高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冬季亚洲中纬度极端低温事件与巴伦支—喀拉海异常增暖的关系及联系机制

李言蹊 陈海山

李言蹊, 陈海山. 2021. 冬季亚洲中纬度极端低温事件与巴伦支—喀拉海异常增暖的关系及联系机制[J]. 大气科学, 45(4): 889−900 doi: 10.3878/j.issn.1006-9895.2011.20168
引用本文: 李言蹊, 陈海山. 2021. 冬季亚洲中纬度极端低温事件与巴伦支—喀拉海异常增暖的关系及联系机制[J]. 大气科学, 45(4): 889−900 doi: 10.3878/j.issn.1006-9895.2011.20168
LI Yanxi, CHEN Haishan. 2021. The Relationship between Winter Extremely Low Temperature Events in Mid-latitude Asia and Abnormal Warming over Barents-Kara Seas and Associated Mechanism [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 889−900 doi: 10.3878/j.issn.1006-9895.2011.20168
Citation: LI Yanxi, CHEN Haishan. 2021. The Relationship between Winter Extremely Low Temperature Events in Mid-latitude Asia and Abnormal Warming over Barents-Kara Seas and Associated Mechanism [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 889−900 doi: 10.3878/j.issn.1006-9895.2011.20168

冬季亚洲中纬度极端低温事件与巴伦支—喀拉海异常增暖的关系及联系机制

doi: 10.3878/j.issn.1006-9895.2011.20168
基金项目: 国家重点研发计划重点专项资助项目2016YFA0600702
详细信息
    作者简介:

    李言蹊,女,1996年出生,硕士研究生,主要从事短期气候预测研究。E-mail: 20181201036@nuist.edu.cn

    通讯作者:

    陈海山,E-mail: haishan@nuist.edu.cn

  • 中图分类号: P46

The Relationship between Winter Extremely Low Temperature Events in Mid-latitude Asia and Abnormal Warming over Barents-Kara Seas and Associated Mechanism

Funds: National Key Research and Development Program of China (Grant 2016YFA0600702)
  • 摘要: 利用1979~2019年NCEP-DOE再分析资料,分析了亚洲中纬度冬季极端低温事件发生频次与巴伦支—喀拉海异常增暖的联系及可能机制。研究表明:巴伦支—喀拉海异常增暖通常对应西伯利亚高压异常增强及亚洲中纬度极端低温频发。进一步分析发现,伴随巴伦支—喀拉海异常增暖,新地岛、乌拉尔山附近出现位势高度正异常,在位势高度正异常的东侧、南侧对应显著的冷平流及下沉运动异常,并在近地面出现异常辐散气流,使得西伯利亚高压增强且向东南延伸。热力学方程诊断的结果表明:西伯利亚高压异常南侧东北风导致的异常冷平流、偏东风异常经过地形造成的异常上升运动以及辐射、感热、潜热交换造成的异常非绝热冷却导致亚洲中纬度近地面温度季节循环振幅增大,有利于极端低温频发。
  • 图  1  中纬度欧亚大陆冬季(a、b)冷昼、(c、d)冷日、(e、f)冷夜日数与去趋势前(左列)、去趋势后(右列)ARTI相关系数空间分布。打黑(绿)点区域通过0.05(0.1)显著性水平student-t检验;黑框表示亚洲中纬度(35°~50°N,50°~130°E)区域

    Figure  1.  Spatial distributions of correlation coefficients between (a, b) TX10P, (c, d) Tave10P, (e, f) TN10P and ARTI before detrending (left column), ARTI after detrending (right column). Black (green) dots denote the regions with significance level at 0.05 (0.1) with student-t test. Black box indicates the region of mid-latitude Asia (35°–50°N,50°–130°E)

    图  2  亚洲中纬度(35°~50°N,50°~130°E)区域平均ARTI负异常年(蓝色细线)、ARTI正异常年(红色细线)、1979/1980年至2018/2019年冬季逐日气候态(黑色实线)的2 m气温;21天滑动平均后ARTI负异常年(蓝色粗线)、ARTI正异常年(红色粗线)8年逐日平均、1979/1980年至2018/2019年冬季逐日气候态(黑色虚线)的2 m气温(K)序列

    Figure  2.  Regional average temperatures (units: K) at 2 m height in mid-latitude Asia (35°–50°N,50°–130°E) for the years of negative ARTI anomalies (blue thin lines), the years of positive ARTI anomalies (red lines), the daily climate state in winter of 1979/1980–2018/2019 (black solid lines); the daily average in the years of negative ARTI anomalies after 21 day moving average (blue thick lines), the daily average in the years of positive ARTI anomalies after 21 day moving average (red thick lines), and the daily climate state in winter of 1979/1980–2018/2019 after 21 day moving average (black dotted lines)

    图  3  1979/1980~2018/2019年冬季总体(黑线)、ARTI负异常年(蓝线)和ARTI正异常年(红线)的亚洲中纬度(35°~50°N,50°~130°E)区域平均2 m(a)日平均气温、(b)时间尺度大于90天温度扰动以及(c)时间尺度小于90天温度扰动距平(单位:K)的概率密度(PDF)分布

    Figure  3.  Probability density distributions (PDF) of regional average for (a) daily average temperature, (b) time scale greater than 90-d temperature disturbance, and (c) time scale less than 90-d temperature disturbance anomalies (K) at 2 m in mid-latitude Asia (35°–50°N,50°–130°E), for the winter of 1979/1980-2018/2019 (black lines mean), the years of negative ARTI anomalies (blue lines) and the years of positive ARTI anomalies (red lines)

    图  4  ARTI正异常年与ARTI负异常年(a)300 hPa温度(等值线,范围为−1.5 K~1.5 K,间隔为0.5 K)、位势高度(单位:gpm,填色)、波活动通量(单位:m2 s−2,矢量),(b)2 m温度(等值线,范围为−2 K~6 K,间隔为1 K)、海平面气压(单位:hPa,填色)、10 m风场(单位:m s−1,矢量),(c)(85°N~35°N,57.5°E~137.5°E)温度(等值线,范围为−2 K~12 K,间隔为2 K)、位势高度(单位:gpm,填色)、垂直速度(单位:m s−1,矢量)合成差值场分布。打黑(灰)点区域通过0.05(0.1)显著性水平的t检验;波活动通量、10 m风场、垂直速度只给出通过0.1显著性水平t检验的矢量

    Figure  4.  The distributions of composite differences (ARTI positive years minus ARTI negative years) for (a) temperature (coutours from −1.5 K to 1.5 K by 0.5-K intervals), geopotential height (units: gpm, shaded), and wave activity flux (units: m2 s−2, vectors) at 300 hPa, (b) temperature at 2 m (coutour from −2 K to 6 K by 1-K intervals), sea level pressure (units: hPa, shaded), wind at 10 m (units: m s−1, vector), and (c) temperature from 85°N, 57.5°E to 35°N,137.5°E (K, coutour from −2 to 12 by 2), geopotential height (units: gpm, shading), vertical velocity (units: m s−1, vectors). Black (gray) dots denote the regions with significance at the 0.05 (0.1) confidence level by t-test. Wave activity flux, wind at 10 m and vertical velocity are only shown significance at the 0.1 confidence level with t-test

    图  5  ARTI正异常年与ARTI负异常年(a)10 m散度(单位:106 s−1,填色)、散度风(单位:m s−1,矢量),(b)300 hPa散度(单位:106 s−1,填色)、散度风(单位:m s−1,矢量),(c)500 hPa温度平流(单位:106 K s−1,填色)、水平风场(单位:m s−1,矢量),(d)500 hPa垂直运动(单位:Pa s−1,填色)、水平风场(单位:m s−1,矢量)合成差值;打黑(灰)点区域通过0.05(0.1)显著性水平的t检验。水平风场只给出通过0.1显著性水平t检验的矢量

    Figure  5.  The distributions of composite differences (ARTI positive years minus ARTI negative years) for (a) divergence (units: 106 s−1, shaded), divergent wind (units: m s−1, vectors) at 10 m, (b) divergence (units: 106 s−1, shaded), divergent wind (units: m s−1, vectors) at 300 hPa, (c) temperature advection (units: 106 K s−1, shaded), horizontal wind fields (units: m s−1, vectors) at 500 hPa, and (d) vertical motion (units: Pa s −1, shaded), horizontal wind fields (units: m s−1, vectors) at 500 hPa. Black (gray) dots denote the regions with significance at the 0.05 (0.1) confidence level by t-test. Horizontal wind fields are only shown the significance at the 0.1 confidence level by t-test

    图  6  ARTI正异常年与ARTI负异常年850 hPa前冬54天(a)温度局地变化积分、(b)水平温度平流积分、(c)垂直输送项积分以及(d)非绝热加热项积分合成差值场(单位:K,填色)分布;(b)中矢量为平均水平风场。打黑(灰)点区域通过0.05(0.1)显著性水平t检验;水平风场只给出通过0.1显著性水平t检验的矢量;黑框表示亚洲中纬度(35°~50°N,50°~130°E)区域;诊断各项的计算方法见方程(3)

    Figure  6.  The distributions of composite differences (units: K, shaded; ARTI positive years minus ARTI negative years) for (a) integral of local temperature changes, (b) integral of horizontal temperature advection, (c) integral of vertical transporting, and (d) integral of diabatic heating in the first 54 days of winter at 850 hPa, the vectors in (b) mean average horizontal wind fields (units: m s−1). Black (gray) dots denote the regions with significance at the 0.05 (0.1) confidence level by t-test. Horizontal wind fields are only shown the significance at the 0.1 confidence level by t-test. Black box indicates the region of mid-latitude Asia (35°–50°N, 50°–130°E);The calculation method of diagnosis items is shown in equation (3)

    图  7  ARTI正异常年与ARTI负异常年(35°~50°N)平均前冬54天(a)温度局地变化积分、(b)水平温度平流积分、(c)垂直输送项积分、(d)非绝热加热项积分合成差值场(单位:K,填色)分布;(c)中等值线表示平均垂直速度(单位:Pa s−1)。打黑(灰)点区域通过0.05(0.1)显著性水平t检验,水平风场只给出通过0.1显著性水平t检验的矢量;诊断各项的计算方法见方程(3)

    Figure  7.  The distributions of composite differences (units: K, shaded; ARTI positive years minus ARTI negative years) for (a) integral of local temperature changes, (b) integral of horizontal temperature advection, (c) integral of vertical transport, and (d) integral of diabatic heating (K), in the first 54 days of winter averaged along 35°–50°N; the coutours in (c) mean average vertical velocity (units: Pa s−1). Black (gray) dots denote the regions with significance at the 0.05 (0.1) confidence level by t-test. Horizontal wind fields are only shown with significance at the 0.1 confidence level by t-test;The calculation method of diagnosis items is shown in equation (3)

    图  8  ARTI正异常年与ARTI负异常年850 hPa亚洲中纬度(35°~50°N,50°~130°E)区域平均前冬54天温度局地变化、水平温度平流、垂直输送项、非绝热加热项积分合成差值,单位:K

    Figure  8.  Composite differences (ARTI positive years minus ARTI negative years) of the regional averages with the integrals of local temperature changes, horizontal temperature advection, vertical transport, and diabatic heating in the first 54 days of winter at 850 hPa in mid-latitude Asia (35°–50°N, 50°–130°E), units: K

    表  1  极端温度指数定义

    Table  1.   Definition of extreme temperature indices

    中文名称英文缩写指数定义单位
    冷夜日数TN10P日最低气温小于其参考期同日最低温度
    第10个百分位日数
    d
    冷昼日数TX10P日最高气温小于其参考期同日最高温度
    第10个百分位日数
    d
    冷日日数Tave10P日平均气温小于其参考期同日平均温度
    第10个百分位日数
    d
    下载: 导出CSV
  • [1] Barnes E A, Screen J A. 2015. The impact of Arctic warming on the mid-latitude jet-stream: Can it? Has it? Will it? [J]. WIREs Climate Change, 6(3): 277−286. doi: 10.1002/wcc.337
    [2] Cai M. 2005. Dynamical amplification of polar warming [J]. Geophys. Res. Lett., 32(22): L22710. doi: 10.1029/2005GL024481
    [3] Cai M. 2006. Dynamical greenhouse-plus feedback and polar warming amplification. Part I: A dry radiative-transportive climate model [J]. Climate Dyn., 26(7-8): 661−675. doi: 10.1007/s00382-005-0104-6
    [4] Cohen J, Screen J A, Furtado J C, et al. 2014. Recent Arctic amplification and extreme mid-latitude weather [J]. Nat. Geosci., 7(9): 627−637. doi: 10.1038/ngeo2234
    [5] Ding Y H. 1990. Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia [J]. Meteorol. Atmos. Phys., 44(1-4): 281−292. doi: 10.1007/BF01026822
    [6] Ding Y H, Wang Z Y, Song Y F, et al. 2008. The unprecedented freezing disaster in January 2008 in southern China and its possible association with the global warming [J]. Acta Meteor. Sinica, 22(4): 538−558.
    [7] Ding Q H, Wallace J M, Battisti D S, et al. 2014. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland [J]. Nature, 509(7499): 209−212. doi: 10.1038/nature13260
    [8] Duchon C E. 1979. Lanczos filtering in one and two dimensions [J]. J. Appl. Meteor. Climatol., 18(8): 1016−1022. doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
    [9] Feng C, Wu B Y. 2015. Enhancement of winter arctic warming by the Siberian high over the past decade [J]. Atmos. Oceanic Sci. Lett., 8(5): 257−263. doi: 10.3878/AOSL20150022
    [10] Francis J A, Vavrus S J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes [J]. Geophys. Res. Lett., 39(6): L06801. doi: 10.1029/2012GL051000
    [11] Gong D Y, Ho C H. 2002. The Siberian high and climate change over middle to high latitude Asia [J]. Theor. Appl. Climatol., 72(1-2): 1−9. doi: 10.1007/s007040200008
    [12] Gong Z Q, Feng G L, Ren F M, et al. 2014. A regional extreme low temperature event and its main atmospheric contributing factors [J]. Theor. Appl. Climatol., 117(1-2): 195−206. doi: 10.1007/s00704-013-0997-7
    [13] Graversen R G. 2006. Do changes in the mid-latitude circulation have any impact on the Arctic surface air temperature trend? [J]. J. Climate, 19(20): 5422−5438. doi: 10.1175/jcli3906.1
    [14] Gu S, Zhang Y, Wu Q G, et al. 2018. The linkage between Arctic sea ice and mid-latitude weather: In the perspective of energy [J]. J. Geophys. Res.: Atmos., 123(20): 11536−11550. doi: 10.1029/2018JD028743
    [15] Honda M, Inoue J, Yamane S. 2009. Influence of low Arctic sea‐ice minima on anomalously cold Eurasian winters [J]. Geophys. Res. Lett., 36(8): L08707. doi: 10.1029/2008GL037079
    [16] Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP-DOE AMIP-II Reanalysis (R-2) [J]. Bull. Amer. Meteor. Soc., 83(11): 1631−1643. doi: 10.1175/bams-83-11-1631
    [17] Krishnamurti T N, Krishnamurti R, Das S, et al. 2015. A pathway connecting the monsoonal heating to the rapid arctic ice melt [J]. J. Atmos. Sci., 72(1): 5−34. doi: 10.1175/JAS-D-14-0004.1
    [18] Kug J S, Jeong J H, Jang Y S, et al. 2015. Two distinct influences of Arctic warming on cold winters over North America and East Asia [J]. Nat. Geosci., 8(10): 759−762. doi: 10.1038/ngeo2517
    [19] Lee S. 2014. A theory for polar amplification from a general circulation perspective [J]. Asia-Pac. J. Atmos. Sci., 50(1): 31−43. doi: 10.1007/s13143-014-0024-7
    [20] 李牧原, 罗德海. 2019. 冬季北极增暖与中纬度环流和极寒天气之间的联系: 经向位涡梯度的关键作用 [J]. 中国科学: 地球科学, 62(9): 1329−1339. doi: 10.1360/N072018-00309

    Li Muyuan, Luo Dehai. 2019. Winter Arctic warming and its linkage with midlatitude atmospheric circulation and associated cold extremes: The key role of meridional potential vorticity gradient [J]. Science China Earth Sciences, 62(9): 1329−1339. doi: 10.1360/N072018-00309
    [21] 李亚飞, 任荣彩. 2019. 北半球冬季各阻塞系统对大范围极端温度异常的单独和协同影响 [J]. 大气科学, 43(6): 1313−1328. doi: 10.3878/j.issn.1006-9895.1811.18214

    Li Yafei, Ren Rongcai. 2019. The independent and coordinative influences of the four blocking systems in the Northern Hemisphere winter on the occurrence of widespread extreme cold surface temperature [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1313−1328. doi: 10.3878/j.issn.1006-9895.1811.18214
    [22] Li Z Y, Zhang W J, Stuecker M F, et al. 2019. Different effects of two ENSO types on arctic surface temperature in boreal winter [J]. J. Climate, 32(16): 4943−4961. doi: 10.1175/JCLI-D-18-0761.1
    [23] 梁苏洁, 丁一汇, 赵南, 等. 2014. 近50年中国大陆冬季气温和区域环流的年代际变化研究 [J]. 大气科学, 38(5): 974−992. doi: 10.3878/j.issn.1006-9895.1401.13234

    Liang Sujie, Ding Yihui, Zhao Nan, et al. 2014. Analysis of the interdecadal changes of the wintertime surface air temperature over mainland China and regional atmospheric circulation characteristics during 1960-2013 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(5): 974−992. doi: 10.3878/j.issn.1006-9895.1401.13234
    [24] Liu B Q, Zhu C W. 2020. Diverse impacts of the Siberian high on surface air temperature in Northeast China during boreal winter [J]. Int. J. Climatol., 40(1): 594−603. doi: 10.1002/joc.6199
    [25] Liu J P, Curry J A, Wang H J, et al. 2012. Impact of declining Arctic sea ice on winter snowfall [J]. Proc. Natl. Acad. Sci. USA, 109(11): 4074−4079. doi: 10.1073/pnas.1114910109
    [26] Lu J H, Cai M. 2010. Quantifying contributions to polar warming amplification in an idealized coupled general circulation model [J]. Climate Dyn., 34(5): 669−687. doi: 10.1007/s00382-009-0673-x
    [27] Luo D H, Xiao Y Q, Yao Y, et al. 2016. Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part I: Blocking-induced amplification [J]. J. Climate, 29(11): 3925−3947. doi: 10.1175/JCLI-D-15-0611.1
    [28] Ma S M, Zhu C W, Liu B Q, et al. 2018. Polarized response of East Asian winter temperature extremes in the era of Arctic warming [J]. J. Climate, 31(14): 5543−5557. doi: 10.1175/JCLI-D-17-0463.1
    [29] McCusker K E, Fyfe J C, Sigmond M. 2016. Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss [J]. Nat. Geosci., 9(11): 838−842. doi: 10.1038/ngeo2820
    [30] Nakamura T, Yamazaki K, Iwamoto K, et al. 2015. A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn [J]. J. Geophys. Res.: Atmos., 120(8): 3209−3227. doi: 10.1002/2014JD022848
    [31] Overland J E, Dethloff K, Francis J A, et al. 2016. Nonlinear response of mid-latitude weather to the changing Arctic [J]. Nat. Climate Change, 6(11): 992−999. doi: 10.1038/nclimate3121
    [32] Park T W, Ho C H, Deng Y. 2014. A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia [J]. Climate Dyn., 43(3-4): 753−770. doi: 10.1007/s00382-013-1817-6
    [33] Peings Y, Brun E, Mauvais V, et al. 2013. How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th century? [J]. Geophys. Res. Lett., 40(1): 183−188. doi: 10.1029/2012GL054083
    [34] Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification [J]. Nature, 464(7293): 1334−1337. doi: 10.1038/nature09051
    [35] Screen J A, Simmonds I. 2014. Amplified mid-latitude planetary waves favour particular regional weather extremes [J]. Nat. Climate Change, 4(8): 704−709. doi: 10.1038/nclimate2271
    [36] Serreze M C, Barry R G. 2011. Processes and impacts of Arctic amplification: A research synthesis [J]. Global Planet. Change, 77(1-2): 85−96. doi: 10.1016/j.gloplacha.2011.03.004
    [37] Serreze M C, Barrett A P, Stroeve J. 2012. Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses [J]. J. Geophys. Res.: Atmos., 117(10): D10104. doi: 10.1029/2011JD017421
    [38] Shi N, Wang X Q, Tian P Y. 2018. Interdecadal variations in persistent anomalous cold events over Asian mid-latitudes [J]. Climate Dyn., 52(5-6): 3729−3739. doi: 10.1007/s00382-018-4353-6
    [39] Sun L T, Perlwitz J, Hoerling M. 2016. What caused the recent “Warm Arctic, Cold Continents” trend pattern in winter temperatures? [J]. Geophys. Res. Lett., 43(10): 5345−5352. doi: 10.1002/2016gl069024
    [40] Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow [J]. J. Atmos. Sci., 58(6): 608−627. doi:10.1175/1520-0469(2001)058<0608:afoapi>2.0.co;2
    [41] Takaya K, Nakamura H. 2005. Mechanisms of intraseasonal amplification of the cold Siberian high [J]. J. Atmos. Sci., 62(12): 4423−4440. doi: 10.1175/JAS3629.1
    [42] 谭本馗, 陈文. 2014. 中高纬度大气遥相关动力学及其对东亚冬季气候影响的研究进展 [J]. 气象学报, 72(5): 908−925. doi: 10.11676/qxxb2014.071

    Tan Benkui, Chen Wen. 2014. Progress in the study of the dynamics of extratropical atmospheric teleconnection patterns and their impacts on East Asian climate [J]. Acta Meteor. Sinica (in Chinese), 72(5): 908−925. doi: 10.11676/qxxb2014.071
    [43] Trenberth K E, Fasullo J T, Branstator G, et al. 2014. Seasonal aspects of the recent pause in surface warming [J]. Nat. Climate Change, 4(10): 911−916. doi: 10.1038/nclimate2341
    [44] 王遵娅, 丁一汇. 2006. 近53年中国寒潮的变化特征及其可能原因 [J]. 大气科学, 30(6): 1068−1076. doi: 10.3878/j.issn.1006-9895.2006.06.02

    Wang Zunya, Ding Yihui. 2006. Climate change of the cold wave frequency of China in the last 53 years and the possible reasons [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(6): 1068−1076. doi: 10.3878/j.issn.1006-9895.2006.06.02
    [45] Wang B, Wu R G, Fu X H. 2000. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? [J]. J. Climate, 13(9): 1517−1536. doi:10.1175/1520-0442(2000)013<1517:peathd>2.0.co;2
    [46] 卫捷, 陶诗言, 赵琳娜. 2008. 2008年1月南方冰雪过程的可预报性问题分析 [J]. 气候与环境研究, 13(4): 520−530. doi: 10.3878/j.issn.1006-9585.2008.04.16

    Wei Jie, Tao Shiyan, Zhao Linna. 2008. Predictability of snow storm and freezing rain disaster in southern China in January 2008 [J]. Climatic and Environmental Research (in Chinese), 13(4): 520−530. doi: 10.3878/j.issn.1006-9585.2008.04.16
    [47] Wu B Y. 2017. Winter atmospheric circulation anomaly associated with recent Arctic winter warm anomalies [J]. J. Climate, 30(21): 8469−8479. doi: 10.1175/JCLI-D-17-0175.1
    [48] 武炳义. 2018. 北极海冰融化影响东亚冬季天气和气候的研究进展以及学术争论焦点问题 [J]. 大气科学, 42(4): 786−805. doi: 10.3878/j.issn.1006-9895.1804.17262

    Wu Bingyi. 2018. Progresses in the impact study of Arctic sea ice loss on wintertime weather and climate variability over East Asia and key academic disputes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 786−805. doi: 10.3878/j.issn.1006-9895.1804.17262
    [49] 武炳义. 2019. 2012年1月、2016年1月东亚两次极端严寒事件及其与北极增暖的可能联系 [J]. 大气科学学报, 42(1): 14−27. doi: 10.13878/j.cnki.dqkxxb.20180724002

    Wu Bingyi. 2019. Two extremely cold events in East Asia in January of 2012 and 2016 and their possible associations with Arctic warming [J]. Trans. Atmos. Sci. (in Chinese), 42(1): 14−27. doi: 10.13878/j.cnki.dqkxxb.20180724002
    [50] 武炳义, 黄荣辉, 高登义. 1999. 冬季北极喀拉海、巴伦支海海冰面积变化对东亚冬季风的影响 [J]. 大气科学, 23(3): 267−275. doi: 10.3878/j.issn.1006-9895.1999.03.02

    Wu Bingyi, Huang Ronghui, Gao Dengyi. 1999. The impact of variation of sea-ice extent in the Kara Sea and the Barents Seas in winter on the winter monsoon over East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23(3): 267−275. doi: 10.3878/j.issn.1006-9895.1999.03.02
    [51] 武炳义, 苏京志, 张人禾. 2011. 秋—冬季节北极海冰对冬季西伯利亚高压的影响 [J]. 科学通报, 56(27): 3220−2343. doi: 10.1007/s11434-011-4696-4

    Wu Bingyi, Su Jingzhi, Zhang Renhe. 2011. Effects of autumn-winter Arctic sea ice on winter Siberian high [J]. Chin. Sci. Bull., 56(27): 3220−2343. doi: 10.1007/s11434-011-4696-4
    [52] Xu X P, He S P, Gao Y Q, et al. 2019. Strengthened linkage between mid-latitudes and Arctic in boreal winter [J]. Climate Dyn., 53(7-8): 3971−3983. doi: 10.1007/s00382-019-04764-7
    [53] Yao Y, Luo D H, Dai A G, et al. 2017. Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to arctic warming. Part I: Insights from observational analyses [J]. J. Climate, 30(10): 3549−3568. doi: 10.1175/JCLI-D-16-0261.1
    [54] 张宗婕, 钱维宏. 2012. 中国冬半年区域持续性低温事件的前期信号 [J]. 大气科学, 36(6): 1269−1279. doi: 10.3878/j.issn.1006-9895.2012.11227

    Zhang Zongjie, Qian Weihong. 2012. Precursors of regional prolonged low temperature events in China during winter half year [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(6): 1269−1279. doi: 10.3878/j.issn.1006-9895.2012.11227
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  57
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-10
  • 录用日期:  2020-11-12
  • 网络出版日期:  2020-11-24
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回