Changes in the Growing Season Across China during 1961–2018
-
摘要: 在全球变暖背景下,中国区域生长季发生了改变,但以往研究时段偏短、数据分辨率低且空间覆盖相对有限。本文利用0.25°×0.25°高水平分辨率日平均气温资料CN05.1,研究了1961~2018年中国生长季开始日、结束日和长度的气候态特征、变化趋势及其与季节平均温度的关系。结果表明,1961~2018年中国平均生长季开始日和结束日分别为3月31日和10月29日,长度为212 d。空间上,开始日由东南向西北逐渐推迟,结束日呈反向变化,长度由东南向西北缩短。整体而言,1961~2018年中国平均生长季开始日提前、结束日推迟、长度延长,其速率分别为−1.3 d (10 a)−1、0.9 d (10 a)−1、2.2 d (10 a)−1,其中开始日提前对长度延长的影响更大。此外,中国平均生长季开始日提前和长度增加主要源于春季升温,而结束日推迟则与秋季变暖有关。Abstract: As global warming intensifies, the growing season changes correspondingly across China. Earlier, pertinent studies of the growing season have only covered short-term periods, used low-resolution horizontal data, and focused on limited regions. Based on these premises, the authors investigated the climatological trends of the start of the growing season (GSS), end of the growing season (GSE), and growing season length (GSL) across China during 1961–2018. The authors used daily mean temperature data from a high-resolution horizontal gridded dataset CN05.1 (0.25°×0.25°). The relationship between the changes in the growing season and seasonal average temperature was also analyzed. The results indicated that the national average GSS and GSE were 31 March and 29 October, respectively, and GSL was 212 d across China during 1961–2018. Spatially, annual average GSS was delayed from southeast to northwest, whereas, GSE showed the opposite trend; GSL decreased from southeast to northwest. In generally, the trends in the national average growing season displayed an early start [−1.3 d (10 a)−1], a late end [0.9 d (10 a)−1 ], and a long length [2.2 d (10 a)−1] across China from 1961 to 2018. Finally, both the advance of the national average GSS and extension of the GSL were mainly related to increased spring temperatures, whereas, the delay in the GSE originated from increased autumn temperatures.
-
Key words:
- Growing season /
- China /
- Climatology /
- Trend /
- Seasonal temperature
-
图 4 1961~2018年中国(a)年、(b)春季、(c)夏季、(d)秋季和(e)冬季平均温度的变化趋势[单位:°C (10 a)−1],打点区域通过0.05显著性水平的显著性检验
Figure 4. Trends [units: °C (10 a)−1)] in annual and seasonal average temperatures for (a) annual, (b) spring, (c) summer, (d) autumn, and (e) winter across China during 1961–2018, dotted areas are statistically significant at the 0.05 level
表 1 1961~2018年中国及其各分区平均GSS、GSE和GSL
Table 1. Regional average GSS (Start of the Growing Season), GSE (End of the Growing Season), and GSL (Growing Season Length) across China and its subregions during 1961–2018
地区 GSS GSE
GSL/d日序数 日期 日序数 日期 中国 90 3月31日 302 10月29日 212 东北 113 4月23日 287 10月14日 174 华北 89 3月30日 311 11月7日 222 江淮 41 2月10日 346 12月12日 305 华南 7 1月7日 359 12月25日 352 西南 61 3月2日 322 11月18日 261 青藏高原 156 6月5日 254 9月11日 98 西北 107 4月17日 285 10月12日 178 表 2 1961~2018年中国及其各分区平均GSS、GSE和GSL的变化趋势[单位:d (10 a)−1)]
Table 2. Trends [units: d (10 a)−1)] in regional average GSS, GSE, and GSL across China and its subregions during 1961–2018
地区 变化趋势/d (10 a)−1 GSS GSE GSL 中国 −1.3* 0.9* 2.2* 东北 −1.7* 0.9* 2.6* 华北 −1.9* 0.6* 2.5* 江淮 −2.4* 0.8 3.2* 华南 −0.6 0.3 0.9* 西南 −1.1* 1.0* 2.1* 青藏高原 −1.3* 2.0* 3.4* 西北 −1.0* 0.8* 1.8* 注:*表示通过0.05显著性水平的显著性检验。 表 3 1961~2018年中国及其各分区年平均和季节平均温度的变化趋势[单位:°C (10 a)−1]
Table 3. Trends [units: °C (10 a)−1)] in annual and seasonal average temperature across China and its subregions during 1961–2018
地区 平均温度的变化趋势/°C (10 a)−1 年 春季 夏季 秋季 冬季 中国 0.27* 0.27* 0.19* 0.26* 0.37* 东北 0.33* 0.38* 0.29* 0.27* 0.40* 华北 0.26* 0.31* 0.13* 0.20* 0.43* 江淮 0.18* 0.26* 0.02 0.17* 0.27* 华南 0.17* 0.13* 0.11* 0.20* 0.23* 西南 0.18* 0.13* 0.14* 0.20* 0.26* 青藏高原 0.34* 0.30* 0.25* 0.36* 0.49* 西北 0.31* 0.29* 0.24* 0.31* 0.42* 注:*表示通过0.05显著性水平的显著性检验。 表 4 1961~2018年中国及其各分区平均GSS、GSE和GSL变化与年平均和季节平均温度变化的相关系数
Table 4. Correlation coefficients between regional average changes in GSS, GSE, and GSL and those of annual and seasonal average temperatures across China and its subregions during 1961–2018
地区 与年平均和季节平均温度变化的相关系数 GSS GSE GSL 年 春季 夏季 秋季 冬季 年 春季 夏季 秋季 冬季 年 春季 夏季 秋季 冬季 中国 −0.77* −0.78* −0.52* −0.45* −0.58* 0.63* 0.43* 0.58* 0.78* 0.47* 0.88* 0.78* 0.67* 0.73* 0.66* 东北 −0.59* −0.85* −0.23 −0.16 −0.28* 0.47* 0.32* 0.23 0.62* 0.32* 0.67* 0.78* 0.28* 0.44* 0.37* 华北 −0.73* −0.88* −0.35* −0.24 −0.43* 0.40* 0.17 0.15 0.80* 0.31* 0.82* 0.84* 0.37* 0.59* 0.52* 江淮 −0.58* −0.34* −0.05 −0.26* −0.33* 0.30* 0.21 0.08 0.35* 0.20 0.65* 0.40* 0.09 0.41* 0.39* 华南 −0.25 −0.08 0.14 −0.10 −0.19 0.01 0.09 0.16 0.17 0.31* 0.24 0.11 −0.06 0.17 0.32* 西南 −0.67* −0.60* −0.32* −0.40* −0.37* 0.58* 0.37* 0.54* 0.61* 0.38* 0.80* 0.63* 0.53* 0.63* 0.47* 青藏高原 −0.56* −0.57* −0.62* −0.39* −0.36* 0.68* 0.38* 0.73* 0.64* 0.40* 0.79* 0.61* 0.87* 0.67* 0.49* 西北 −0.65* −0.86* −0.53* −0.38* −0.41* 0.45* 0.18 0.38* 0.70* 0.33* 0.72* 0.71* 0.59* 0.68* 0.48* 注:*表示通过0.05显著性水平的显著性检验。 -
[1] ACIA. 2004. Impacts of a Warming Arctic: Arctic Climate Impact Assessment [M]. Cambridge: Cambridge University Press, 140pp. [2] Allen M J, Sheridan S C. 2016. Evaluating changes in season length, onset, and end dates across the United States (1948–2012) [J]. Int. J. Climatol., 36(3): 1268−1277. doi: 10.1002/joc.4422 [3] Barichivich J, Briffa K R, Myneni R B, et al. 2013. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011 [J]. Glob. Change Biol., 19(10): 3167−3183. doi: 10.1111/gcb.12283 [4] Carter T R. 1998. Changes in the thermal growing season in Nordic countries during the past century and prospects for the future [J]. Agric. Food Sci., 7(2): 161−179. doi: 10.23986/afsci.72857 [5] Chen X Q, Hu B, Yu R. 2005. Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China [J]. Glob. Change Biol., 11(7): 1118−1130. doi: 10.1111/j.1365-2486.2005.00974.x [6] Cui X F, Graf H F. 2009. Recent land cover changes on the Tibetan Plateau: A review [J]. Climatic Change, 94(1–2): 47−61. doi: 10.1007/s10584-009-9556-8 [7] Cui L L, Shi J, Ma Y, et al. 2017. Distribution and trend in the thermal growing season in China during 1961–2015 [J]. Phys. Geogr., 38(6): 506−523. doi: 10.1080/02723646.2017.1344497 [8] 《第三次气候变化国家评估报告》编写委员会. 2015. 第三次气候变化国家评估报告 [M]. 2版. 北京: 科学出报社, 903pp.The Third National Assessment Report on Climate Change Editorial Committee. 2015. Third National Assessment Report on Climate Change (in Chinese) [M]. 2nd ed. Beijing: Science Press, 903pp. [9] D’ Odorico P, Yoo J C, Jaeger S. 2002. Changing seasons: An effect of the North Atlantic Oscillation? [J]. J. Climate, 15(4): 435−445. doi:10.1175/1520-0442(2002)015<0435:CSAEOT>2.0.CO;2 [10] Dong M Y, Jiang Y, Zheng C T, et al. 2012. Trends in the thermal growing season throughout the Tibetan Plateau during 1960–2009 [J]. Agric. For. Meteor., 166–167: 201−206. doi: 10.1016/j.agrformet.2012.07.013 [11] Dong M Y, Jiang Y, Zhang D Y, et al. 2013. Spatiotemporal change in the climatic growing season in Northeast China during 1960–2009 [J]. Theor. Appl. Climatol., 111(3–4): 693−701. doi: 10.1007/s00704-012-0706-y [12] 董李丽, 李清泉, 丁一汇. 2015. 全球变暖背景下我国春季气温的时空变化特征 [J]. 气象, 41(10): 1177−1189. doi: 10.7519/j.issn.1000-0526.2015.10.001Dong L L, Li Q Q, Ding Y H. 2015. Spatial and temporal characteristics of air temperature over China in spring under the background of global warming [J]. Meteorological Monthly (in Chinese), 41(10): 1177−1189. doi: 10.7519/j.issn.1000-0526.2015.10.001 [13] 董满宇, 李洁敏, 王磊鑫, 等. 2019. 1960~2017年华北地区气候生长季变化特征及成因分析 [J]. 地理科学, 39(12): 1990−2000. doi: 10.13249/j.cnki.sgs.2019.12.018Dong M Y, Li J M, Wang L X, et al. 2019. Climatic characteristics of climatic growing season and impact factors in North China during 1960–2017 [J]. Scientia Geographica Sinica (in Chinese), 39(12): 1990−2000. doi: 10.13249/j.cnki.sgs.2019.12.018 [14] Frich P, Alexander L V, Della-Marta P, et al. 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century [J]. Climate Res., 19(3): 193−212. doi: 10.3354/cr019193 [15] Garonna I, De Jong R, De Wit A J W, et al. 2014. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982–2011) [J]. Glob. Change Biol., 20(11): 3457−3470. doi: 10.1111/gcb.12625 [16] Ho C H, Lee E J, Lee I, et al. 2006. Earlier spring in Seoul, Korea [J]. Int. J. Climatol., 26(14): 2117−2127. doi: 10.1002/joc.1356 [17] IPCC. 2001. Climate Change 2001: Synthesis Report. Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change [M]. Watson R T, Albritton D L, Barker T, et al., Eds. Cambridge: Cambridge University Press, 397pp. [18] IPCC. 2013. Summary for policymakers [M]//Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1535pp. [19] Jiang F Q, Hu R J, Zhang Y W, et al. 2011. Variations and trends of onset, cessation and length of climatic growing season over Xinjiang, NW China [J]. Theor. Appl. Climatol., 106(3–4): 449−458. doi: 10.1007/s00704-011-0445-5 [20] Jiang D B, Sui Y, Lang X M, et al. 2018. Last glacial maximum and mid-Holocene thermal growing season simulations [J]. J. Geophys. Res. Atmos., 123(20): 11466−11478. doi: 10.1029/2018JD028605 [21] Kunkel K E, Easterling D R, Hubbard K, et al. 2004. Temporal variations in frost-free season in the United States: 1895–2000 [J]. Geophys. Res. Lett., 31(3): L03201. doi: 10.1029/2003GL018624 [22] Linderholm H W. 2006. Growing season changes in the last century [J]. Agric. For. Meteor., 137(1–2): 1−14. doi: 10.1016/j.agrformet.2006.03.006 [23] Liu X D, Yin Z Y, Shao X M, et al. 2006. Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003 [J]. J. Geophys. Res. Atmos., 111(D19): D19109. doi: 10.1029/2005JD006915 [24] Liu B H, Henderson M, Zhang Y D, et al. 2010. Spatiotemporal change in China’s climatic growing season: 1955–2000 [J]. Climatic Change, 99(1–2): 93−118. doi: 10.1007/s10584-009-9662-7 [25] McCabe G J, Betancourt J L, Feng S. 2015. Variability in the start, end, and length of frost-free periods across the conterminous United States during the past century [J]. Int. J. Climatol., 35(15): 4673−4680. doi: 10.1002/joc.4315 [26] Menzel A. 2003. Plant phenological anomalies in Germany and their relation to air temperature and NAO [J]. Climatic Change, 57(3): 243−263. doi: 10.1023/A:1022880418362 [27] Menzel A, Fabian P. 1999. Growing season extended in Europe [J]. Nature, 397(6721): 659. doi: 10.1038/17709 [28] Menzel A, Jakobi G, Ahas R, et al. 2003. Variations of the climatological growing season (1951–2000) in Germany compared with other countries [J]. Int. J. Climatol., 23(7): 793−812. doi: 10.1002/joc.915 [29] Myneni R B, Keeling C D, Tucker C J, et al. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991 [J]. Nature, 386(6626): 698−702. doi: 10.1038/386698a0 [30] Piao S L, Friedlingstein P, Ciais P, et al. 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades [J]. Glob. Biogeochem. Cycle, 21(3): GB3018. doi: 10.1029/2006GB002888 [31] Robeson S M. 2002. Increasing growing-season length in Illinois during the 20th century [J]. Climatic Change, 52(1–2): 219−238. doi: 10.1023/A:1013088011223 [32] 沙万英, 邵雪梅, 黄玫. 2002. 20世纪80年代以来中国的气候变暖及其对自然区域界线的影响 [J]. 中国科学(D辑), 45(12): 1099−1113. doi: 10.3321/j.issn:1006-9267.2002.04.007Sha W Y, Shao X M, Huang M. 2002. Climate warming and its impact on natural regional boundaries in China in the 1980s [J]. Science in China Series D: Earth Sciences, 45(12): 1099−1113. doi: 10.3321/j.issn:1006-9267.2002.04.007 [33] 施能, 陈家其, 屠其璞. 1995. 中国近100年来4个年代际的气候变化特征 [J]. 气象学报, 53(4): 431−439. doi: 10.11676/qxxb1995.049Shi N, Chen J Q, Tu Q P. 1995. 4-Phase climate change features in the last 100 years over China [J]. Acta Meteorologica Sinica (in Chinese), 53(4): 431−439. doi: 10.11676/qxxb1995.049 [34] 施晓晖, 徐祥德. 2007. 中国大陆冬夏季气候型年代际转折的区域结构特征 [J]. 科学通报, 52(1): 101−112. doi: 10.3321/j.issn:0023-074X.2006.17.017Shi X H, Xu X D. 2007. Regional characteristics of the interdecadal turning of winter/summer climate modes in Chinese mainland [J]. Chinese Science Bulletin, 52(1): 101−112. doi: 10.3321/j.issn:0023-074X.2006.17.017 [35] Skaggs R H, Baker D G. 1985. Fluctuations in the length of the growing season in Minnesota [J]. Climatic Change, 7(4): 403−414. doi: 10.1007/BF00139055 [36] Song Y L, Linderholm H W, Chen D L, et al. 2010. Trends of the thermal growing season in China, 1951–2007 [J]. Int. J. Climatol., 30(1): 33−43. doi: 10.1002/joc.1868 [37] Walther A, Linderholm H W. 2006. A comparison of growing season indices for the Greater Baltic Area [J]. Int. J. Biometeorol., 51(2): 107−118. doi: 10.1007/s00484-006-0048-5 [38] 王连喜, 陈怀亮, 李琪, 等. 2010. 植物物候与气候研究进展 [J]. 生态学报, 20(2): 447−454.Wang L X, Chen H L, Li Q, et al. 2010. Research advances in plant phenology and climate [J]. Acta Ecologica Sinica (in Chinese), 20(2): 447−454. [39] White M A, Running S W, Thornton P E. 1999. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest [J]. Int. J. Biometeorol., 42(3): 139−145. doi: 10.1007/s004840050097 [40] Woodward F I, Williams B G. 1987. Climate and plant distribution at global and local scales [J]. Vegetatio, 69(1–3): 189−197. doi: 10.1007/BF00038700 [41] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg20130406Wu J, Gao X J. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese Journal of Geophysics (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg20130406 [42] 伍红雨, 杨崧. 2014. 华南冬季气温异常与大气环流和海温的关系 [J]. 热带气象学报, 30(6): 1061−1068. doi: 10.3969/j.issn.1004-4965.2014.06.006Wu H Y, Yang S. 2014. Winter temperature anomalies in South China and its relation to atmospheric circulation and SST [J]. Journal of Tropical Meteorology (in Chinese), 30(6): 1061−1068. doi: 10.3969/j.issn.1004-4965.2014.06.006 [43] Xia J J, Yan Z W, Wu P L. 2013. Multidecadal variability in local growing season during 1901–2009 [J]. Climate Dyn., 41(2): 295−305. doi: 10.1007/s00382-012-1438-5 [44] Xia J J, Yan Z W, Xiong Z. 2015. Changes in local growing season indices in Shanghai due to urbanization during 1873–2013 [J]. Atmos. Oceanic Sci. Lett., 8(6): 383−385. [45] 徐铭志, 任国玉. 2004. 近40年中国气候生长期的变化 [J]. 应用气象学报, 15(3): 306−312. doi: 10.3969/j.issn.1001-7313.2004.03.006Xu M Z, Ren G Y. 2004. Change in growing season over China: 1961–2000 [J]. Journal of Applied Meteorological Science (in Chinese), 15(3): 306−312. doi: 10.3969/j.issn.1001-7313.2004.03.006 [46] Yang X C, Tian Z, Chen B D. 2013. Thermal growing season trends in East China, with emphasis on urbanization effects [J]. Int. J. Climatol., 33(10): 2402−2412. doi: 10.1002/joc.3590 [47] Yin Y H, Deng H Y, Wu S H. 2019. Spatial–temporal variations in the thermal growing degree-days and season under climate warming in China during 1960–2011 [J]. Int. J. Biometeorol., 63(5): 649−658. doi: 10.1007/s00484-017-1417-y [48] 张雷, 刘江. 2011. 近50年东北地区气候生长期的变化 [J]. 黑龙江农业科学(9): 17−19. doi: 10.3969/j.issn.1002-2767.2011.09.008Zhang L, Liu J. 2011. Change of growing season in Northeast China nearly 50 years [J]. Heilongjiang Agricultural Sciences (in Chinese)(9): 17−19. doi: 10.3969/j.issn.1002-2767.2011.09.008 -