高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从夹卷的角度探讨雾不同阶段微物理量的变化机理

吴诗晓 陆春松 朱磊 高思楠 吕晶晶

吴诗晓, 陆春松, 朱磊, 等. 2021. 从夹卷的角度探讨雾不同阶段微物理量的变化机理[J]. 大气科学, 45(5): 1−14 doi: 10.3878/j.issn.1006-9895.2102.20189
引用本文: 吴诗晓, 陆春松, 朱磊, 等. 2021. 从夹卷的角度探讨雾不同阶段微物理量的变化机理[J]. 大气科学, 45(5): 1−14 doi: 10.3878/j.issn.1006-9895.2102.20189
WU Shixiao, LU Chunsong, ZHU Lei, et al. 2021. Examination of Mechanisms Underlying the Variations of Microphysical Properties in Different Fog Phases from the Perspective of Entrainment [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−14 doi: 10.3878/j.issn.1006-9895.2102.20189
Citation: WU Shixiao, LU Chunsong, ZHU Lei, et al. 2021. Examination of Mechanisms Underlying the Variations of Microphysical Properties in Different Fog Phases from the Perspective of Entrainment [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−14 doi: 10.3878/j.issn.1006-9895.2102.20189

从夹卷的角度探讨雾不同阶段微物理量的变化机理

doi: 10.3878/j.issn.1006-9895.2102.20189
基金项目: 国家重点研发计划项目2019YFA0606803, 国家自然科学基金项目41822504、41975181、41675136、41875170、42175099
详细信息
    作者简介:

    吴诗晓,女,1996年,硕士研究生,主要从事云降水物理方向研究。E-mail: wushixiao20@outlook.com

    通讯作者:

    陆春松,E-mail: luchunsong110@163.com

  • 中图分类号: P426

Examination of Mechanisms Underlying the Variations of Microphysical Properties in Different Fog Phases from the Perspective of Entrainment

Funds: National Key Research and Development Program of China (Grant 2019YFA0606803), National Natural Science Foundation of China (Grants 41822504, 41975181, 41675136, 41875170, 42175099)
  • 摘要: 夹卷混合过程作为影响云雾的主要物理过程之一,对云雾的生命周期、云雾降水的形成过程、辐射传输过程和气溶胶间接效应等都有着重要影响。本文从微物理和动力两个方面探讨辐射雾中的夹卷混合机制,既促进对夹卷混合机制的理论认识,又从新的角度来讨论辐射雾的发展消亡过程。利用2006年和2007年冬季在南京进行的雾综合观测的资料,研究了9个个例中的夹卷混合机制。首先,针对2007年12月10~11日这一次辐射雾过程进行详细分析,探讨了不同阶段微物理量的变化和夹卷混合机制。结果表明:成熟阶段主要为极端非均匀夹卷混合机制,数浓度和含水量同时减小,体积平均半径却基本保持不变;快速消散阶段主要为均匀夹卷混合机制,各微物理量同时减小,互为正相关关系。除了微物理,本文也分析了夹卷混合机制的动力特征,计算了过渡尺度数,发现在成熟(快速消散)阶段,过渡尺度数小(大),有利于极端非均匀(均匀)夹卷混合机制的发生。其次,分析了其他8个个例中微物理量之间的相关关系,发现体积平均半径和含水量之间主要呈正相关关系,以均匀夹卷混合为主。所得结果有助于夹卷混合机制参数化方案的开发,同时为辐射雾的模拟预报提供参考。
  • 图  1  2007年12月10~11日南京辐射雾过程中(a)能见度(vis)、相对湿度(RH)、(b)温度(t)、气压(p)、(c)风速(WS)、风向(WD)随时间的变化.图中的I、II和III分别代表雾爆发性增强阶段、成熟阶段和快速消散阶段;图中时间均为北京时,下同

    Figure  1.  Temporal variations of (a) visibility (vis), relative humidity (RH), (b) temperature (t), pressure (p), (c) wind speed (WS), and wind direction (WD) in the Nanjing radiation fog during December 10–11, 2007. I, II, and III represent the burst reinforcement phase, mature phase, and rapid dissipation phase, respectively; BJT means Beijing time, the same below

    图  2  2007年12月10~11日南京辐射雾过程中微物理量(a)数浓度(n)、(b)液态含水量(LWC)、(c)体积平均半径(rv)随时间的变化

    Figure  2.  Temporal variations of microphysical parameters (a) number concentration (n), (b) liquid water content (LWC), and (c) volume-mean radius (rv) in the Nanjing radiation fog during December 10–11, 2007

    图  3  2007年12月10~11日南京辐射雾过程中(a)体积平均半径(rv)与数浓度(n),(b)rv与含水量(LWC)之间的相关关系

    Figure  3.  Correlations between (a) volume-mean radius (rv) and number concentration (n), (b) rv and liquid water content (LWC) in the Nanjing radiation fog during December 10–11, 2007

    图  4  2007年12月10~11日南京辐射雾过程中成熟阶段系留气艇上升和下降时(a)相对湿度(RH)、(b)温度(t)、(c)风速(WS)和(d)水汽混合比(MR)随高度(alt)的变化

    Figure  4.  Variations of (a) relative humidity (RH), (b) temperature (t), (c) wind speed (WS), and (d) mixing ratio (MR) with altitude (alt) when the balloon ascended and descended in the mature phase in the Nanjing radiation fog during December 10–11, 2007

    图  5  2007年12月10~11日南京辐射雾过程08:30~09:00湍流能谱密度随无因次频率的变化.u、v、w分别代表水平纵向、水平横向和垂直三个方向

    Figure  5.  Turbulence energy spectral densities as a function of the normalized frequency during 8:30–9:00 in the Nanjing radiation fog during December 10–11, 2007. The symbols u, v, and w represent the horizontal longitudinal, horizontal transverse, and vertical directions, respectively

    图  6  2006年和2007年9次浓雾过程中不同阶段体积平均半径(rv)与含水量(LWC)之间的相关关系

    Figure  6.  Correlations between the volume-mean radius (rv) and liquid water content (LWC) during different phases in nine dense fog cases in 2006 and 2007

    表  1  观测仪器及观测项目概况

    Table  1.   List of instruments and items during the experiment

    观测仪器仪器生产商直接观测项目架设高度
    能见度仪ZQZ-DN2江苏无线电科学研究所水平能见距离(1 min)1.5 m
    雾滴谱仪FM-100美国DMT雾滴直径、数浓度、含水量(1 Hz)1 m
    系留气艇DigiCORA芬兰Vaisala气温、气压、相对湿度、风速、风向、混合比廓线(1 Hz)-
    超声风速仪CSAT3美国Campbell三维风速、超声虚温(10 Hz)3 m
    自动气象站澳大利亚ICT气温、气压、相对湿度、风速、风向(1 min)1.5 m
    下载: 导出CSV

    表  2  2006年和2007年9次浓雾过程

    Table  2.   Nine dense fog cases in 2006 and 2007

    序号 雾过程 形成时间 消散时间 持续时间
    1 2006年12月24~27日 22:08 14:14 64 h 6 min
    2 20071年2月10~11日 22:31 12:30 14 h
    3 2007年12月13~14日 21:55 11:20 13 h 25 min
    4 2007年12月14~15日 20:51 11:46 14 h 55 min
    5 2007年12月18日 02:28 11:11 8 h 43 min
    6 2007年12月18~19日 16:07 12:28 20 h 21 min
    7 2007年12月19~20日 16:37 16:11 23 h 34 min
    8 2007年12月20~21日 17:48 19:06 25 h 18 min
    9 2007年12月23日 01:17 05:28 4 h 11 min
    下载: 导出CSV
  • [1] Baker M B, Latham J. 1979. The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds [J]. J. Atmos. Sci., 36(8): 1612−1615. doi:10.1175/1520-0469(1979)036<1612:teodsa>2.0.co;2
    [2] Baker M B, Corbin R G, Latham J. 1980. The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing [J]. Quart. J. Roy. Meteor. Soc., 106(449): 581−598. doi: 10.1002/qj.49710644914
    [3] 鲍宝堂, 束家鑫, 朱炳权. 1995. 上海城市雾理化特性的研究 [J]. 南京气象学院学报, 18(1): 114−118.

    Bao Baotang, Shu Jiaxin, Zhu Bingquan. 1995. Study on physicochemical properties of urban fog Shanghai [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 18(1): 114−118.
    [4] Burnet F, Brenguier J L. 2007. Observational study of the entrainment-mixing process in warm convective clouds [J]. J. Atmos. Sci., 64(6): 1995−2011. doi: 10.1175/jas3928.1
    [5] Champagne F H, Friehe C A, Larue J C, et al. 1977. Flux measurements, flux estimation techniques, and fine-scale turbulence measurements in the unstable surface layer over land [J]. J. Atmos. Sci., 34(3): 515−530. doi:10.1175/1520-0469(1977)034<0515:fmfeta>2.0.co;2
    [6] Chosson F, Brenguier J L, Schüller L. 2007. Entrainment-mixing and radiative transfer simulation in boundary layer clouds [J]. J. Atmos. Sci., 64(7): 2670−2682. doi: 10.1175/jas3975.1
    [7] Collett J L, Sherman D E, Moore K F, et al. 2001. Aerosol particle processing and removal by fogs: Observations in chemically heterogeneous central California radiation fogs [J]. Water, Air and Soil Pollution: Focus, 1(5–6): 303−312. doi: 10.1023/A:1013175709931
    [8] Cooper W A, Lasher-Trapp S G, Blyth A M. 2013. The influence of entrainment and mixing on the initial formation of rain in a warm cumulus cloud [J]. J. Atmos. Sci., 70(6): 1727−1743. doi: 10.1175/jas-d-12-0128.1
    [9] Freud E, Rosenfeld D, Kulkarni J R. 2011. Resolving both entrainment-mixing and number of activated CCN in deep convective clouds [J]. Atmos. Chem. Phys., 11(24): 12887−12900. doi: 10.5194/acp-11-12887-2011
    [10] Fuzzi S, Facchini M C, Orsi G, et al. 1992. The po valley fog experiment 1989 [J]. Tellus B, 44(5): 448−468. doi: 10.3402/tellusb.v44i5.15561
    [11] Fuzzi S, Laj P, Ricci L, et al. 1998. Overview of the Po valley fog experiment 1994 (CHEMDROP) [J]. Contrib. Atmos. Phys., 71(1): 3−19.
    [12] Gao S N, Lu C S, Liu Y G, et al. 2020. Contrasting scale dependence of entrainment-mixing mechanisms in stratocumulus clouds [J]. Geophys. Res. Lett., 47(9): e2020GL086970. doi: 10.1029/2020gl086970
    [13] Gerber H E, Frick G M, Jensen J B, et al. 2008. Entrainment, mixing, and microphysics in trade-wind cumulus [J]. J. Meteor. Soc. Japan., 86A: 87−106. doi: 10.2151/jmsj.86a.87
    [14] Gerber H, Frick G, Malinowski S P, et al. 2013. Entrainment rates and microphysics in POST stratocumulus [J]. J. Geophys. Res. Atmos., 118(21): 12094−12109. doi: 10.1002/jgrd.50878
    [15] Gultepe I, Tardif R, Michaelides S C, et al. 2007. Fog research: A review of past achievements and future perspectives [J]. Pure Appl. Geophys., 164(6-7): 1121−1159. doi: 10.1007/s00024-007-0211-x
    [16] Gultepe I, Pearson G, Milbrandt J A, et al. 2009. The fog remote sensing and modeling field project [J]. Bull. Amer. Meteor. Soc., 90(3): 341−360. doi: 10.1175/2008bams2354.1
    [17] 郭恩铭, 俞香仁, 李炎辉, 等. 1989. 双流机场雾宏、微观结构研究[C]//全国云物理和人工影响天气会议文集. 北京: 气象出版社, 35–38.

    Guo Enming, Yu Xiangren, Li Yanhui, et al. 1989. Study of macro-and micro-physical structure of Shuangliu Airport[C]//National Conference on Cloud Physics and Weather Modification (in Chinese). Beijing: China Meteorological Press, 35–38.
    [18] Guo L J, Guo X L, Fang C G, et al. 2015. Observation analysis on characteristics of formation, evolution and transition of a long-lasting severe fog and haze episode in North China [J]. Science China Earth Sciences, 58(3): 329−344. doi: 10.1007/s11430-014-4924-2
    [19] Haeffelin M, Bergot T, Elias T, et al. 2010. Parisfog: Shedding new light on fog physical processes [J]. Bull. Amer. Meteor. Soc., 91(6): 767−783. doi: 10.1175/2009bams2671.1
    [20] Hoffmann F, Feingold G. 2019. Entrainment and mixing in stratocumulus: Effects of a new explicit subgrid-scale scheme for large-eddy simulations with particle-based microphysics [J]. J. Atmos. Sci., 76(7): 1955−1973. doi: 10.1175/jas-d-18-0318.1
    [21] 胡朝霞, 雷恒池, 董剑希, 等. 2011. 一次区域暖雾的特征分析及数值模拟 [J]. 气候与环境研究, 16(1): 71−84. doi: 10.3878/j.issn.1006-9585.2011.01.07

    Hu Zhaoxia, Lei Hengchi, Dong Jianxi, et al. 2011. Characteristic analysis and numerical simulation of a regional warm fog event [J]. Climatic and Environmental Research (in Chinese), 16(1): 71−84. doi: 10.3878/j.issn.1006-9585.2011.01.07
    [22] 黄玉生, 许文荣, 李子华, 等. 1992. 西双版纳地区冬季辐射雾的初步研究 [J]. 气象学报, 50(1): 112−117. doi: 10.11676/qxxb1992.013

    Huang Yusheng, Xu Wenrong, Li Zihua, et al. 1992. An observation and analysis on the radiation fog in Xishuangbanna [J]. Acta Meteor. Sinica (in Chinese), 50(1): 112−117. doi: 10.11676/qxxb1992.013
    [23] Jeffery C A. 2007. Inhomogeneous cloud evaporation, invariance, and Damkö hler number [J]. J. Geophys. Res. Atmos., 112(D24): D24S21. doi: 10.1029/2007jd008789
    [24] Jensen J B, Austin P H, Baker M B, et al. 1985. Turbulent mixing, spectral evolution and dynamics in a warm cumulus cloud [J]. J. Atmos. Sci., 42(2): 173−192. doi:10.1175/1520-0469(1985)042<0173:tmsead>2.0.co;2
    [25] Jia X C, Quan J N, Zheng Z Y, et al. 2019. Impacts of anthropogenic aerosols on fog in North China Plain [J]. J. Geophys. Res. Atmos., 124(1): 252−265. doi: 10.1029/2018jd029437
    [26] Kim B G, Miller M A, Schwartz S E, et al. 2008. The role of adiabaticity in the aerosol first indirect effect [J]. J. Geophys. Res. Atmos., 113(D5): D05210. doi: 10.1029/2007jd008961
    [27] Krueger S K. 1993. Linear eddy modeling of entrainment and mixing in stratus clouds [J]. J. Atmos. Sci., 50(18): 3078−3090. doi:10.1175/1520-0469(1993)050<3078:lemoea>2.0.co;2
    [28] Kumar B, Schumacher J, Shaw R A. 2013. Cloud microphysical effects of turbulent mixing and entrainment [J]. Theor. Comput. Fluid Dyn., 27(3-4): 361−376. doi: 10.1007/s00162-012-0272-z
    [29] Kumar B, Gö tzfried P, Suresh N, et al. 2018. Scale dependence of cloud microphysical response to turbulent entrainment and mixing [J]. Journal of Advances in Modeling Earth Systems, 10(11): 2777−2785. doi: 10.1029/2018ms001487
    [30] Latham J, Reed R L. 1977. Laboratory studies of the effects of mixing on the evolution of cloud droplet spectra [J]. Quart. J. Roy. Meteor. Soc., 103(436): 297−306. doi: 10.1002/qj.49710343607
    [31] Lehmann K, Siebert H, Shaw R A. 2009. Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure [J]. J. Atmos. Sci., 66(12): 3641−3659. doi: 10.1175/2009jas3012.1
    [32] 李子华, 彭中贵. 1994. 重庆市冬季雾的物理化学特性 [J]. 气象学报, 52(4): 477−483. doi: 10.11676/qxxb1994.058

    Li Zihua, Peng Zhonggui. 1994. Physical and chemical characteristics of the Chongqing winter fog [J]. Acta Meteor. Sinica (in Chinese), 52(4): 477−483. doi: 10.11676/qxxb1994.058
    [33] 李子华, 刘端阳, 杨军. 2011. 辐射雾雾滴谱拓宽的微物理过程和宏观条件 [J]. 大气科学, 35(1): 41−54. doi: 10.3878/j.issn.1006-9895.2011.01.04

    Li Zihua, Liu Duanyang, Yang Jun. 2011. The microphysical processes and macroscopic conditions of the radiation fog droplet spectrum broadening [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(1): 41−54. doi: 10.3878/j.issn.1006-9895.2011.01.04
    [34] 李子华, 黄建平, 周毓荃, 等. 1999. 1996年南京连续5天浓雾的物理结构特征 [J]. 气象学报, 57(5): 622−631. doi: 10.11676/qxxb1999.060

    Li Zihua, Huang Jianping, Zhou Yuquan, et al. 1999. Physical structures of the five-day sustained fog around Nanjing in 1996 [J]. Acta Meteor. Sinica (in Chinese), 57(5): 622−631. doi: 10.11676/qxxb1999.060
    [35] 李子华, 杨军, 石春娥, 等. 2008. 地区性浓雾物理[M]. 北京: 气象出版社, 1–14.

    Li Zihua, Yang Jun, Shi Chune, et al. 2008. The Physics of Regional Dense Fog (in Chinese)[M]. Beijing: China Meteorological Press, 1–14.
    [36] Li Z H, Liu D Y, Yan W L, et al. 2019. Dense fog burst reinforcement over Eastern China: A review [J]. Atmos. Res., 230: 104639. doi: 10.1016/j.atmosres.2019.104639
    [37] 刘端阳. 2011. 南京冬季雾宏微观物理结构的观测研究[D]. 南京信息工程大学博士学位论文.

    Liu Duanyang. 2011. Observational study on the winter fog macro-micro-physical structures in Nanjing[D]. Ph. D. dissertation (in Chinese), Nanjing University of Information Science and Technology.
    [38] Liu Y G, Daum P H, McGraw R. 2004. An analytical expression for predicting the critical radius in the autoconversion parameterization [J]. Geophys. Res. Lett., 31(6): L06121. doi: 10.1029/2003gl019117
    [39] Liu Y G, Daum P H, McGraw R L. 2005. Size truncation effect, threshold behavior, and a new type of autoconversion parameterization [J]. Geophys. Res. Lett., 32(11): L11811. doi: 10.1029/2005gl022636
    [40] 刘树华, 刘和平, 李洁, 等. 2005. 在ebex-2000实验资料中湍流耗散率、长度尺度和结构参数特征 [J]. 大气科学, 29(3): 475−481. doi: 10.3878/j.issn.1006-9895.2005.03.15

    Liu Shuhua, Liu Heping, Li Jie, et al. 2005. Characteristics of turbulence dissipation rates, characteristic length scales and structure parameters in EBEX-2000 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(3): 475−481. doi: 10.3878/j.issn.1006-9895.2005.03.15
    [41] Liu Y G, Daum P H, McGraw R, et al. 2006. Generalized threshold function accounting for effect of relative dispersion on threshold behavior of autoconversion process [J]. Geophys. Res. Lett., 33(11): L11804. doi: 10.1029/2005gl025500
    [42] 刘端阳, 濮梅娟, 杨军, 等. 2009. 2006年12月南京连续4天浓雾的微物理结构及演变特征 [J]. 气象学报, 67(1): 147−157. doi: 10.3321/j.issn:0577-6619.2009.01.015

    Li Duanyang, Pu Meijuan, Yang Jun, et al. 2009. Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006 [J]. Acta Meteor. Sinica, 67(1): 147−157. doi: 10.3321/j.issn:0577-6619.2009.01.015
    [43] Liu D Y, Yang J, Niu S J, et al. 2011. On the evolution and structure of a radiation fog event in nanjing [J]. Adv. Atmos. Sci., 28(1): 223−237. doi: 10.1007/s00376-010-0017-0
    [44] Liu D Y, Niu S J, Yang J, et al. 2012. Summary of a 4-year fog field study in northern nanjing, part 1: Fog boundary layer [J]. Pure Appl. Geophys., 169(5-6): 809−819. doi: 10.1007/s00024-011-0343-x
    [45] 陆春松. 2013. 雾和低云主要宏微观物理过程的研究[D]. 南京信息工程大学博士学位论文.

    Lu Chunsong. 2013. Investigation of main macro and micro physical processes in fogs and low-level clouds[D]. Ph. D. dissertation (in Chinese), Nanjing University of Information Science and Technology.
    [46] Lu C S, Liu Y G, Niu S J. 2011. Examination of turbulent entrainment-mixing mechanisms using a combined approach [J]. J. Geophys. Res. Atmos., 116(D20): D20207. doi: 10.1029/2011jd015944
    [47] Lu C S, Liu Y G, Niu S J. 2013. A method for distinguishing and linking turbulent entrainment mixing and collision-coalescence in stratocumulus clouds [J]. Chin. Sci. Bull., 58(4-5): 545−551. doi: 10.1007/s11434-012-5556-6
    [48] 陆春松, 牛生杰, 杨军, 等. 2010. 南京冬季一次雾过程宏微观结构的突变特征及成因分析 [J]. 大气科学, 34(4): 681−690. doi: 10.3878/j.issn.1006-9895.2010.04.02

    Lu Chunsong, Niu Shengjie, Yang Jun, et al. 2010. Jump features and causes of macro and microphysical structures of a winter fog in Nanjing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(4): 681−690. doi: 10.3878/j.issn.1006-9895.2010.04.02
    [49] 陆春松, 牛生杰, 岳平, 等. 2011. 南京冬季雾多发期边界层结构观测分析 [J]. 大气科学学报, 34(1): 58−65. doi: 10.3969/j.issn.1674-7097.2011.01.008

    Lu Chunsong, Niu Shengjie, Yue Ping, et al. 2011. Observational research on boundary layer structure during high incidence period of winter fog in Nanjing [J]. Transactions of Atmospheric Sciences (in Chinese), 34(1): 58−65. doi: 10.3969/j.issn.1674-7097.2011.01.008
    [50] Lu C S, Liu Y G, Niu S J, et al. 2013. Exploring parameterization for turbulent entrainment-mixing processes in clouds [J]. J. Geophys. Res. Atmos., 118(1): 185−194. doi: 10.1029/2012jd018464
    [51] Lu C S, Liu Y G, Niu S J, et al. 2013. Examination of microphysical relationships and corresponding microphysical processes in warm fogs [J]. Acta Meteor. Sinica, 27(6): 832−848. doi: 10.1007/s13351-013-0610-0
    [52] Lu C S, Liu Y G, Niu S J, et al. 2014. Scale dependence of entrainment-mixing mechanisms in cumulus clouds [J]. J. Geophys. Res. Atmos., 119(24): 13877−13890. doi: 10.1002/2014jd022265
    [53] Lu C S, Liu Y G, Niu S J, et al. 2018. Broadening of cloud droplet size distributions and warm rain initiation associated with turbulence: An overview [J]. Atmos. Oceanic Sci. Lett., 11(2): 123−135. doi: 10.1080/16742834.2018.1410057
    [54] Lu C S, Liu Y G, Zhu B, et al. 2018. On which microphysical time scales to use in studies of entrainment-mixing mechanisms in clouds [J]. J. Geophys. Res. Atmos., 123(7): 3740−3756. doi: 10.1002/2017jd027985
    [55] Luo S, Lu C S, Liu Y G, et al. 2020. Parameterizations of entrainment-mixing mechanisms and their effects on cloud droplet spectral width based on numerical simulations [J]. J. Geophys. Res. Atmos., 125(22): e2020JD032972. doi: 10.1029/2020jd032972
    [56] Niu S J, Lu C S, Liu Y G, et al. 2010. Analysis of the microphysical structure of heavy fog using a droplet spectrometer: A case study [J]. Adv. Atmos. Sci., 27(6): 1259−1275. doi: 10.1007/s00376-010-8192-6
    [57] Niu S J, Lu C S, Yu H Y, et al. 2010. Fog research in China: An overview [J]. Adv. Atmos. Sci., 27(3): 639−662. doi: 10.1007/s00376-009-8174-8
    [58] Niu S J, Liu D Y, Zhao L J, et al. 2012. Summary of a 4-year fog field study in northern nanjing. Part II: Fog microphysics [J]. Pure Appl. Geophys., 169(5-6): 1137−1155. doi: 10.1007/s00024-011-0344-9
    [59] Pilié R J, Mack E J, Kocmond W C, et al. 1975. The life cycle of valley fog. Part I: Micrometeorological characteristics [J]. J. Appl. Meteor. Climatol., 14(3): 347−363. doi:10.1175/1520-0450(1975)014<0347:tlcovf>2.0.co;2
    [60] Roach W T, Brown R, Caughey S J, et al. 1976. The physics of radiation fog: I. A field study [J]. Quart. J. Roy. Meteor. Soc., 102(432): 313−333.doi. doi: 10.1002/qj.49710243204
    [61] Stommel H. 1947. Entrainment of air into a cumulus cloud [J]. J. Atmos. Sci., 4(3): 91−94. doi:10.1175/1520-0469(1947)004<0091:eoaiac>2.0.co;2
    [62] Stull R B. 1988. An Introduction to Boundary Layer Meteorology [M]. Dordrecht: Springer, 312–318. doi: 10.1007/978-94-009-3027-8
    [63] Taylor M G I. 1917. The formation of fog and mist [J]. Quart. J. Roy. Meteor. Soc., 43(183): 241−268. doi: 10.1002/qj.49704318302
    [64] Telford J W. 1996. Clouds with turbulence; the role of entrainment [J]. Atmos. Res., 40(2-4): 261−282. doi: 10.1016/0169-8095(95)00038-0
    [65] Telford J W, Chai S K. 1993. Marine fog and its dissipation over warm water [J]. J. Atmos. Sci., 50(19): 3336−3349. doi:10.1175/1520-0469(1993)050<3336:mfaido>2.0.co;2
    [66] 王介民, 刘晓虎, 祁永强. 1990. 应用涡旋相关方法对戈壁地区湍流输送特征的初步研究 [J]. 高原气象, 9(2): 120−129.

    Wang Jiemin, Liu Xiaohu, Qi Yongqiang. 1990. A preliminary study of turbulence transfer characteristics in gobi area with an eddy correlation technique [J]. Plateau Meteorology (in Chinese), 9(2): 120−129.
    [67] Wang J, Daum P H, Yum S S, et al. 2009. Observations of marine stratocumulus microphysics and implications for processes controlling droplet spectra: Results from the marine stratus/stratocumulus experiment [J]. J. Geophys. Res. Atmos., 114(D18): D18210. doi: 10.1029/2008jd011035
    [68] Warner J. 1973. The microstructure of cumulus cloud: Part IV. The effect on the droplet spectrum of mixing between cloud and environment [J]. J. Atmos. Sci., 30(2): 256−261. doi:10.1175/1520-0469(1973)030<0256:tmoccp>2.0.co;2
    [69] 吴兑, 邓雪娇, 毛节泰, 等. 2007. 南岭大瑶山高速公路浓雾的宏微观结构与能见度研究 [J]. 气象学报, 65(3): 406−415. doi: 10.3321/j.issn:0577-6619.2007.03.009

    Wu Dui, Deng Xuejiao, Mao Jietai, et al. 2007. A study on macro-and micro-structures of heavy fog and visibility at freeway in the Nanling Dayaoshan Mountain [J]. Acta Meteor. Sinica (in Chinese), 65(3): 406−415. doi: 10.3321/j.issn:0577-6619.2007.03.009
    [70] Yang Y, Gao S H. 2020. The impact of turbulent diffusion driven by fog-top cooling on sea fog development [J]. J. Geophys. Res. Atmos., 125(4): e2019JD031562. doi: 10.1029/2019jd031562
    [71] Yum S S. 1998. Cloud droplet spectral broadening in warm clouds: An observational and model study [D]. Ph. D. dissertation, University of Nevada, 191pp.
    [72] Yum S S, Wang J, Liu Y G, et al. 2015. Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the vocals project [J]. J. Geophys. Res. Atmos., 120(10): 5047−5069. doi: 10.1002/2014jd022802
    [73] 中国气象局. 2003. 地面气象观测规范[M]. 北京: 气象出版社, 23–25.

    China Meteorological Administration.2003. Specifications for Surface Meteorological Observation (in Chinese)[M]. Beijing: China Meteorological Press, 23–25.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  17
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-05
  • 录用日期:  2021-03-26
  • 网络出版日期:  2021-06-03

目录

    /

    返回文章
    返回