高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于OLR资料的青藏高原地区对流活动研究

刘俏华 姚秀萍 陈明诚

刘俏华, 姚秀萍, 陈明诚. 2021. 基于OLR资料的青藏高原地区对流活动研究[J]. 大气科学, 45(2): 456−470 doi: 10.3878/j.issn.1006-9895.2011.20169
引用本文: 刘俏华, 姚秀萍, 陈明诚. 2021. 基于OLR资料的青藏高原地区对流活动研究[J]. 大气科学, 45(2): 456−470 doi: 10.3878/j.issn.1006-9895.2011.20169
LIU Qiaohua, YAO Xiuping, CHEN Mingcheng. 2021. Characteristics of the Convection over the Tibetan Plateau Based on OLR Data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 456−470 doi: 10.3878/j.issn.1006-9895.2011.20169
Citation: LIU Qiaohua, YAO Xiuping, CHEN Mingcheng. 2021. Characteristics of the Convection over the Tibetan Plateau Based on OLR Data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 456−470 doi: 10.3878/j.issn.1006-9895.2011.20169

基于OLR资料的青藏高原地区对流活动研究

doi: 10.3878/j.issn.1006-9895.2011.20169
基金项目: 国家自然科学基金项目91937301、42030611,第二次青藏高原综合科学考察研究项目2019QZKK0105
详细信息
    作者简介:

    刘俏华,女,1995年出生,硕士研究生,主要从事青藏高原相关研究。E-mail: 18514703290@163.com

    通讯作者:

    姚秀萍,E-mail: yaoxp@cma.gov.cn

  • 中图分类号: P 466

Characteristics of the Convection over the Tibetan Plateau Based on OLR Data

Funds: National Natural Science Foundation of China (Grants 91937301, 42030611), The Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grant 2019QZKK0105)
  • 摘要: 本文利用1980~2019年美国NOAA系列卫星观测的向外长波辐射(OLR)月平均资料和欧洲中心ERA5月平均地表热通量资料,研究青藏高原(以下简称高原)地区OLR与对流活动的时空分布及其演变特征,以及地表热通量与高原夏季对流活动之间的关系。结果表明:高原地区平均OLR强度由高原周边地区向中部递减,高原东部OLR低于西部,高原东部对流活动显著强于西部;近40年高原OLR总体呈较平稳的增强趋势,存在显著的6年与2~3年的周期特征,对流活动总体呈缓慢减弱趋势,但不同区域不同季节对流活动的变化趋势存在差异,其中夏季高原对流活动呈增强趋势,其他季节则以减弱趋势为主。各季节在高原三江源地区附近对流活动均呈减弱趋势,在高原南部喜马拉雅山脉北侧地区,对流活动则呈一致的增强趋势。夏季高原地表潜热通量普遍强于地表感热通量,且二者分布型近似相反。高原对流活动演变与地表感热、潜热通量均有关,且与地表感热通量的关系更为密切,二者之间普遍存在负相关关系,且在高原西部最为显著;地表潜热通量与高原东西部对流活动间相关呈东西向偶极型分布,在高原西部二者之间存在正相关关系,在高原东部则表现为负相关。
  • 图  1  1980~2019年青藏高原(以下简称高原)年平均向外长波辐射(OLR)的空间分布(单位:W m−2)。黑色粗实线为高原3000 m地形高度

    Figure  1.  Spatial distribution of the annual mean outgoing longwave radiation (OLR) over the Tibetan Plateau from 1980 to 2019 (units: W m−2) The thick black solid line is the Tibetan Plateau with a terrain height above 3000 m

    图  2  1980~2019年高原各季平均OLR的空间分布(单位:W m−2):(a)春季;(b)夏季;(c)秋季;(d)冬季。黑色等值线为OLR值,阴影表示OLR差值(季节平均—年平均),黑色粗实线为高原3000 m地形高度,斜线区域通过95%信度检验

    Figure  2.  Spatial distribution of the seasonal mean OLR over the Tibetan Plateau from 1980 to 2019 (units: W m −2): (a) Spring; (b) summer; (c) autumn; (d) winter. The black contour represents the OLR, whereas the shadings represent the deviation of the OLR (the seasonal average minus the annual average). The thick black solid line is the Tibetan Plateau with a terrain height above 3000 m, diagonal areas are statistically significant at the 95% confidence level

    图  3  1980~2019年高原OLR变化趋势的空间分布 [单位:W m−2 (10 a)−1]。黑色粗实线为高原3000 m地形高度,阴影区域通过95%的信度检验

    Figure  3.  Spatial distribution of the variation trend of OLR over the Tibetan Plateau from 1980 to 2019 [units: W m−2 (10 a)−1]. The thick black solid line is the Tibetan Plateau with a terrain height above 3000 m. Shaded areas are statistically significant at the 95% confidence level

    图  4  1980~2019年高原各季OLR变化趋势的空间分布 [单位:W m−2 (10 a)−1]:(a)春季;(b)夏季;(c)秋季;(d)冬季。黑色粗实线为高原3000 m地形高度,阴影区域通过95%的信度检验

    Figure  4.  Spatial distribution of the variation trend of OLR in different seasons over the Tibetan Plateau from 1980 to 2019 [units: W m−2 (10 a)−1]: (a) Spring; (b) summer; (c) autumn; (d) winter. The thick black solid line is the Tibetan Plateau with a terrain height above 3000 m. Shaded areas are statistically significant at the 95% confidence level

    图  5  1980~2019年高原OLR的年际演变(单位:W m−2)。细实线为OLR随年份变化曲线,虚线为平均值,粗实线为趋势线

    Figure  5.  Interannual evolution of OLR over the Tibetan Plateau from 1980 to 2019 (units: W m−2). The thin line denotes the interannual evolution of OLR, the dashed line denotes the average of OLR, and the thick solid line is the trend line

    图  6  1980~2019年高原各季OLR的年际演变(单位:W m−2):(a)春季(b)夏季(c)秋季(d)冬季。细实线为OLR随年份变化曲线,虚线为平均值,粗实线为趋势线

    Figure  6.  Interannual evolution of OLR in different seasons over the Tibetan Plateau from 1980 to 2019 (units: W m−2): (a) Spring, (b) summer, (c) autumn, (d) winter. The thin line denotes the interannual evolution of OLR, the dashed line denotes the average of OLR, and the thick solid line is the trend line

    图  7  1980~2019年高原OLR的Morlet小波功率谱。阴影区域通过95%的信度检验

    Figure  7.  Morlet wavelet power spectrum of OLR over the Tibetan Plateau from 1980 to 2019. Shaded areas are statistically significant at the 95% confidence level

    图  8  1980~2019年高原各季OLR的Morlet小波功率谱:(a)春季;(b)夏季;(c)秋季;(d)冬季。阴影区域通过95%的信度检验

    Figure  8.  Morlet wavelet power spectrum of OLR in different seasons over the Tibetan Plateau from 1980 to 2019: (a) Spring; (b) summer; (c) autumn; (d) winter. Shaded areas are statistically significant at the 95% confidence level

    图  9  1980~2019年夏季高原地表感热通量(阴影,单位:W m−2)与OLR(等值线,单位:W m−2)的空间分布:(a)夏季平均;(b)6月;(c)7月;(d)8月。黑色粗实线为高原3000 m地形高度

    Figure  9.  Spatial distribution of the surface sensible heat flux (shadings, units: W m−2) and OLR (contours, units: W m−2) over the Tibetan Plateau from 1980 to 2019: (a) Summer; (b) June; (c) July; (d) August. The thick black solid line is the Tibetan Plateau with a terrain height above 3000 m

    图  10  1980~2019年夏季高原地表潜热通量(阴影,单位:W m−2)与OLR(等值线,单位:W m−2)的空间分布:(a)夏季平均;(b)6月;(c)7月;(d)8月。黑色粗实线为高原3000 m地形高度

    Figure  10.  Spatial distribution of the surface latent heat flux (shadings, units: W m−2) and OLR (contours, units: W m−2) over the Tibetan Plateau from 1980 to 2019: (a) Summer; (b) June; (c) July; (d) August. The thick black solid line is the Tibetan Plateau with a terrain height above 3000 m

    图  11  1980~2019年夏季高原关键区内地表热通量与OLR标准化值的年际演变:(a)西部;(b)东部。黑色实线表示OLR,红色和蓝色实线分别表示地表感热通量与地表潜热通量

    Figure  11.  Interannual evolution of standardized surface heat fluxes and OLR in the key regions of the Tibetan Plateau in summer from 1980 to 2019: (a) Western key region of the plateau; (b) eastern key region of the plateau. The black solid line represents the OLR; the red solid line denotes the surface sensible heat flux and the blue solid line denotes the surface latent heat flux

    图  12  1980~2019年夏季高原关键区内地表热通量与OLR相关关系图:(a,b)西部关键区;(c,d)东部关键区;(a,c)地表感热通量;(b,d)地表潜热通量

    Figure  12.  Correlation diagram between the surface heat flux and OLR in the key regions of the Tibetan Plateau in summer from 1980 to 2019: (a, b) Western key region of the plateau; (c, d) eastern key region of the plateau; (a, c) surface sensible heat flux; (b, d) surface latent heat flux

    图  13  1980~2019年夏季高原地表热通量与OLR相关系数的空间分布:(a)地表感热通量;(b)地表潜热通量。黑色粗实线为高原3000 m地形高度,阴影区域通过90%(95%)的信度检验

    Figure  13.  Spatial distribution of the correlation coefficients between the surface heat fluxes and the OLR over the Tibetan Plateau in summer from 1980 to 2019: (a) Surface sensible heat flux; (b) surface latent heat flux. The thick black solid line is the Tibetan Plateau with a terrain height above 3000 m. Shaded areas are statistically significant at the 90% (95%) confidence level according to Student’ s t-test

  • [1] Ardanuy P E, Kyle H L. 1986. EI Niño and outgoing longwave radiation: Observations from Nimbus-7 ERB [J]. Mon. Wea. Rev., 114(2): 415−433. doi:10.1175/1520-0493(1986)114<0415:enaolr>2.0.co;2
    [2] 伯玥, 王艺, 李嘉敏, 等. 2016. 青藏高原地区云水时空变化特征及其与降水的联系 [J]. 冰川冻土, 38(6): 1679−1690. doi: 10.7522/j.issn.1000-0240.2016.0195

    Bo Yue, Wang Yi, Li Jiamin, et al. 2016. Temporal and spatial variation features of cloud water and its relation to precipitation over the Tibetan Plateau [J]. Journal of Glaciology and Geocryology (in Chinese), 38(6): 1679−1690. doi: 10.7522/j.issn.1000-0240.2016.0195
    [3] 陈少勇, 王劲松, 邢晓宾, 等. 2011. 青藏高原OLR异常与中国西北干旱区气温的关系 [J]. 干旱气象, 29(3): 276−282. doi: 10.3969/j.issn.1006-7639.2011.03.002

    Chen Shaoyong, Wang Jinsong, Xing Xiaobin, et al. 2011. Relationship between abnormal OLR over Qinghai–Tibet Plateau and air temperature in arid region of Northwest China [J]. Journal of Arid Meteorology (in Chinese), 29(3): 276−282. doi: 10.3969/j.issn.1006-7639.2011.03.002
    [4] Chiodi A M, Harrison D E. 2010. Characterizing warm-ENSO variability in the equatorial Pacific: An OLR perspective [J]. J. Climate, 23(9): 2428−2439. doi: 10.1175/2009jcli3030.1
    [5] Chiodi A M, Harrison D E. 2013. El Niño impacts on seasonal U.S. atmospheric circulation, temperature, and precipitation anomalies: The OLR-event perspective [J]. J. Climate, 26(3): 822−837. doi: 10.1175/jcli-d-12-00097.1
    [6] Heddinghaus T R, Krueger A F. 1981. Annual and interannual variations in outgoing longwave radiation over the tropics [J]. Mon. Wea. Rev., 109(6): 1208−1218. doi:10.1175/1520-0493(1981)109<1208:AAIVIO>2.0.co;2
    [7] 华维, 范广洲, 王炳赟. 2012. 近几十年青藏高原夏季风变化趋势及其对中国东部降水的影响 [J]. 大气科学, 36(4): 784−794. doi: 10.3878/j.issn.1006-9895.2012.11173

    Hua Wei, Fan Guangzhou, Wang Bingyun. 2012. Variation of Tibetan Plateau summer monsoon and its effect on precipitation in East China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(4): 784−794. doi: 10.3878/j.issn.1006-9895.2012.11173
    [8] Ji P, Yuan X. 2020. Underestimation of the warming trend over the Tibetan Plateau during 1998-2013 by global land data assimilation systems and atmospheric reanalyses [J]. J. Meteor. Res., 34(1): 88−100. doi: 10.1007/s13351-020-9100-3
    [9] 假拉, 周顺武. 2002. 西藏高原夏季旱涝年OLR分布差异 [J]. 应用气象学报, 13(3): 371−376. doi: 10.3969/j.issn.1001-7313.2002.03.013

    Jia La, Zhou Shunwu. 2002. OLR distribution in summer in dryness/wetness years over Tibetan Plateau [J]. Journal of Applied Meteorological Science (in Chinese), 13(3): 371−376. doi: 10.3969/j.issn.1001-7313.2002.03.013
    [10] 蒋尚城. 1988. 全球ITCZ的气候特征研究 [J]. 气象学报, 46(2): 241−245. doi: 10.11676/qxxb1988.030

    Jiang Shangcheng. 1988. The climatic characteristics of the ITCZ all over the globe [J]. Acta Meteorologica Sinica (in Chinese), 46(2): 241−245. doi: 10.11676/qxxb1988.030
    [11] Jiang S C. 1993. Advances in applied research of the outgoing longwave radiation in China [J]. Acta Meteorologica Sinica, 7(3): 367−380.
    [12] 康善福, 吴俊明. 1990. 青藏高原OLR场的气候特征 [J]. 高原气象, 9(1): 98−103.

    Kang Shanfu, Wu Junming. 1990. The climatic characteristics of OLR field over Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 9(1): 98−103.
    [13] Kyle H L, Weis M, Ardanuy P. 1995. Cloud, surface temperature, and outgoing longwave radiation for the period from 1979 to 1990 [J]. J. Climate, 8(11): 2644−2658. doi:10.1175/1520-0442(1995)008<2644:cstaol>2.0.co;2
    [14] Lei Y H, Letu H, Shang H Z, et al. 2020. Cloud cover over the Tibetan Plateau and eastern China: A comparison of ERA5 and ERA-Interim with satellite observations [J]. Climate Dyn., 54(5): 2941−2957. doi: 10.1007/s00382-020-05149-x
    [15] 李国平, 卢会国, 黄楚惠, 等. 2016. 青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响 [J]. 大气科学, 40(1): 131−141. doi: 10.3878/j.issn.1006-9895.1504.15125

    Li Guoping, Lu Huiguo, Huang Chuhui, et al. 2016. A climatology of the surface heat source on the Tibetan Plateau in summer and its impacts on the formation of the Tibetan Plateau vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(1): 131−141. doi: 10.3878/j.issn.1006-9895.1504.15125
    [16] 柳苗, 李栋梁. 2007. 青藏高原东部雨季OLR与降水变化特征及相关分析 [J]. 高原气象, 26(2): 249−256. doi: 10.3321/j.issn:1000-0534.2007.02.005

    Liu Miao, Li Dongliang. 2007. Change characteristic and correlation of OLR and precipitation over east Qinghai–Xizang Plateau in rainy season [J]. Plateau Meteorology (in Chinese), 26(2): 249−256. doi: 10.3321/j.issn:1000-0534.2007.02.005
    [17] 马乃孚, 杨景勋. 1994. 热带OLR异常的遥相关结构及其季节变化 [J]. 大气科学, 18(4): 442−450. doi: 10.3878/j.issn.1006-9895.1994.04.08

    Ma Naifu, Yang Jingxun. 1994. The teleconnection structure of outgoing longwave radiation anomalies in tropics and its seasonal variation [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 18(4): 442−450. doi: 10.3878/j.issn.1006-9895.1994.04.08
    [18] Ou T H, Chen D L, Chen X C, et al. 2020. Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization [J]. Climate Dyn., 54(7): 3525−3539. doi: 10.1007/s00382-020-05181-x
    [19] Sahu R, Gupta R D. 2020. Snow cover area analysis and its relation with climate variability in Chandra basin, western Himalaya, during 2001-2017 using MODIS and ERA5 data [J]. Environmental Monitoring and Assessment, 192: 489. doi: 10.1007/s10661-020-08442-8
    [20] Shen Z P, Shi J, Lei Y D. 2017. Comparison of the long-range climate memory in outgoing longwave radiation over the Tibetan Plateau and the Indian monsoon region [J]. Advances in Meteorology, 12: 1−7. doi: 10.1155/2017/7637351
    [21] Sohn B J, Schmetz J. 2004. Water vapor-induced OLR variations associated with high cloud changes over the tropics: A study from Meteosat-5 observations [J]. J. Climate, 17(10): 1987−1996. doi:10.1175/1520-0442(2004)017<1987:wvovaw>2.0.co;2
    [22] 苏文颖, 毛节泰, 纪飞. 2000. 青藏高原出射长波辐射特征分析 [J]. 大气科学, 24(3): 313−323. doi: 10.3878/j.issn.1006-9895.2000.03.03

    Su Wenying, Mao Jietai, Ji Fei. 2000. An analysis of outgoing longwave radiation characteristics for Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24(3): 313−323. doi: 10.3878/j.issn.1006-9895.2000.03.03
    [23] 唐红玉, 杨小丹, 王希娟, 等. 2007. 三江源地区近50年降水变化分析 [J]. 高原气象, 26(1): 47−54. doi: 10.3321/j.issn:1000-0534.2007.01.005

    Tang Hongyu, Yang Xiaodan, Wang Xijuan, et al. 2007. Analyses of precipitation change in the source regions of Three Rivers during 1956-2004 [J]. Plateau Meteorology (in Chinese), 26(1): 47−54. doi: 10.3321/j.issn:1000-0534.2007.01.005
    [24] 唐南军, 任荣彩, 吴国雄, 等. 2020. 夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常. I: 水汽质量异常主导型 [J]. 大气科学, 44(2): 239−256. doi: 10.3878/j.issn.1006-9895.1905.18267

    Tang Nanjun, Ren Rongcai, Wu Guoxiong, et al. 2020. Interannual anomalies of upper tropospheric water vapor mass and its transport into the stratosphere over the Tibetan Plateau area in summer. Part I: Leading patterns of water-vapor-mass anomalies [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 239−256. doi: 10.3878/j.issn.1006-9895.1905.18267
    [25] Torrence C, Compo G P. 1998. A practical guide to wavelet analysis [J]. Bull. Amer. Meteor. Soc., 79(1): 61−78. doi:10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2
    [26] Torrence C, Webster P J. 1999. Interdecadal changes in the ENSO–Monsoon system [J]. J. Climate, 12(8): 2679−2690. doi:10.1175/1520-0442(1999)012<2679:icitem>2.0.co;2
    [27] 王可丽, 钟强, 侯萍. 1991. 青藏高原地区OLR与地面有效辐射关系的分析 [J]. 高原气象, 10(4): 381−390.

    Wang Keli, Zhong Qiang, Hou Ping. 1991. Analysis of the relationship between the OLR and the surface effective radiation over the Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 10(4): 381−390.
    [28] 王园香, 李贵才, 吴晓, 等. 2012. 5~8月青藏高原OLR年际变化及其对中国气候变化的影响 [J]. 兰州大学学报(自然科学版), 48(5): 47−51, 60. doi: 10.3969/j.issn.0455-2059.2012.05.008

    Wang Yuanxiang, Li Guicai, Wu Xiao, et al. 2012. Inter-annual variability of Tibetan Plateau OLR and its effects on the climate over China in May and August [J]. Journal of Lanzhou University (Natural Sciences) (in Chinese), 48(5): 47−51, 60. doi: 10.3969/j.issn.0455-2059.2012.05.008
    [29] 魏凤英. 1999. 现代气候统计诊断与预测技术 [M]. 北京: 气象出版社, 23–24.

    Wei Fengying. 1999. Modern Climate Statistic Diagnosis and Forecast Technique (in Chinese) [M]. Beijing: China Meteorological Press, 23–24.
    [30] Weng D M. 1995. Climatic characteristics of earth–atmosphere outgoing longwave radiation over China [J]. Acta Meteorologica Sinica, 9(2): 228−236.
    [31] 吴洪宝, 吴蕾. 2005. 气候变率诊断和预测方法 [M]. 北京: 气象出版社, 212–225.

    Wu Hongbao, Wu Lei. 2005. Methods for Diagnosing and Forecasting Climate Variability (in Chinese) [M]. Beijing: China Meteorological Press, 212–225.
    [32] 徐国昌, 李栋梁, 蒋尚城. 1990. 卫星观测的OLR对夏季青藏高原月雨量及凝结潜热的估算 [J]. 高原气象, 9(3): 256−264.

    Xu Guochang, Li Dongliang, Jiang Shangcheng. 1990. Evaluating of monthly rainfall and condensation latent heat over Qinghai–Xizang Plateau in summer utilizing the OLR data of satellite [J]. Plateau Meteorology (in Chinese), 9(3): 256−264.
    [33] Yanai M, Li C F, Song Z S. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon [J]. J. Meteor. Soc. Japan, 70(1B): 319−351. doi: 10.2151/jmsj1965.70.1B_319
    [34] 杨喜峰, 蒋尚城. 1995. 青藏高原OLR场的季节变化特征 [J]. 应用气象学报, 6(4): 414−421.

    Yang Xifeng, Jiang Shangcheng. 1995. Characteristics of the seasonal variation in OLR field over the Tibetan Plateau [J]. Quarterly Journal of Applied Meteorology (in Chinese), 6(4): 414−421.
    [35] 姚秀萍, 张硕, 闫丽朱. 2019. 青藏高原大气热源及其影响的研究进展 [J]. 大气科学学报, 42(5): 641−651. doi: 10.13878/j.cnki.dqkxxb.20181227001

    Yao Xiuping, Zhang Shuo, Yan Lizhu. 2019. Research progress on the atmospheric heat source over the Tibetan Plateau and its influence [J]. Trans. Atmos. Sci. (in Chinese), 42(5): 641−651. doi: 10.13878/j.cnki.dqkxxb.20181227001
    [36] 于玉斌, 姚秀萍. 2005. 2003年夏季OLR特征及与中国异常天气的关系 [J]. 气象, 31(7): 10−15. doi: 10.3969/j.issn.1000-0526.2005.07.003

    Yu Yubin, Yao Xiuping. 2005. OLR characteristics and relationship with abnormal weather processes in China in summer 2003 [J]. Meteorological Monthly (in Chinese), 31(7): 10−15. doi: 10.3969/j.issn.1000-0526.2005.07.003
    [37] 曾小凡, 苏布达, 易善桢, 等. 2013. 1971~2010年三江源地区水汽输送变化分析 [J]. 气候变化研究进展, 9(3): 187−191. doi: 10.3969/j.issn.1673-1719.2013.03.005

    Zeng Xiaofan, Su Buda, Yi Shanzhen, et al. 2013. Variations of water vapor transports in Three Rivers’ Headstream Region during 1971-2010 [J]. Progressus Inquisitiones De Mutatione Climatis (in Chinese), 9(3): 187−191. doi: 10.3969/j.issn.1673-1719.2013.03.005
    [38] 张浩鑫, 李维京, 李伟平. 2017. 春夏季青藏高原与伊朗高原地表热通量的时空分布特征及相互联系 [J]. 气象学报, 75(2): 260−274. doi: 10.11676/qxxb2017.002

    Zhang Haoxin, Li Weijing, Li Weiping. 2017. Spatial and temporal distribution characteristics of surface heat fluxes over both Tibetan Plateau and Iranian Plateau in boreal spring and summer and their relationships [J]. Acta Meteorologica Sinica (in Chinese), 75(2): 260−274. doi: 10.11676/qxxb2017.002
    [39] 张核真, 边巴次仁, 唐小萍, 等. 2009. 对喜马拉雅山脉中段6个台站的气候变化分析 [J]. 气候变化研究进展, 5(5): 255−259. doi: 10.3969/j.issn.1673-1719.2009.05.002

    Zhang Hezhen, Bianba Ciren, Tang Xiaoping, et al. 2009. Analysis of climate change over the six stations of Middle Himalayas during 1971-2007 [J]. Advances in Climate Change Research (in Chinese), 5(5): 255−259. doi: 10.3969/j.issn.1673-1719.2009.05.002
    [40] Zhang K, Randel W J, Fu R. 2017. Relationships between outgoing longwave radiation and diabatic heating in reanalyses [J]. Climate Dyn., 49(7): 2911−2929. doi: 10.1007/s00382-016-3501-0
    [41] 张礼平, 杨志勇, 陈正洪. 2000. 典型相关系数及其在短期气候预测中的应用 [J]. 大气科学, 24(3): 427−432. doi: 10.3878/j.issn.1006-9895.2000.03.14

    Zhang Liping, Yang Zhiyong, Chen Zhenghong. 2000. Canonical correlation coefficients and their applications in a short-range climate prediction [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24(3): 427−432. doi: 10.3878/j.issn.1006-9895.2000.03.14
    [42] 朱乾根, 盛春岩, 陈敏. 2000. 青藏高原冬季OLR年际变化特征及其与我国夏季降水的联系 [J]. 高原气象, 19(1): 75−83. doi: 10.3321/j.issn:1000-0534.2000.01.010

    Zhu Qian’gen, Sheng Chunyan, Chen Min. 2000. Winter Qinghai–Xizang Plateau OLR interannual variational features and their relation to China summer rainfall [J]. Plateau Meteorology (in Chinese), 19(1): 75−83. doi: 10.3321/j.issn:1000-0534.2000.01.010
  • 加载中
图(13)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  39
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-12
  • 录用日期:  2020-12-09
  • 网络出版日期:  2020-11-16
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回