兵. 2001. 江淮入梅前后大气环流的演变特征和西太平洋副高北跳西伸的可能机制 [J]. 应用气象学报, 12(2): 150−158. doi: 10.3969/j.issn.1001-7313.2001.02.003

    Xu Haiming, He Jinhai, Zhou Bing. 2001. The features of atmospheric circulation during Meiyu onset and possible mehanisms for westward extension (northward shift) of Pacific subtropical high [J]. Quarterly Journal of Applied Meteorology (in Chinese), 12(2): 150−158. doi: 10.3969/j.issn.1001-7313.2001.02.003
    [32] Yang Hui, Sun Shuqing. 2003. Longitudinal displacement of the subtropical high in the western Pacific in summer and its influence [J]. Advances in Atmospheric Sciences, 20(6): 921−933. doi: 10.1007/BF02915515
    [33] Yang Hui, Sun Shuqing. 2005. The characteristics of longitudinal movement of the subtropical high in the western Pacific in the pre-rainy season in South China [J]. Advances in Atmospheric Sciences, 22(3): 392−400. doi: 10.1007/BF02918752
    [34] Yang Ruowen, Xie Zhiang, Cao Jie. 2017. A dynamic index for the westward ridge point variability of the western Pacific subtropical high during summer [J]. J. Climate, 30(9): 3325−3341. doi: 10.1175/JCLI-D-16-0434.1
    [35] 张玲, 智协飞. 2010. 南亚高压和西太副高位置与中国盛夏降水异常 [J]. 气象科学, 30(4): 438−444. doi: 10.3969/j.issn.1009-0827.2010.04.002

    Zhang Ling, Zhi Xiefei. 2010. South Asian high and the subtropical western Pacific high and its relation to the mid-summer precipitation anomalies over China [J]. Scientia Meteorologica Sinica (in Chinese), 30(4): 438−444. doi: 10.3969/j.issn.1009-0827.2010.04.002
    [36] 周静亚, 杨大升, 黄嘉佑. 1986. 夏季热带及副热带环流系统周期振荡与中国降水的功率谱分析 [J]. 热带气象, 2(3): 195−203.

    Zhou Jingya, Yang Dasheng, Huang Jiayou. 1986. Power spectral analyses of oscillation in subtropical and tropical circulation systems and the precipitation over East China in summer [J]. Journal of Tropical Meteorology (in Chinese), 2(3): 195−203.
    [37] Zhou Tianjun, Yu Rucong, Zhang Jie, et al. 2009. Why the western Pacific subtropical high has extended westward since the late 1970s [J]. J. Climate, 22(8): 2199−2215. doi: 10.1175/2008JCLI2527.1
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  31
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-28
  • 网络出版日期:  2021-03-02
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回