高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“暖北极—冷欧亚”模态的年代际变化及其与北大西洋海温的联系

王婧 吕俊梅

王婧, 吕俊梅. 2021. “暖北极—冷欧亚”模态的年代际变化及其与北大西洋海温的联系[J]. 大气科学, 45(4): 915−930 doi: 10.3878/j.issn.1006-9895.2103.20205
引用本文: 王婧, 吕俊梅. 2021. “暖北极—冷欧亚”模态的年代际变化及其与北大西洋海温的联系[J]. 大气科学, 45(4): 915−930 doi: 10.3878/j.issn.1006-9895.2103.20205
WANG Jing, LÜ Junmei. 2021. Interdecadal Variation of the Warm Arctic–Cold Eurasia Mode and Its Association with North Atlantic Sea Surface Temperature [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 915−930 doi: 10.3878/j.issn.1006-9895.2103.20205
Citation: WANG Jing, LÜ Junmei. 2021. Interdecadal Variation of the Warm Arctic–Cold Eurasia Mode and Its Association with North Atlantic Sea Surface Temperature [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 915−930 doi: 10.3878/j.issn.1006-9895.2103.20205

“暖北极—冷欧亚”模态的年代际变化及其与北大西洋海温的联系

doi: 10.3878/j.issn.1006-9895.2103.20205
基金项目: 中国科学院战略性先导科技专项XDA20100300,中国气象科学研究院基本科研业务项目2019Z008
详细信息
    作者简介:

    王婧,女,1996年出生,硕士研究生,主要从事气候异常机理研究,E-mail: janicewjing@163.com

    通讯作者:

    吕俊梅,E-mail: lvjm@cma.gov.cn

  • 中图分类号: P461

Interdecadal Variation of the Warm Arctic–Cold Eurasia Mode and Its Association with North Atlantic Sea Surface Temperature

Funds: Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA20100300), Scientific Research of Chinese Academy of Meteorological Sciences (Grant 2019Z008)
  • 摘要: 本文利用美国航空航天局戈达德空间研究所地表气温、美国国家海洋和大气局—环境科学协作研究所20世纪再分析资料,以及第六次国际耦合模式比较计划的多模式Historical试验结果,去除外强迫影响后,研究1910/1911~2019/2020年冬季(DJF)欧亚中高纬地区“暖北极—冷欧亚”(WACE)模态的年代际变化特征及其物理原因。结果表明:WACE具有显著的年代际变化,在WACE正位相时期,乌拉尔阻塞发生频率偏高,有利于热量向极区输送使得极区出现异常暖平流,且水汽向极区输送导致极区水汽辐合,向下长波辐射增加,另外对流活动增强导致潜热释放,进而极区温度上升。与此同时,极涡及欧亚大陆西风减弱且乌拉尔阻塞发生频率偏高,有利于冷空气侵袭欧亚大陆造成异常冷平流,且欧亚地区水汽辐散,向下长波辐射减少,对流活动减弱进而潜热释放减少,导致欧亚大陆温度降低。最后利用CAM3.0大气环流模式模拟了北大西洋海温正异常对WACE的影响,模式结果与统计结果相符合,进一步说明了北大西洋海温正异常可以通过强迫低层与高层大气环流异常,导致极区水汽辐合,欧亚大陆水汽辐散,进而影响WACE的年代际变化。
  • 图  1  CMIP6模式Historical试验集合平均(蓝色实线)与观测(黑色实线)的(a)1910/1911~2019/2020年冬季全球平均地表气温距平(单位:°C)与(b)1910/1911~2013/2014年冬季全球平均海温距平(单位:°C)的3年滑动平均。距平参考时段为1960/1961~1989/1990年冬季

    Figure  1.  Time series of CMIP6 models’ ensemble mean (blue solid lines) and the observed anomalies (black solid lines) of (a) three-year moving average of global mean surface air temperature (SAT, units: °C) during boreal winter of 1910/1911–2019/2020, and (b) three-year moving average of sea surface temperature (SST, units: °C) during boreal winter of 1910/1911–2013/2014. The anomalies reference period is 1960/1961–1989/1990 winter

    图  2  (a–d)1910/1911~2019/2020年GISS观测资料、(e–h)1910/1911~2013/2014年20CR再分析资料的冬季地表气温距平场经验正交分解(EOF)的(a、e)第一模态及(b、f)主成分(PC1)、(c、g)第二模态及(d、h)主成分(PC2)

    Figure  2.  (a, e) The first mode and (b, f) time coefficient (PC1), and (c, g) the second mode and (d, h) time coefficient (PC2) of EOF for surface air temperature anomalies in boreal winter obtained from (a–d) GISS (Goddard Institute for Space Studies) observation data for period of 1910/1911–2019/2020, (e–h) 20CR (Twentieth Century Reanalysis) reanalysis data for the period of 1910/1911–2013/2014

    图  3  1910/1911~2019/2020年GISS资料计算的(a)冬季WACE指数墨西哥帽小波变换系数(蓝色实线)和(b)小波全谱(蓝色实线)。水平黑色点划线表示显著振荡周期。图a中黑色粗实线表示小波变换系数通过0.1显著性水平的白噪音检验,黑色细实线两侧区域表示边界效应影响域。图b中橙色虚线表示白噪音检验的0.1显著性水平线

    Figure  3.  (a) Wavelet analysis of Mexican cap WACE (Warm Arctic–Cold Eurasia) index (blue solid lines) and (b) the global wavelet power spectrum (blue solid line) calculated from GISS datasets during boreal winter for the period of 1910/1911–2019/2020. The black horizontal dotted-dashed lines indicate the significant oscillation periods. In Fig. a, the black thick lines indicate passing the white noise test at 0.1 significance level, the regions on both sides of the black thin solid lines represent the area with boundary effect. In Fig. b, the orange dotted line indicates the 0.1 significance level for white noise test

    图  4  1910/1911~2019/2020年冬季(a)WACE指数(黑色曲线)及11年滑动平均(橙色曲线),(b)WACE指数的11年滑动t检验(蓝色曲线),黑色水平实线为0.1显著性水平线

    Figure  4.  (a) The WACE index (black line) and 11-year moving average (orange line) and (b) 11-yr moving t-test of WACE index during boreal winter from 1910/1911 to 2019/2020. In Fig. b, the black solid line is the significance level at 0.1

    图  5  冬季WACE正、负位相的差值:(a)200 hPa位势高度场(阴影,单位:gpm)、200 hPa风场(矢量箭头,单位:m s−1)和500 hPa位势高度场(等值线,单位:gpm);(b)海平面气压(阴影,单位:Pa)、850 hPa风场(矢量箭头,单位:m s−1)。图a、b中的打点区域表示200 hPa位势高度场、海平面气压通过0.1显著性水平的t检验;紫色等值线表示500 hPa位势高度通过0.1显著性水平的t检验;风场只绘制出纬向风通过0.1显著性水平的t检验部分

    Figure  5.  Differences between positive and negative phases of WACE in winter: (a) 200-hPa geopotential height field (shadings, units: gpm), 200-hPa wind field (vector arrows, units: m s−1), and 500-hPa geopotential height field (contours, units: gpm); (b) sea level pressure (shadings, units: Pa) and 850-hPa wind field (vector arrows, units: m s−1). In Figs. a, b, the black dots areas indicate 200-hPa geopotential height field, sea level pressure passed the t-test at 0.1 significance level, and the purple contours areas indicate 500-hPa geopotential height field passed the t-test at 0.1 significance level, only the zonal wind field passed the t-test at 0.1 significance level are drew

    图  6  冬季WACE正、负位相时期的差值:(a)950 hPa温度平流(单位:10−5 K s−1)、(b)950 hPa垂直运动导致的温度变化(单位:10−5 K s−1)、(c)地表感热通量(单位:W s−1)、(d)地表潜热通量(单位:W s−1)、(e)地表净长波辐射通量(单位:W s−1)、(f)地表净短波辐射通量(单位:W s−1)、(g)整层(1000~300 hPa)水汽通量(箭头,单位:kg m−1 s−1)及散度(阴影,单位:10−6 kg m−2 s−1)、(h)地表降水率(单位:mm s−1)。打点区域通过0.1显著性水平的t检验

    Figure  6.  Differences between positive and negative phases of WACE in winter: (a) 950-hPa temperature advection (units: 10−5 K s−1); (b) 950-hPa temperature change (units: 10−5 K s−1) due to vertical motion; (c) surface sensible heat fluxes (units: W s−1); (d) surface latent heat fluxes (units: W s−1); (e) net surface long-wave radiation fluxes (units: W s−1); (f) net surface short-wave radiation fluxes (units: W s−1); (g) water vapor fluxes (arrows, units: kg m−1 s−1) in the whole layer and their divergences (shadings, units: 10−6 kg m−2 s−1); (h) surface precipitation rate (units: mm s−1). The black dots area passed the t-test at 0.1 significance level

    图  7  冬季WACE正、负位相时期阻塞发生频率(单位:d−1)差值,阴影区域通过0.1显著性水平的t检验

    Figure  7.  Differences between positive and negative phases of WACE in blocking frequency (units: d−1) during boreal winter, the shaded area passed the t-test at 0.1 significance level

    图  8  1910/1911~2013/2014年(a)21年滑动平均的WACE指数与冬季海温相关系数,(b)21年滑动平均的WACE指数(橙色实线)、北大西洋区域1(图a上方蓝色矩形区域,50°~60°N,60°~20°W)与区域2(图a下方蓝色矩形区域,25°~32°N,55°~45°W)平均的去趋势后的北大西洋海温指数(NAS,灰色实线)、21年滑动平均的NAS指数(红色实线)、11年滑动平均的NAS指数(蓝色实线)。图a中,打点区域通过0.1显著性水平的t检验

    Figure  8.  (a) Correlation coefficients between WACE index and winter sea surface temperature after the 21-yr moving average, (b) WACE index (solid orange line) after the 21-yr moving average, sea surface temperature index (solid gray line) of the North Atlantic (NAS) averaged in region 1 (50°–60°N, 60°–20°W) and region 2 (25°–32°N, 55°–45°W) after the trend was removed, NAS (solid red line) after the 21-yr moving average, NAS (solid red line) after the 11-yr moving average from 1910/1911 to 2013/2014. In Fig. a, the dotted area passed the t-test at 0.1 significance level

    图  9  (a)叠加在气候态(1949~2001)海温上的冬季海温异常强迫(单位:K)及(b)模式模拟的冬季地表气温的差值(敏感性试验结果减控制试验结果,单位:K)

    Figure  9.  (a) Winter SST anomalies (units: K) forcing superimposed on SST of climatic states (1949–2001), (b) the differences (sensitivity experiment results minus control experiment results) in simulated surface air temperature (units: K)

    图  10  模式模拟的冬季(a)200 hPa水平风场(单位:m s−1)、(b)地表气压(单位:Pa)差值(敏感性试验结果减控制试验结果)

    Figure  10.  Differences (sensitivity experiment results minus control experiment results) in simulated (a) 200-hPa horizontal wind (units: m s−1), (b) surface pressure (units: Pa) in winter

    图  11  模式模拟的冬季整层(1000~300 hPa)水汽通量(箭头,单位:kg m−1 s−1)及水汽通量散度差值(敏感性试验结果减控制试验结果,阴影,单位:10−6 kg m−2 s−1

    Figure  11.  Differences (sensitivity experiment results minus control experiment results) in simulated water vapor fluxes (arrows, units: kg m−1 s−1) in the whole layer (1000–300 hPa) and their divergence (shadings, units: 10−6 kg m−2 s−1)

  • [1] Bengtsson L, Semenov V A, Johannessen O M. 2004. The early twentieth-century warming in the Arctic—A possible mechanism [J]. J. Climate, 17(20): 4045−4057. doi:10.1175/1520-0442(2004)017<4045:TETWIT>2.0.CO;2
    [2] Cohen J, Zhang X, Francis J, et al. 2020. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather [J]. Nat. Climate Chang, 10(1): 20−29. doi: 10.1038/s41558-019-0662-y
    [3] Collins W D, Rasch P J, Boville B A, et al. 2004. Description of the NCAR community atmosphere model (CAM 3.0) [R]. NCAR Tech. Rep. NCAR/TN-464+STR.
    [4] Compo G P, Whitaker J S, Sardeshmukh P D, et al. 2011. The twentieth century reanalysis project [J]. Quart. J. Roy. Meteor. Soc., 137(654): 1−28. doi: 10.1002/qj.776
    [5] Diao Y, Li J, D Luo. 2006. A new blocking index and its application: Blocking action in the Northern Hemisphere [J]. J. Climate, 19(19): 4819−4839. doi: 10.1175/JCLI3886.1
    [6] Dai A G, Fyfe J C, Xie S P, et al. 2015. Decadal modulation of global surface temperature by internal climate variability [J]. Nature Climate Change, 5(6): 555−559. doi: 10.1038/nclimate2605
    [7] Davini P, Cagnazzo C, Gualdi S, et al. 2012. Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking [J]. J. Climate, 25(19): 6496−6509. doi: 10.1175/JCLI-D-12-00032.1
    [8] 丁一汇, 王遵娅, 宋亚芳, 等. 2008. 中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系 [J]. 气象学报, 66(5): 808−825. doi: 10.3321/j.issn:0577-6619.2008.05.014

    Ding Yihui, Wang Zunya, Song Yafang, et al. 2008. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming [J]. Acta Meteorologica Sinica (in Chinese), 66(5): 808−825. doi: 10.3321/j.issn:0577-6619.2008.05.014
    [9] Dong B, Dai A G. 2015. The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe [J]. Climate Dyn., 45(9/10): 2667−2681. doi: 10.1007/s00382-015-2500-x
    [10] Graversen R G, Mauritsen T, Tjernström M, et al. 2008. Vertical structure of recent Arctic warming [J]. Nature, 451(7174): 53−56. doi: 10.1038/nature06502
    [11] 顾雷, 魏科, 黄荣辉. 2008. 2008年1月我国严重低温雨雪冰冻灾害与东亚季风系统异常的关系 [J]. 气候与环境研究, 13(4): 405−418. doi: 10.3878/j.issn.1006-9585.2008.04.06

    Gu Lei, Wei Ke, Huang Ronghui. 2008. Severe disaster of blizzard, freezing rain and low temperature in January 2008 in China and its association with the anomalies of East Asian monsoon system [J]. Climatic and Environmental Research (in Chinese), 13(4): 405−418. doi: 10.3878/j.issn.1006-9585.2008.04.06
    [12] 韩哲, 李双林, 李琛, 等. 2014. 2008年和2012年冬季欧洲气候的差异及成因 [J]. 地球物理学报, 57(3): 727−737. doi: 10.6038/cjg20140304

    Han Zhe, Li Suanglin, Li Chen, et al. 2014. The differences and causes of European climate between 2008 and 2012 winter [J]. Chinese J. Geophys. (in Chinese), 57(3): 727−737. doi: 10.6038/cjg20140304
    [13] 何金海, 武丰民, 祁莉. 2015. 秋季北极海冰与欧亚冬季气温在年代际和年际尺度上的不同联系 [J]. 地球物理学报, 58(4): 1089−1102. doi: 10.6038/cjg20150401

    He Jinhai, Wu Fengmin, Qi Li, et al. 2015. Decadal/interannual linking between autumn Arctic sea ice and following winter Eurasian air temperature [J]. Chinese J. Geophys. (in Chinese), 58(4): 1089−1102. doi: 10.6038/cjg20150401
    [14] Inoue J, Hori M E, Takaya K. 2012. The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly [J]. J. Climate, 25(7): 2561−2568. doi: 10.1175/JCLI-D-11-00449.1
    [15] Jung O, Sung M K, Sato K, et al. 2017. How does the SST variability over the western North Atlantic Ocean control Arctic warming over the Barents–Kara Seas? [J]. Environmental Research Letters, 12(3): 034021. doi: 10.1088/1748-9326/aa5f3b
    [16] Kug J S, Jeong J H, Jang Y S, et al. 2015. Two distinct influences of Arctic warming on cold winters over North America and East Asia [J]. Nature Geoscience, 8(10): 759−762. doi: 10.1038/ngeo2517
    [17] 蓝柳茹, 李栋梁. 2016. 西伯利亚高压的年际和年代际异常特征及其对中国冬季气温的影响 [J]. 高原气象, 35(3): 662−674. doi: 10.7522/j.issn.1000-0534.2016.00022

    Lan Liuru, Li Dongliang. 2016. Interannual and interdecadal anomaly features of Siberian high and their impact on winter temperature of China [J]. Plateau Meteorology (in Chinese), 35(3): 662−674. doi: 10.7522/j.issn.1000-0534.2016.00022
    [18] Lenssen N J L, Schmidt G A, Hansen J E, et al. 2019. Improvements in the GISTEMP uncertainty model [J]. J. Geophys. Res., 124(12): 6307−6326. doi: 10.1029/2018JD029522
    [19] 李崇银, 杨辉, 顾薇. 2008. 中国南方雨雪冰冻异常天气原因的分析 [J]. 气候与环境研究, 13(2): 113−122. doi: 10.3878/j.issn.1006-9585.2008.02.01

    Li Chongyin, Yang Hui, Gu Wei. 2008. Cause of severe weather with cold air, freezing rain and snow over South China in January 2008 [J]. Climatic and Environmental Research (in Chinese), 13(2): 113−122. doi: 10.3878/j.issn.1006-9585.2008.02.01
    [20] 李双林, 王彦明, 郜永祺. 2009. 北大西洋年代际振荡(AMO)气候影响的研究评述 [J]. 大气科学学报, 32(3): 458−465. doi: 10.3969/j.issn.1674-7097.2009.03.014

    Li Suanglin, Wang Yanming, Hao Yongqi. 2009. A review of the researches on the Atlantic multidecadal oscillation (AMO) and its climate influence [J]. Transactions of Atmospheric Sciences (in Chinese), 32(3): 458−465. doi: 10.3969/j.issn.1674-7097.2009.03.014
    [21] 李如琦, 唐冶, 肉孜·阿基. 2015. 2010年新疆北部暴雪异常的环流和水汽特征分析 [J]. 高原气象, 34(1): 155−162. doi: 10.7522/j.issn.1000-0534.2013.00163

    Li Ruqi, Tang Ye, Rouzi Aji. 2015. Atmospheric circulation and water vapor characteristics of snowstorm anomalies in northern Xinjiang in 2010 [J]. Plateau Meteorology (in Chinese), 34(1): 155−162. doi: 10.7522/j.issn.1000-0534.2013.00163
    [22] Liu J P, Curry J A, Wang H J, et al. 2012. Impact of declining Arctic Sea ice on winter snowfall [J]. Proceedings of the National Academy of Sciences of the United States of America, 109(11): 4074−4079. doi: 10.1073/pnas.1114910109
    [23] Luo D H, Xiao Y Q, Yao Y, et al. 2016. Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification [J]. J. Climate, 29(11): 3925−3947. doi: 10.1175/JCLI-D-15-0611.1
    [24] McCusker K E, Fyfe J C, Sigmond M. 2016. Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss [J]. Nature Geoscience, 9(11): 838−842. doi: 10.1038/ngeo2820
    [25] Miles M W, Divine D V, Furevik T, et al. 2014. A signal of persistent Atlantic multidecadal variability in Arctic Sea ice [J]. Geophys. Res. Lett., 41(2): 463−469. doi: 10.1002/2013GL058084
    [26] Mori M, Watanabe M, Shiogama H, et al. 2014. Robust Arctic Sea-ice influence on the frequent Eurasian cold winters in past decades [J]. Nature Geoscience, 7(12): 869−873. doi: 10.1038/ngeo2277
    [27] Nakanowatari T, Sato K, Inoue J. 2014. Predictability of the Barents Sea ice in early winter: Remote effects of oceanic and atmospheric thermal conditions from the North Atlantic [J]. J. Climate, 27(23): 8884−8901. doi: 10.1175/JCLI-D-14-00125.1
    [28] North G R, Bell T L, Cahalan R F, et al. 1982. Sampling errors in the estimation of empirical orthogonal functions [J]. Mon. Wea. Rev., 110(7): 699−706. doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
    [29] Overland J E, Wood K R, Wang M. 2011. Warm arctic–cold continents: Climate impacts of the newly open Arctic Sea [J]. Polar Research, 30(1): 15787. doi: 10.3402/polar.v30i0.15787
    [30] Park H S, Lee S, Son S W, et al. 2015. The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability [J]. J. Climate, 28(13): 5030−5040. doi: 10.1175/JCLI-D-15-0074.1
    [31] Petoukhov V, Semenov V A. 2010. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents [J]. J. Geophys. Res., 115(D21): D21111. doi: 10.1029/2009JD013568
    [32] 秦大河. 2018. 气候变化科学概论 [M]. 北京: 科学出版社, 467pp.

    Qin Dahe. 2018. Introduction to Climate Change Science (in Chinese) [M]. Beijing: Science Press, 467pp.
    [33] Quenouille M H. 1952. Associated Measurements [M]. New York: Academic Press, 242pp.
    [34] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J. Geophys. Res., 108(D14): 4407. doi: 10.1029/2002jd002670
    [35] Sato K, Inoue J, Watanabe M. 2014. Influence of the gulf stream on the Barents Sea ice retreat and Eurasian coldness during early winter [J]. Environmental Research Letters, 9(8): 084009. doi: 10.1088/1748-9326/9/8/084009
    [36] Sorokina S A, Li C, Wettstein J J, et al. 2016. Observed atmospheric coupling between Barents Sea ice and the warm-Arctic cold-Siberian anomaly pattern [J]. J. Climate, 29(2): 495−511. doi: 10.1175/JCLI-D-15-0046.1
    [37] Sun L T, Perlwitz J, Hoerling M. 2016. What caused the recent “warm arctic, cold continents” trend pattern in winter temperatures? [J]. Geophys. Res. Lett., 43(10): 5345−5352. doi: 10.1002/2016GL069024
    [38] Sung M K, Kim S H, Kim B M, et al. 2018. Interdecadal variability of the warm Arctic and cold Eurasia pattern and its North Atlantic origin [J]. J. Climate, 31(15): 5793−5810. doi: 10.1175/JCLI-D-17-0562.1
    [39] 唐国利, 王绍武, 闻新宇, 等. 2011. 全球平均温度序列的比较 [J]. 气候变化研究进展, 7(2): 85−89. doi: 10.3969/j.issn.1673-1719.2011.02.002

    Tang Guoli, Wang Shaowu, Wen Xinyu, et al. 2011. Comparison of global mean temperature series [J]. Advances in Climate Change Research (in Chinese), 7(2): 85−89. doi: 10.3969/j.issn.1673-1719.2011.02.002
    [40] Tang Q H, Zhang X J, Yang X H, et al. 2013. Cold winter extremes in northern continents linked to Arctic Sea ice loss [J]. Environmental Research Letters, 8(1): 014036. doi: 10.1088/1748-9326/8/1/014036
    [41] Tibaldi S, Molteni F. 1990. On the operational predictability of blocking [J]. Tellus A: Dynamic Meteorology and Oceanography, 42(3): 343−365. doi: 10.3402/tellusa.v42i3.11882
    [42] Tokinaga H, Xie S P, Mukougawa H. 2017. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability [J]. Proceedings of the National Academy of Sciences of the United States of America, 114(24): 6227−6232. doi: 10.1073/pnas.1615880114
    [43] 王遵娅, 周波涛. 2018. 影响中国北方强降雪事件年际变化的典型环流背景和水汽收支特征分析 [J]. 地球物理学报, 61(7): 2654−2666. doi: 10.6038/cjg2018L0405

    Wang Zunya, Zhou Botao. 2018. Large-scale atmospheric circulations and water vapor transport influencing interannual variations of intense snowfalls in northern China [J]. Chinese J. Geophys. (in Chinese), 61(7): 2654−2666. doi: 10.6038/cjg2018L0405
    [44] 王岱, 孙银川, 游庆龙. 2020. 太平洋年代际振荡对中国冬季最低气温年代际变化的贡献 [J]. 气候变化研究进展, 16(1): 70−77. doi: 10.12006/j.issn.1673-1719.2019.075

    Wang Dai, Sun Yinchuan, You Qinglong. 2020. Contribution of Pacific Decadal Oscillation to interdecadal variability of winter minimum temperature in China [J]. Climate Change Research (in Chinese), 16(1): 70−77. doi: 10.12006/j.issn.1673-1719.2019.075
    [45] Wegmann M, Orsolini Y, Zolina O. 2018. Warm Arctic−cold Siberia: Comparing the recent and the early 20th-century Arctic warmings [J]. Environmental Research Letters, 13(2): 025009. doi: 10.1088/1748-9326/aaa0b7
    [46] WMO. 2012. Cold spell in Europe and Asia in late winter 2011/2012 [R]. https://www.wmo.int/pages/prog/dra/eur/documents/Newsletter_1_2012/dwd_2012_report.pdf [2021-05-16]
    [47] Woods C, Caballero R. 2016. The role of moist intrusions in winter Arctic warming and sea ice decline [J]. J. Climate, 29(12): 4473−4485. doi: 10.1175/JCLI-D-15-0773.1
    [48] Woollings T, Harvey B, Masato G. 2014. Arctic warming, atmospheric blocking and cold European winters in CMIP5 models [J]. Environmental Research Letters, 9(1): 014002. doi: 10.1088/1748-9326/9/1/014002
    [49] Yang J C, Lin X P, Xie S P, et al. 2020. Synchronized tropical Pacific and extratropical variability during the past three decades [J]. Nature Climate Change, 10(5): 422−427. doi: 10.1038/s41558-020-0753-9
    [50] Yao Y, Luo D H, Dai A G, et al. 2017. Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses [J]. J. Climate, 30(10): 3549−3568. doi: 10.1175/JCLI-D-16-0261.1
    [51] 张恒德, 高守亭, 刘毅. 2008. 极涡研究进展 [J]. 高原气象, 27(2): 452−461.

    Zhang Hengde, Gao Shouting, Li Yi. 2008. Advances of research on polar vortex [J]. Plateau Meteorology (in Chinese), 27(2): 452−461.
    [52] Zhang X D, Sorteberg A, Zhang J, et al. 2008. Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system [J]. Geophys. Res. Lett., 35(22): L22701. doi: 10.1029/2008GL035607
    [53] Zhang J K, Tian W S, Chipperfield M P, et al. 2016. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades [J]. Nature Climate Change, 6(12): 1094−1099. doi: 10.1038/nclimate3136
    [54] 郑彬, 黄燕燕, 谷德军. 2019. 局地水汽异常引起的非绝热加热对2016/2017年中国南方暖冬的影响 [J]. 热带气象学报, 35(3): 289−295. doi: 10.16032/j.issn.1004-4965.2019.026

    Zheng Bin, Huang Yanyan, Gu Dejun. 2019. Effect of diabatic heating induced by regional water vapor anomalies in 2016/2017 warm winter over the south of China [J]. Journal of Tropical Meteorology (in Chinese), 35(3): 289−295. doi: 10.16032/j.issn.1004-4965.2019.026
  • 加载中
图(11)
计量
  • 文章访问数:  809
  • HTML全文浏览量:  286
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 录用日期:  2021-03-04
  • 网络出版日期:  2021-03-02
  • 刊出日期:  2021-07-20

目录

    /

    返回文章
    返回