高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东亚气温前冬与后冬反相的变化特征及可能影响因子

祁莉 泮琬楠

祁莉, 泮琬楠. 2021. 东亚气温前冬与后冬反相的变化特征及可能影响因子[J]. 大气科学, 45(5): 1−18 doi: 10.3878/j.issn.1006-9895.2011.20181
引用本文: 祁莉, 泮琬楠. 2021. 东亚气温前冬与后冬反相的变化特征及可能影响因子[J]. 大气科学, 45(5): 1−18 doi: 10.3878/j.issn.1006-9895.2011.20181
QI Li, PAN Wannan. 2021. Variability of the Phase Reversal of the East Asia Temperature from Early to Late Winter and the Possible Influencing Factors [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−18 doi: 10.3878/j.issn.1006-9895.2011.20181
Citation: QI Li, PAN Wannan. 2021. Variability of the Phase Reversal of the East Asia Temperature from Early to Late Winter and the Possible Influencing Factors [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−18 doi: 10.3878/j.issn.1006-9895.2011.20181

东亚气温前冬与后冬反相的变化特征及可能影响因子

doi: 10.3878/j.issn.1006-9895.2011.20181
基金项目: 国家重点研发计划项目2018YFC1506002
详细信息
    作者简介:

    祁莉,女,1981年出生,教授,主要从事季风和海—陆—气相互作用研究。E-mail: qili@nuist.edu.cn

  • 中图分类号: P461

Variability of the Phase Reversal of the East Asia Temperature from Early to Late Winter and the Possible Influencing Factors

Funds: National Key Research and Development Program on Monitoring (Grant 2018YFC1506002)
  • 摘要: 东亚冬季气温除了季节平均外,其显著的季内起伏也对国民生活及经济活动有着深远影响。本文利用1959~2018年台站及再分析资料,使用S-EOF(Season-reliant Empirical Orthogonal Function)方法提取东亚冬季气温季内起伏的主要年际变化模态,其主要模态表现为前冬暖(冷)、后冬冷(暖),即为前、后冬反相,其方差贡献达到31.1%。这种前后冬反相的特征并非局地现象,在北半球大尺度均存在。环流场上它表现为欧亚遥相关型波列(Eurasian teleconnection, EU)从前冬12月的负位相(正位相)向后冬2月正位相(负位相)的转变,相伴随的是低层西伯利亚高压与阿留申低压的强度在前、后冬转折,高层副热带急流的变化也与之匹配。分析发现,欧亚遥相关型的季内转向可能与北大西洋涛动(North Atlantic oscillation, NAO)在前冬12月与后冬2月的转向有关,后者通过北大西洋热通量作用进而影响下游EU波列的转向。此外,宽窄厄尔尼诺—南方涛动(El Niño–Southern Oscillation, ENSO)事件也有一定贡献,当厄尔尼诺(El Niño)发生时,经向上更宽(窄)的海温异常利于前冬气温偏高(低)向后冬气温偏低(高)的转向;而当拉尼娜(La Niña)事件发生时,情况与厄尔尼诺年相反。
  • 图  1  1959~2018年冬季东亚(20°~50°N,100°~125°E)区域平均2 m高度的气温标准化时间序列:(a)12月及2月区域平均气温,粉色(蓝色)阴影分别为前冬气温正(负)异常转为后冬负(正)异常年;(b)冬季平均气温年际变化(柱状图)及T12T2(12月与2月气温差值)的年际变化曲线(黑色折线),红点为冬季平均气温小于0.8个标准差并且12月与次年2月气温异常反相的年份

    Figure  1.  Normalized time series of regional average winter 2-m height temperature (the same below) variation in East Asia (20°–50°N,100°–125°E) for the period of 1959–2018: (a) the December and February mean regional average temperature, the pink (blue) shadow is the year when temperature is warmer (colder) than normal in early winter and colder (warmer) in late winter; (b) winter mean temperature (bars) and T12T2 (difference between December and February temperature,solid line), the red dots indicate those years when T12 and T2 are out-of-phase and winter mean temperature is less than 0.8 standard deviation

    图  2  东亚冬季气温S-EOF第一模态(EOF1)的空间分布(单位:°C)及年际变化规律:(a–c)第一模态12月、1月、2月的空间分布(NCEP/NCAR 2 m气温资料),(d)第一模态的时间序列。(e–h)同(a–d),但为台站气温资料。图中打点区域为通过90%显著性检验的区域

    Figure  2.  Spatial pattern of the first S-EOF mode (EOF1) of monthly winter air temperature (units: °C) and its annual variation in East Asia (20°–50°N, 100°–125°E). (a-c) December to following February spatial pattern (NCEP/NACAR reanalysis dataset), (d) time series of EOF1. (e–h) The same as (a–d), but for station data. The dotted area indicates the 90% confidence level

    图  3  东亚冬季逐旬气温S-EOF第一模态的空间分布(单位:°C),(a–i)分别为冬季第1~9旬气温。打点区域为通过90%显著性的区域

    Figure  3.  Spatial pattern of the first S-EOF mode of ten-day winter air temperature (units: °C) in East Asia. (a–i) represent 1 to 9 ten-day winter temperatures, respectively. The dotted area indicates the 90% confidence level

    图  4  (a–c)东亚区域(20°~50°N,100°~125°E)S-EOF第一模态时间序列回归12月至次年2月逐月2 m气温异常(单位:°C),黑色方框为东亚区域,绿色方框为大范围的欧亚区域;(d–f)欧亚区域(20°~80°N,60°~140°E)冬季12月至次年2月逐月气温S-EOF第一模态的空间分布(单位:°C)。打点区域通过90%显著性检验

    Figure  4.  Regression maps of monthly 2-m air temperature anomalies (units: °C) for (a) December, (b) January, and (c) February with regard to EOF1, and spatial patterns of the first S-EOF mode of monthly winter air temperature (units: °C) in Eurasian (20°–80°N, 60°–140°E) for (d-f) Decemberto the following February. The dotted area indicates the 90% confidence level. The black box shows the East Asian region, and the green box shows the Eurasian region

    图  5  EOF1回归的(a–c)12月至次年2月逐月500 hPa位势高度异常场(单位:gpm,打点区域为通过90%显著性检验区域)及500 hPa风场异常场(单位:m s−1,仅画出为通过90%显著性检验的风场),黑框区域为本文研究的东亚区域

    Figure  5.  Regression maps of 500-hPa geopotential height anomalies (shaded, gpm) and winds anomalies (vector, m s−1) with regard to EOF1 for (a-c) December to the following February. The dotted area and the vector winds are significant at the 90% confidence level. The black box shows the East Asian region studied in this paper

    图  6  EOF1回归的(a–c)12月至次年2月逐月300 hPa纬向风异常场(阴影,单位:m s−1,打点区域为通过90%的显著性检验)。图中等值线为300 hPa纬向风场气候态

    Figure  6.  Regression maps of 300-hPa zonal wind anomalies (shaded, m s−1) with regard to EOF1 and climatological month mean zonal wind (line) for (a-c) December to the following February. The dotted area indicates the 90% confidence level

    图  7  EOF1回归的(a–c)12月至次年2月逐月海平面气压场(阴影,单位:hPa)和850 hPa风场异常场(矢量,单位:m s−1)及(d–f)12月至次年2月逐月温度平流异常场(阴影,单位:10−5 K s−1)和925 hPa风场异常(矢量,单位:m s−1)。图中打点区域为通过90%显著性检验的区域,风场只画出通过90%显著性检验的区域,黑框区域为本文研究的东亚区域

    Figure  7.  (a–c) Monthly sea level pressure (shadow, units: hPa) and 850 hPa winds (vectors, units:m s−1) anomalies regressed with reference to EOF1 from December to the following February; (d−f) monthly temperature advection (shadow, units:10−5 K s−1) and 925 hPa winds (vectors, units:m s–1) anomalies regressed with reference to EOF1 from December to the following February. The dotted regions and the winds are significant at the 90% confidence level. The black box shows the East Asian region studied in this paper

    图  8  (a)1959~2018年EOF1以及EU遥相关指数前冬(12月)与后冬(2月)差值(ΔEU)时间演变曲线及(b)散点图。

    Figure  8.  (a) EOF1 and the difference of normalized EU index between early (December) and late Winter (February) (ΔEU) for the years 1959–2018. (b) Scatterplots of EOF1 with ΔEU

    图  9  EOF1正负位相典型年合成差值场(正位相-负位相):(a,d)海表温度(单位:°C);(b,e)湍流热通量异常(单位:W m−2);(c,f)20°~50°W纬向平均垂直速度(等值线,单位:10−2 hPa s−1)和气温(阴影,单位:°C)。(a–c)前冬12月,(d–f)后冬2月。图中打点区域为通过90%显著性检验的区域

    Figure  9.  Difference between EOF1 positive and negative phase (positive year−negative year) for (a, d) sea surface temperature (SST) (units: °C), (b, e) turbulent heat flux (units: W m−2), (c, f) 20°–50°W zonal mean vertical velocity (contour, units: 10−2 hPa s−1) and air temperature (shadow, units: °C), with (a–c) for early winter (December) and (d-f) for late winter (February). The dotted area indicates the 90% confidence level

    图  10  (a–c)12月至次年2月EU转向正负位相典型年份及(d–f)12月至次年2月AO转向正负位相典型年份湍流热通量差值(单位:W m−2)及850 hPa风场(单位:m s−1)的合成场(正位相年-负位相年)。图中打点区域为通过90%显著性检验的区域

    Figure  10.  Difference between the positive and negative phase (positive-negative) of (a-c) EU phase reversal year from December to the following February and (d-f) AO phase reversal year from December to the following February of turbulent heat flux anomalies (units: W m−2) and 850 hPa wind.. The dotted area indicates the 90% confidence level

    图  11  (a)EOF1正负位相年合成冬季海温差值场(正异常年减负异常年),图中打点区域为通过90%显著性检验的区域;(b)El Niño/EOF1+,(c)La Niña/EOF1+,(d)El Niño/EOF1−,(e)La Niña/EOF1−合成海温场。黄色实线为±0.3°C海温等值线,黑色实线为±0.2°C海温等值线

    Figure  11.  (a) Composite anomalies of winter SST between EOF1+ and EOF1− (the dotted regions indicate anomalies that are significantly different at 90% confidence level), and composite anomalies of winter SST in the years with (b) El Niño/EOF1+, (c) La Niña/EOF1+, (d) El Niño/EOF1−, and (e) La Niña/EOF1−, respectively. The yellow line is the SST contour with ±0.3°C, and the black line with ±0.2°C

    图  12  ENSO海温宽窄年份前冬12月气温合成场(单位:°C):(a)宽厄尔尼诺年,(b)窄厄尔尼诺年,(c)宽拉尼娜年,(d)窄拉尼娜年;(e–h)同(a–d),但为后冬2月。图中打点区域为通过90%显著性检验的区域

    Figure  12.  Composite anomalies of early winter (December) surface air temperature in the years with (a) wide El Niño, (b) narrow El Niño, (c) wide La Niña, and (d) narrow La Niña. (e–h) are same as (a–d), but for late winter (February). The dotted area indicates the 90% confidence level

    图  13  (a, b)厄尔尼诺和(c, d)拉尼娜年宽窄典型年500 hPa位势高度合成差值场(单位:gpm):(a,c)前冬12月;(b,d)后冬2月。图中打点区域为通过90%显著性检验的区域

    Figure  13.  Composite anomalies of geopotential height between (a, b) wide and narrow El Niño years, and (c, d) wide and narrow La Niña years: (a, c) Early winter (December); (b, d) late winter (February). The dotted area indicates the 90% confidence level

    图  14  ENSO经向宽度及AO/NAO的转向对东亚气温季内起伏的影响机制。r*为偏相关系数,r为相关系数,红色字体为通过95%的显著性检验

    Figure  14.  The possible mechanism of the impact of ENSO meridional width and AO/NAO phase inversion on the East Asia intraseasonal winter temperature oscillation. r* indicates the partial correlation coefficient,r indicates correlation coefficient, and the red font indicates the 95% confidence level

    表  1  ENSO事件发生时,气温发生转向年份

    Table  1.   Years with temperature phase inversion when ENSO events occur

    EOF1+(前冬暖后冬冷)EOF1−(前冬冷后冬暖)
    厄尔尼诺年1963 1968 1977 1979
    1987 2004 2015
    1965 1969 2002 2006
    2014
    拉尼娜年1983 1999 2007 20171974 1975 1984 2008
    正常年19621960 1980 1981 1993
    2001 2012
    下载: 导出CSV

    表  2  以ENSO海温经向宽度的标准化序列0.6个标准差为阈值,选取ENSO宽窄年

    Table  2.   Selected years with wide and narrow ENSO based on the criteria of the standard winter SST meridional width exceeding 0.6 standard deviation

    ENSO宽年份ENSO窄年份
    厄尔尼诺1963 1968 1979 20151969 1991 1997 2002
    2006 2018
    拉尼娜1970 1971 1974 1975
    2007 2010 2011
    1983 1985 2005 2017
    下载: 导出CSV
  • [1] Chen W, Yang S, Huang R H. 2005. Relationship between stationary planetary wave activity and the East Asian winter monsoon [J]. J. Geophys. Res., 110(D14): D14110. doi: 10.1029/2004JD005669
    [2] 丁一汇, 王遵娅, 宋亚芳, 等. 2008. 中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系 [J]. 气象学报, 66(5): 808−825. doi: 10.3321/j.issn:0577-6619.2008.05.014

    Ding Yihui, Wang Zunya, Song Yafang, et al. 2008. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming [J]. Acta Meteor. Sinica (in Chinese), 66(5): 808−825. doi: 10.3321/j.issn:0577-6619.2008.05.014
    [3] 丁一汇, 柳艳菊, 梁苏洁, 等. 2014. 东亚冬季风的年代际变化及其与全球气候变化的可能联系 [J]. 气象学报, 72(5): 835−852. doi: 10.11676/qxxb2014.079

    Ding Yihui, Liu Yanju, Liang Sujie, et al. 2014. Interdecadalvariability of the East Asian winter monsoon and its possible links to global climate change [J]. Acta Meteor. Sinica (in Chinese), 72(5): 835−852. doi: 10.11676/qxxb2014.079
    [4] Gambo K, Lu L, Li W J. 1987. Numerical simulation of Eurasian teleconnection pattern in atmospheric circulation during the Northern Hemisphere winter [J]. Adv. Atmos. Sci., 4(4): 385−394. doi: 10.1007/BF02656739
    [5] Geng X, Zhang W J, Stuecker M F, et al. 2017. Strong sub-seasonal wintertime cooling over East Asia and Northern Europe associated with super El Nino events [J]. Sci. Rep., 7: 3770. doi: 10.1038/s41598-017-03977-2
    [6] 龚道溢, 王绍武, 朱锦红. 2004. 北极涛动对我国冬季日气温方差的显著影响 [J]. 科学通报, 49(6): 637−642. doi: 10.3321/j.issn:0023-074X.2004.05.015

    Gong Daoyi, Wang Shaowu, Zhu Jinhong. 2004. Arctic Oscillation influence on daily temperature variance in winter over China [J]. Chinese Science Bulletin, 49(6): 637−642. doi: 10.3321/j.issn:0023-074X.2004.05.015
    [7] 郭其蕴. 1994. 东亚冬季风的变化与中国气温异常的关系 [J]. 应用气象学报, 5(2): 218−225.

    Guo Qiyun. 1994. Relationship between the variations of East Asian winter monsoon and temperature anomalies in China [J]. Quart. J. Appl. Meteor.(in Chinese), 5(2): 218−225.
    [8] 何春, 何金海. 2003. 冬季北极涛动和华北冬季气温变化关系研究 [J]. 南京气象学院学报, 26(1): 1−7. doi: 10.13878/j.cnki.dqkxxb.2003.01.001

    He Chun, He Jinhai. 2003. Relation between Arctic Oscillation and North China air temperature in winter [J]. J. Nanjing Instit. Meteor. (in Chinese), 26(1): 1−7. doi: 10.13878/j.cnki.dqkxxb.2003.01.001
    [9] 黄嘉佑, 胡永云. 2006. 中国冬季气温变化的趋向性研究 [J]. 气象学报, 64(5): 614−621. doi: 10.3321/j.issn:0577-6619.2006.05.008

    Huang Jiayou, Hu Yongyun. 2006. Trends of winter temperatures in China [J]. Acta Meteor. Sinica (in Chinese), 64(5): 614−621. doi: 10.3321/j.issn:0577-6619.2006.05.008
    [10] 黄荣辉, 魏科, 陈际龙, 等. 2007. 东亚2005年和2006年冬季风异常及其与准定常行星波活动的关系 [J]. 大气科学, 31(6): 1033−1048. doi: 10.3878/j.issn.1006-9895.2007.06.01

    Huang Ronghui, Wei Ke, Chen Jilong, et al. 2007. The East Asian winter monsoon anomalies in the winters of 2005 and 2006 and their relations to the quasi-stationary planetary wave activity in the Northern Hemisphere [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(6): 1033−1048. doi: 10.3878/j.issn.1006-9895.2007.06.01
    [11] 黄菲, 李金泽, 许士斌, 等. 2019. 东亚大槽冬春季节内演变的主模态时空特征 [J]. 中国海洋大学学报(自然科学版), 49(10): 118−125. doi: 10.16441/j.cnki.hdxb.20190139

    Huang Fei, Li Jinze, Xu Shibin, et al. 2019. Spatiotemporal variability of the East Asian trough intraseasonal evolution major modes in boreal winter and spring [J]. Period. Ocean Univ. China (in Chinese), 49(10): 118−125. doi: 10.16441/j.cnki.hdxb.20190139
    [12] Jhun J G, Lee E J. 2004. A new East Asian winter monsoon index and associated characteristics of the winter monsoon [J]. J. Climate, 17(4): 711−726. doi:10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2
    [13] 贾丹, 简茂球. 2015. 中国冬季月地面气温的年际变化 [J]. 气候与环境研究, 20(4): 454−464. doi: 10.3878/j.issn.1006-9585.2015.14240

    Jia Dan, Jian Maoqiu. 2015. Interannual variability of wintertime monthly surface air temperature in China [J]. Climatic Environ. Res. (in Chinese), 20(4): 454−464. doi: 10.3878/j.issn.1006-9585.2015.14240
    [14] 简云韬, 简茂球, 杨崧. 2017. 前、后冬的东亚冬季风年际变异及其与东亚降水的关系 [J]. 热带气象学报, 33(4): 519−529. doi: 10.16032/j.issn.1004-4965.2017.04.009

    Jian Yuntao, Jian Maoqiu, Yang Song. 2017. Interannual variation of East Asian winter monsoon in early and late winter and its relationship with East Asian precipitation [J]. J. Trop. Meteor. (in Chinese), 33(4): 519−529. doi: 10.16032/j.issn.1004-4965.2017.04.009
    [15] 金祖辉, 孙淑清. 1996. 东亚大陆冬季风的低频振荡特征 [J]. 大气科学, 20(1): 101−111. doi: 10.3878/j.issn.1006-9895.1996.01.12

    Jin Zuhui, Sun Shuqing. 1996. The characteristics of low frequency oscillations in winter monsoon over East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 20(1): 101−111. doi: 10.3878/j.issn.1006-9895.1996.01.12
    [16] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [17] 康丽华, 陈文, 魏科. 2006. 我国冬季气温年代际变化及其与大气环流异常变化的关系 [J]. 气候与环境研究, 11(3): 330−339. doi: 10.3969/j.issn.1006-9585.2006.03.009

    Kang Lihua, Chen Wen, Wei Ke. 2006. The interdecadal variation of winter temperature in China and its relation to the anomalies in atmospheric general circulation [J]. Climatic Environ. Res. (in Chinese), 11(3): 330−339. doi: 10.3969/j.issn.1006-9585.2006.03.009
    [18] 康丽华, 陈文, 王林, 等. 2009. 我国冬季气温的年际变化及其与大气环流和海温异常的关系 [J]. 气候与环境研究, 14(1): 45−53. doi: 10.3878/j.issn.1006-9585.2009.01.05

    Kang Lihua, Chen Wen, Wang Lin, et al. 2009. Interannual variations of winter temperature in China and their relationship with the atmospheric circulation and sea surface temperature [J]. Climatic Environ. Res. (in Chinese), 14(1): 45−53. doi: 10.3878/j.issn.1006-9585.2009.01.05
    [19] Kunkel K E, Pielke R A Jr, Changnon S A. 1999. Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: A review [J]. Bull. Amer. Meteor. Soc., 80(6): 1077−1098. doi:10.1175/1520-0477(1999)080<1077:TFIWAC>2.0.CO;2
    [20] Li S L. 2004. Impact of Northwest Atlantic SST anomalies on the circulation over the Ural Mountains during early winter [J]. J. Meteor. Res. Japan, 82(4): 971−988. doi: 10.2151/jmsj.2004.971
    [21] Li C Y, Sun S Q, Mu M Q. 2001. Origin of the TBO-interaction between anomalous East-Asian winter monsoon and ENSO cycle [J]. Adv. Atmos. Sci., 18(4): 554−566. doi: 10.1007/s00376-001-0044-y
    [22] Li J P, Zheng F, Sun C, et al. 2019a. Pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate: A review [J]. Adv. Atmos. Sci., 36(9): 902−921. doi: 10.1007/s00376-019-8236-5
    [23] Li Z Y, Zhang W J, Stuecker M F, et al. 2019b. Different effects of two ENSO types on Arctic surface temperature in boreal winter [J]. J. Climate, 32(16): 4943−4961. doi: 10.1175/JCLI-D-18-0761.1
    [24] 梁苏洁, 丁一汇, 赵南, 等. 2014. 近50年中国大陆冬季气温和区域环流的年代际变化研究 [J]. 大气科学, 38(5): 974−992. doi: 10.3878/j.issn.1006-9895.1401.13234

    Liang Sujie, Ding Yihui, Zhao Nan, et al. 2014. Analysis of the interdecadal changes of the wintertime surface air temperature over mainland of China and regional atmospheric circulation characteristics during 1960–2013 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(5): 974−992. doi: 10.3878/j.issn.1006-9895.1401.13234
    [25] 刘毓赟, 陈文. 2012. 北半球冬季欧亚遥相关型的变化特征及其对我国气候的影响 [J]. 大气科学, 36(2): 423−432. doi: 10.3878/j.issn.1006-9895.2011.11066

    Liu Yuyun, Chen Wen. 2012. Variability of the Eurasian teleconnection pattern in the Northern Hemisphere winter and its influences on the climate in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(2): 423−432. doi: 10.3878/j.issn.1006-9895.2011.11066
    [26] 刘炜, 宋文玲. 2018. 中国北方冬季气温的年际变化对北太平洋东部海温异常的响应 [J]. 气候与环境研究, 23(3): 275−286. doi: 10.3878/j.issn.1006-9585.2018.17095

    Liu Wei, Song Wenling. 2018. Impact of the sea surface temperature anomaly in the eastern North Pacific on interannual variations of winter temperature in northern China [J]. Climatic Environ. Res. (in Chinese), 23(3): 275−286. doi: 10.3878/j.issn.1006-9585.2018.17095
    [27] Liu Y Y, Wang L, Zhou W, et al. 2014. Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies [J]. Climate Dyn., 42(11–12): 2817−2839. doi: 10.1007/s00382-014-2163-z
    [28] Luo X, Zhang Y C. 2015. The linkage between upper-level jet streams over East Asia and East Asian winter monsoon variability [J]. J. Climate, 28(22): 9013−9028. doi: 10.1175/JCLI-D-15-0160.1
    [29] Lü Z Z, He S P, Li F, et al. 2019. Impacts of the autumn Arctic sea ice on the intraseasonal reversal of the winter Siberian high [J]. Adv. Atmos. Sci., 36(2): 173−188. doi: 10.1007/s00376-017-8089-8
    [30] 马晓青, 丁一汇, 徐海明, 等. 2008. 2004/2005年冬季强寒潮事件与大气低频波动关系的研究 [J]. 大气科学, 32(2): 380−394. doi: 10.3878/j.issn.1006-9895.2008.02.16
    [31] Ma Xiaoqing, Ding Yihui, Xu Haiming, et al. 2003. The relation between strong cold waves and low-frequency waves during the winter of 2004/2005 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(2): 380−394. doi: 10.3878/j.issn.1006-9895.2008.02.16
    [32] 马宁, 李跃凤, 琚建华. 2011. 2008年初中国南方低温雨雪冰冻天气的季节内振荡特征 [J]. 高原气象, 30(2): 318−327.

    Ma Ning, Li Yuefeng, Ju Jianhua. 2011. Intraseasonal oscillation characteristics of extreme cold, snowy and freezing rainy weather in southern China in early 2008 [J]. Plateau Meteor. (in Chinese), 30(2): 318−327.
    [33] Moron V, Gouirand I. 2003. Seasonal modulation of the El Niño–southern oscillation relationship with sea level pressure anomalies over the North Atlantic in October–March 1873–1996 [J]. Int. J. Climatol., 23(2): 143−155. doi: 10.1002/joc.868
    [34] Moron V, Plaut G. 2003. The impact of El Niño–southern oscillation upon weather regimes over Europe and the North Atlantic during boreal winter [J]. Int. J. Climatol., 23(4): 363−379. doi: 10.1002/joc.890
    [35] Qiao S B, Feng G L. 2016. Impact of the December north Atlantic oscillation on the following February East Asian trough [J]. J. Geophys. Res., 121(17): 10074−10088. doi: 10.1002/2016JD025007
    [36] 乔少博, 张志森, 王晓娟, 等. 2015. 晚秋与后冬间欧亚遥相关型波列反相现象探究 [J]. 气象学报, 73(4): 711−724. doi: 10.11676/qxxb2015.045

    Qiao Shaobo, Zhang Zhisen, Wang Xiaojuan, et al. 2015. An investigation into the phase reversal of EU teleconnections from late autumn to the late winter [J]. Acta Meteor. Sinica (in Chinese), 73(4): 711−724. doi: 10.11676/qxxb2015.045
    [37] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J. Geophys. Res., 108(D14): 4407. doi: 10.1029/2002JD002670
    [38] 孙健, 李栋梁, 邵鹏程, 等. 2019. 中国冬季气温月际变化特征及其对大气环流异常的响应 [J]. 气象学报, 77(5): 885−897. doi: 10.11676/qxxb2019.050

    Sun Jian, Li Dongliang, Shao Pengcheng, et al. 2019. Inter-monthly variation of winter air temperature in China and its relation with atmospheric circulation anomalies [J]. Acta Meteor. Sinica (in Chinese), 77(5): 885−897. doi: 10.11676/qxxb2019.050
    [39] Takaya K, Nakamura H. 2005. Geographical dependence of upper–level blocking formation associated with intraseasonal amplification of the Siberian high [J]. J. Atmos. Sci., 62(12): 4441−4449. doi: 10.1175/JAS3628.1
    [40] Ting M F, Peng S L. 1995. Dynamics of the early and middle winter atmospheric responses to the northwest Atlantic SST anomalies [J]. J. Climate, 8(9): 2239−2254. doi:10.1175/1520-0442(1995)008<2239:DOTEAM>2.0.CO;2
    [41] Tollefson J. 2014. Climate change: The case of the missing heat: Sixteen years into the mysterious ‘global-warming hiatus’, scientists are piecing together an explanation [J]. Nature, 505(7483): 276−278. doi: 10.1038/505276a
    [42] Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter [J]. Mon. Wea. Rev., 109(4): 784−812. doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
    [43] Wang B, An S I. 2005. A method for detecting season-dependent modes of climate variability: S-EOF analysis [J]. Geophys. Res. Lett., 32(15): L15710. doi: 10.1029/2005GL022709
    [44] Wang N, Zhang Y C. 2015a. Evolution of Eurasian teleconnection pattern and its relationship to climate anomalies in China [J]. Climate Dyn., 44(3–4): 1017−1028. doi: 10.1007/s00382-014-2171-z
    [45] Wang N, Zhang Y C. 2015b. Connections between the Eurasian teleconnection and concurrent variation of upper-level jets over East Asia [J]. Adv. Atmos. Sci., 32(3): 336−348. doi: 10.1007/s00376-014-4088-1
    [46] Wang B, Wu R G, Li T. 2003. Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation [J]. J. Climate, 16(8): 1195−1211. doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2
    [47] Wang B, Wu Z W, Chang C P, et al. 2010. Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: The northern and southern temperature modes [J]. J. Climate, 23(6): 1495−1512. doi: 10.1175/2009JCLI3243.1
    [48] 汪子琪, 张文君, 耿新. 2017. 两类ENSO对中国北方冬季平均气温和极端低温的不同影响 [J]. 气象学报, 75(4): 564−580. doi: 10.11676/qxxb2017.038

    Wang Z Q, Zhang W J, Geng X. 2017. Different influences of two types of ENSO on winter temperature and cold extremes in northern China [J]. Acta Meteor. Sinica (in Chinese), 75(4): 564−580. doi: 10.11676/qxxb2017.038
    [49] 韦玮, 王林, 陈权亮, 等. 2014. 我国前冬和后冬气温年际变化的特征与联系 [J]. 大气科学, 38(3): 524−536. doi: 10.3878/j.issn.1006-9895.1401.13320

    Wei Wei, Wang Lin, Chen Quanliang, et al. 2014. Interannual variations of early and late winter temperatures in China and their linkage [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(3): 524−536. doi: 10.3878/j.issn.1006-9895.1401.13320
    [50] 韦玮, 王林, 陈权亮, 等. 2020. 我国前冬和后冬的划分及其气温的年际变异 [J]. 大气科学, 44(1): 122−137. doi: 10.3878/j.issn.1006-9895.1904.18238

    Wei Wei, Wang Lin, Chen Quanliang, et al. 2020. Definition of early and late winter and associated interannual variations of surface air temperature in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(1): 122−137. doi: 10.3878/j.issn.1006-9895.1904.18238
    [51] 吴洪宝. 1993. 我国冬季气温异常与北半球500 hPa大气环流遥相关型的关系 [J]. 南京气象学院学报, 16(2): 115−119. doi: 10.13878/j.cnki.dqkxxb.1993.02.001

    Wu Hongbao. 1993. Relationships between winter temperature anomalies in China and 500-hPa teleconnection patterns of the atmospheric circulation in the Northern Hemisphere [J]. J. Nanjing Instit. Meteor. (in Chinese), 16(2): 115−119. doi: 10.13878/j.cnki.dqkxxb.1993.02.001
    [52] Wu B Y, Wang J. 2002. Winter arctic oscillation, Siberian high and East Asian winter monsoon [J]. Geophys. Res. Lett., 29(19): 1897. doi: 10.1029/2002GL015373
    [53] 杨双艳, 武炳义, 张人禾, 等. 2014. 冬季欧亚中高纬大气低频振荡的传播及其与欧亚遥相关型的关系 [J]. 大气科学, 38(1): 121−132. doi: 10.3878/j.issn.1006-9895.2013.12181

    Yang Shuangyan, Wu Bingyi, Zhang Renhe, et al. 2014. Propagation of low-frequency oscillation over Eurasian mid-high latitude in winter and its association with the Eurasian teleconnection pattern [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(1): 121−132. doi: 10.3878/j.issn.1006-9895.2013.12181
    [54] 张文君. 2009. ENSO经向尺度的特征、机制及其对气候的影响 [D]. 中国科学院大气物理研究所博士学位论文.

    Zhang Wenjun. 2009. Features and dynamical mechanism of ENSO meridional scales and its climate impacts [D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences.
    [55] Zhang W J, Li J P, Jin F F. 2009. Spatial and temporal features of ENSO meridional scales [J]. Geophys. Res. Lett., 36(15): L15605. doi: 10.1029/2009GL038672
    [56] 朱毓颖, 江静. 2013. 中国冬季持续性低温事件的低频特征以及中低纬大气低频振荡对其的影响 [J]. 热带气象学报, 29(4): 649−655. doi: 10.3969/j.issn.1004-4965.2013.04.014

    Zhu Yuying, Jiang Jing. 2013. The intraseasonal characteristics of wintertime persistent cold anomaly in China and the role of low frequency oscillation in the low latitude and midlatitude [J]. J. Trop. Meteor. (in Chinese), 29(4): 649−655. doi: 10.3969/j.issn.1004-4965.2013.04.014
    [57] Zuo Q J, Gao S T, Sun X G. 2016. Effects of the upstream temperature anomaly on freezing rain and snowstorms over southern China in early 2008 [J]. J. Meteor. Res., 30(5): 694−705. doi: 10.1007/s13351-016-5253-5
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  22
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-16
  • 录用日期:  2021-01-07
  • 网络出版日期:  2021-01-12

目录

    /

    返回文章
    返回