高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CNOP方法的台风目标观测中三种敏感区确定方案的比较研究

周菲凡 张贺

周菲凡, 张贺. 基于CNOP方法的台风目标观测中三种敏感区确定方案的比较研究[J]. 大气科学, 2014, 38(2): 261-272. doi: 10.3878/j.issn.1006-9895.2013.13129
引用本文: 周菲凡, 张贺. 基于CNOP方法的台风目标观测中三种敏感区确定方案的比较研究[J]. 大气科学, 2014, 38(2): 261-272. doi: 10.3878/j.issn.1006-9895.2013.13129
ZHOU Feifan, ZHANG He. Study of the Schemes Based on CNOP Method to Identify Sensitive Areas for Typhoon Targeted Observations[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(2): 261-272. doi: 10.3878/j.issn.1006-9895.2013.13129
Citation: ZHOU Feifan, ZHANG He. Study of the Schemes Based on CNOP Method to Identify Sensitive Areas for Typhoon Targeted Observations[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(2): 261-272. doi: 10.3878/j.issn.1006-9895.2013.13129

基于CNOP方法的台风目标观测中三种敏感区确定方案的比较研究

doi: 10.3878/j.issn.1006-9895.2013.13129
基金项目: 国家自然科学基金青年基金项目41105038、41005054;中国科学院重点部署项目KZZD-EW-05-01-01

Study of the Schemes Based on CNOP Method to Identify Sensitive Areas for Typhoon Targeted Observations

  • 摘要: 在目标观测中,敏感区的确定是个关键性的问题。本文详细研究了如何用条件非线性最优扰动(CNOP)方法确定敏感区。提出了三种确定敏感区的方案:水平投影方案、单点能量投影方案以及垂直积分能量方案。比较了三种方案确定的敏感区的差异,分析了它们所阐释的物理意义,讨论了它们的优缺点,并通过理想回报试验考查了不同方案确定的敏感区的有效性。对六个台风个例的应用结果显示,单点能量投影方案与垂直积分能量方案下识别的敏感区较为相似,二者与水平投影方案确定的敏感区则有较大的区别。两种能量方案确定的敏感区更多地反映了环境场对台风的影响,而水平投影方案则反映了台风自身对流不对称性结构对台风发展变化的影响。理想回报试验结果表明,由两种能量方案确定的敏感区对预报误差能量的减小程度以及路径预报的改善程度都要大于水平投影方案确定的敏感区的效果,且垂直积分能量方案确定的敏感区的有效性最高。而在强度预报方面,三种方案对预报效果的改善程度相当。因此,总的说在台风目标观测研究中,利用CNOP方法确定敏感区时,垂直积分能量方案是较佳的方案。
  • [1] Baker N L, Daley R. 2000. Observation and background adjoint sensitivity in the adaptive observation-targeting problem[J]. Quart. J. Roy. Meteor. Soc., 126 (565): 1431-1454.
    [2] Birgin E G., Martínez J E, Raydan M. 2001. Algorithm 813: SPG-software for convex-constrained optimization[J]. ACM Transactions on Mathematical Software, 27 (3): 340-349.
    [3] Bishop C H, Toth Z. 1999. Ensemble transformation and adaptive observations[J]. J. Atmos. Sci., 56 (11): 1748-1765.
    [4] Bishop C H, Etherton B J, Majumdar S J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part Ⅰ: Theoretical aspects[J]. Mon. Wea. Rev., 129 (3): 420-436.
    [5] Buizza R, Cardinali C, Kelly G, et al. 2007. The value of observations. Part Ⅱ: The value of observations located in singular-vector-based target areas[J]. Quart. J. Roy. Meteor. Soc., 133 (628): 1817-1832
    [6] Chan J C L, Gray W M. 1982. Tropical cyclone movement and surrounding flow relationship[J]. Mon. Wea. Rev., 110 (10): 1354-1376.
    [7] Chen Boyu, Mu Mu. 2012. The roles of spatial locations and patterns of initial errors in the uncertainties of tropical cyclone forecasts[J]. Adv. Atmos. Sci., 29 (1): 63-78.
    [8] 陈联寿, 徐祥德, 解以扬, 等. 1997. 台风异常运动及其外区热力不稳定非对称结构的影响效应[J]. 大气科学, 21 (1): 83-90. Chen Lianshou, Xu Xiangde, Xie Yiyang, et al. 1997. The effect of tropical cyclone asymmetric thermodynamic structure on its unusual motion[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 21 (1): 83-90.
    [9] Corbosiero K L, Molinari J. 2003. The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones[J]. J. Atmos. Sci., 60 (2): 366-376.
    [10] Duan W S, Zhang R. 2010. Is model parameter error related to a significant spring predictability barrier for El Niño events? Results from a theoretical model[J]. Adv. Atmos. Sci., 27 (5): 1003-1013.
    [11] Duan W S, Mu M, Wang B. 2004. Conditional nonlinear optimal perturbations as the optimal precursors for El Niño-Southern Oscillation events[J]. J. Geophys. Res., 109 (D23): D23105, doi: 10.1029/2004JD004756.
    [12] Duan W S, Xu H, Mu M. 2008. Decisive role of nonlinear temperature advection in El Niño and La Niña amplitude asymmetry[J]. J. Geophys. Res., 113 (C1): C01014, doi: 10.1029/2006JC003974.
    [13] Duan W S, Xue F, Mu M. 2009. Investigating a nonlinear characteristic of El Niño events by conditional nonlinear optimal perturbation[J]. Atmos. Res., 94: 10-18.
    [14] Dudhia J. 1993. A nonhydrostatic version of the Penn State/NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front[J]. Mon. Wea. Rev., 121 (5): 1493-1513.
    [15] Emanuel K, DesAutels C, Holloway C, et al. 2004. Environmental control of tropical cyclone intensity[J]. J. Atmos. Sci., 61 (7): 843-858.
    [16] Fiorino M, Elsberry R L. 1989. Some aspects of vortex structure related to tropical cyclone motion[J]. J. Atmos. Sci., 46 (7): 975-990.
    [17] Hamill T M, Snyder C. 2002. Using improved background-error covariances from an ensemble Kalman filter for adaptive observations[J]. Mon. Wea. Rev., 130 (6): 1552-1572.
    [18] Hamill T M, Snyder C, Morss R E. 2000. A comparison of probabilistic forecasts from Bred, singular-vector, and perturbed observation ensembles[J]. Mon. Wea. Rev., 128 (6): 1835-1851.
    [19] 李英, 陈联寿, 王继志. 2004. 登陆热带气旋长久维持与迅速消亡的大尺度环流特征[J]. 气象学报, 62 (2): 167-179. Li Ying, Chen Lianshou, Wang Jizhi. 2004. The diagnostic analysis on the characteristics of large scale circulation corresponding to the sustaining and decaying of tropical cyclone after its landfall[J]. Acta Meteorologica Sinica (in Chinese), 62 (2): 167-179.
    [20] 梁旭东, 端义宏, 陈仲良. 2002. 登陆台风对流和非对称结构[J]. 气象学报, 60 (增刊): 26-35. Liang Xudong, Duan Yihong, Chen Zhongliang, et al. 2002. Convection and asymmetric distribution on landing tropical cyclone[J]. Acta Meteorologica Sinica (in Chinese), 60 (Suppl.): 26-35.
    [21] 孟智勇, 徐祥德, 陈联寿. 1998. 台湾岛地形诱生次级环流系统对热带气旋异常运动的影响机制[J]. 大气科学, 22 (2): 156-168. Meng Zhiyong, Xu Xiangde, Chen Lianshou. 1998. Mechanism of the impact of the cyclone system induced by the Taiwan island topography on tropical cyclone unusual motion[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 22 (2): 156-168.
    [22] 穆穆. 2013. 目标观测的方法、现状与发展展望[J]. 中国科学:地球科学, 43 (11): 1717-1725.