高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分析约束的集合预报初始扰动构造方案的研究

潘贤 王秋萍 张瑜 何佩仪 马旭林

潘贤, 王秋萍, 张瑜, 等. 2021. 分析约束的集合预报初始扰动构造方案的研究[J]. 大气科学, 45(6): 1327−1344 doi: 10.3878/j.issn.1006-9895.2103.21029
引用本文: 潘贤, 王秋萍, 张瑜, 等. 2021. 分析约束的集合预报初始扰动构造方案的研究[J]. 大气科学, 45(6): 1327−1344 doi: 10.3878/j.issn.1006-9895.2103.21029
PAN Xian, WANG Qiuping, ZHANG Yu, et al. 2021. Analysis Constraints Scheme of Initial Perturbation of Ensemble Prediction [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1327−1344 doi: 10.3878/j.issn.1006-9895.2103.21029
Citation: PAN Xian, WANG Qiuping, ZHANG Yu, et al. 2021. Analysis Constraints Scheme of Initial Perturbation of Ensemble Prediction [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1327−1344 doi: 10.3878/j.issn.1006-9895.2103.21029

分析约束的集合预报初始扰动构造方案的研究

doi: 10.3878/j.issn.1006-9895.2103.21029
基金项目: 国家重点研发计划项目2018YFC1506702、2017YFC1502000
详细信息
    作者简介:

    潘贤,女,1996年出生,硕士研究生,主要从事集合预报与资料同化研究。E-mail: 20181201052@nuist.edu.cn

    通讯作者:

    马旭林,E-mail: xulinma@nuist.edu.cn

  • 中图分类号: P435.1

Analysis Constraints Scheme of Initial Perturbation of Ensemble Prediction

Funds: National Key Research and Development Program of China (Grants 2018YFC1506702, 2017YFC1502000)
  • 摘要: 集合预报初始扰动准确描述大气运动的不确定性是集合预报研究的核心问题,合理的扰动结构及振幅应能更好地反映大气运动状态的预报误差特征。随着集合扰动和资料同化的深入研究和理解,集合初始扰动方案与集合同化紧密结合协同发展。本文基于中国气象局数值预报中心自主研发的GRAPES-REPS集合预报系统,针对其初始扰动的结构和振幅与预报误差一致性较差的不合理问题,结合不同空间尺度天气系统预报误差特征,将表征预报不确定性的集合扰动与表达观测和预报不确定性的资料同化分析增量有效结合,研究提出了一种改善集合初始扰动质量的分析约束方案,以实现对集合初始扰动质量进一步改善。分析约束方案充分考虑资料同化分析增量的空间结构和量值特征,分别构造了单一定常和具有一定适应能力的两种分析约束函数,实现对初始扰动中不合理信息的识别和约束调整。试验结果表明,具有适应能力的分析约束方案对集合初始扰动具有良好的调整能力,约束后集合扰动的结构和振幅与中小尺度天气系统的预报误差更为吻合,其集合离散度和扰动能量的空间结构与演变特征更加趋于合理。分析约束方案可有效改善集合初始扰动质量及其预报性能。
  • 图  1  2015年7月14日00时(协调世界时,下同)控制预报的850 hPa风场(风矢)、位势高度(等值线,单位:gpm)和(a)位势高度、(b)温度、(c)纬向风和(d)经向风分析增量(彩色阴影)。灰色阴影为地形(下同)

    Figure  1.  The 850-hPa wind field (wind vector), geopotential height (contour, units; gpm) of the control forecast, and the analysis increments of (a) geopotential height, (b) temperature, (c) zonal wind, (d) meridional wind at 0000 UTC on 14 July 2015. Gray shadows are terrain (the same below)

    图  2  2015年7月14日00时 850 hPa单个集合成员的初始扰动与分析增量的比值:(a)纬向风;(b)经向风。2015年7月14日00时 850 hPa单个集合成员的初始扰动与分析增量的差值:(c)高度;(d)温度。等值线为控制预报的位势高度(单位:gpm),灰色阴影为地形

    Figure  2.  Ratios between the initial perturbations of an ensemble member and analysis increments on the 850-hPa wind field at 0000 UTC on 14 July 2015: (a) Zonal wind and (b) meridional wind ratios; differences between the initial perturbations of an ensemble member and analysis increments on the 850-hPa wind field at 0000 UTC on 14 July 2015 (c) height and (d) temperature deviations. The contour lines indicate geopotential height (units: gpm), the gray shadows indicate terrain

    图  3  (a)分析约束前与分析约束(b)Cons-w1试验、(c)Cons-w2试验的850 hPa经向风场初始扰动(等值线为位势高度,单位:gpm)

    Figure  3.  Initial perturbation of the 850-hPa meridional wind field (the contour lines indicate geopotential height, units: gpm) (a) without analysis constraint and Expts (b) Cons-w1 and (c) Cons-w2 with analysis constraint

    图  4  (a)分析约束前与分析约束(b)Cons-w1、(c)Cons-w2的500 hPa位势高度场初始扰动(等值线为位势高度,单位:gpm)

    Figure  4.  Initial perturbation of the 500-hPa height field (the contour lines indicate geopotential height, units: gpm) (a) without analysis constraint and Expts (b) Cons-w1 and (c) Cons-w2 with analysis constraint

    图  5  500 hPa经向风初始扰动(左列)与24 h预报扰动(右列)的水平分布:(a1,a2)REPS试验;(b1,b2)Cons-w1试验:(c1,c2)Cons-w2试验

    Figure  5.  Horizontal distribution of the 500-hPa meridional wind perturbations at initial time (left column) and 24 h forecast time (right column): (a1, a2) Expt REPS; (b1, b2) Expt Cons-w1; (c1, c2) Expt Cons-w2

    图  6  850 hPa纬向风初始扰动(左列)与24 h预报扰动(右列)的水平分布:(a1,a2)REPS;(b1,b2)Cons-w1;(c1,c2)Cons-w2

    Figure  6.  Horizontal distribution of the 850-hPa zonal wind perturbations at initial time (left column) and 24 h forecast time (right column): (a1, a2) Expt REPS; (b1, b2) Expt Cons-w1; (c1, c2) Expt Cons-w2

    图  7  温度初始扰动(左列)与24 h预报扰动(右列)沿110°E的垂直剖面:(a1,a2)REPS试验;(b1,b2)Cons-w1试验;(c1,c2)Cons-w2试验

    Figure  7.  Vertical cross sections of initial perturbations (left colum) and 24 h forecast perturbations (right column) of the temperature field along 110°E: (a1, a2) Expt REPS; (b1, b2) Expt Cons-w1; ( c1, c2) Expt Cons-w2

    图  8  经向风初始扰动(左列)与24 h预报扰动(右列)沿45°N的垂直剖面:(a1,a2)REPS试验;(b1,b2)Cons-w1试验;(c1,c2)Cons-w2试验

    Figure  8.  Vertical cross section of initial perturbations (left column) and 24 h forecast perturbations (right column) of the meridional wind along 45°N: (a1, a2) Expt REPS; (b1, b2) Expt Cons-w1; (c1, c2) Expt Cons-w2

    图  9  中纬度地区(30°N~45°N,71.5°E~133.6°E)各气压层纬向风的集合离散度随预报时间的演变:(a)REPS试验;(b)Cons-w1试验;(c)Cons-w2试验

    Figure  9.  Evolution of the ensemble spread of zonal winds in each pressure layer at middle latitudes (30°N–45°N, 71.5°E–133.6°E) with forecast time: (a) Expt REPS; (b) Expt Cons-w1; (c) Expt Cons-w2

    图  10  区域(16.5°N~58.35°N,71.5°E~133.6°E)平均的纬向风集合离散度垂直结构随预报时间的演变:(a)REPS试验;(b)Cons-w1试验;(c)Cons-w2试验

    Figure  10.  Evolution of the vertical structure of the regional averaged ensemble spread of zonal winds with forecast time (the region refers to 16.5°N–58.35°N, 71.5°E–133.6°E): (a) Expt REPS; (b) Expt Cons-w1; (c) Expt Cons-w2

    图  11  区域(16.5°N~58.35°N,71.5°E~133.6°E)平均集合扰动总能量的垂直分布:(a)REPS试验;(b)Cons-w1试验;(c)Cons-w2试验

    Figure  11.  Vertical distribution of the averaged total energy of ensemble perturbations (the region refers to 16.5°N–58.35°N, 71.5°E–133.6°E): (a) Expt REPS; (b) Expt Cons-w1; (c) Expt Cons-w2

  • [1] Bishop C H, Toth Z. 1999. Ensemble transformation and adaptive observations [J]. J. Atmos. Sci., 56(11): 1748−1765. doi:10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2
    [2] Bowler N E, Mylne K R. 2009. Ensemble transform Kalman filter perturbations for a regional ensemble prediction system [J]. Quart. J. Roy. Meteor. Soc., 135(640): 757−766. doi: 10.1002/qj.404
    [3] Buizza R, Leutbecher M, Isaksen L, et al. 2010. Combined use of EDA and SV-based perturbations in the EPS [R]. ECMWF Newsletter, No. 123.
    [4] Buizza R, Leutbecher M, Isaksen L. 2008. Potential use of an ensemble of analyses in the ECMWF ensemble prediction system [J]. Quart. J. Roy. Meteor. Soc., 134(637): 2051−2066. doi: 10.1002/qj.346
    [5] Buizza R, Palmer T N. 1995. The singular-vector structure of the atmospheric global circulation [J]. J. Atmos. Sci., 52(9): 1434−1456. doi:10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2
    [6] Caron J F. 2013. Mismatching perturbations at the lateral boundaries in limited-area ensemble forecasting: A case study [J]. Mon. Wea. Rev., 141(1): 356−374. doi: 10.1175/MWR-D-12-00051.1
    [7] 陈静, 李晓莉. 2020. GRAPES全球/区域集合预报系统10年发展回顾及展望 [J]. 气象科技进展, 10(2): 9−18,29. doi: 10.3969/j.issn.2095-1973.2020.02.003

    Chen Jing, Li Xiaoli. 2020. The review of 10 years development of the GRAPES global/regional ensemble prediction [J]. Adv. Meteor. Sci. Technol., 10(2): 9−18,29. doi: 10.3969/j.issn.2095-1973.2020.02.003
    [8] 陈静, 薛纪善, 颜宏. 2005. 一种新型的中尺度暴雨集合预报初值扰动方法研究 [J]. 大气科学, 29(5): 717−726. doi: 10.3878/j.issn.1006-9895.2005.05.05

    Chen Jing, Xue Jishan, Yan Hong. 2005. A new initial perturbation method of ensemble mesoscale heavy rain prediction [J]. Chinese Journal of Atmospheric Sciences, 29(5): 717−726. doi: 10.3878/j.issn.1006-9895.2005.05.05
    [9] Chen D H, Xue J S, Yang X S, et al. 2008. New generation of multi-scale NWP system (GRAPES): General scientific design [J]. Chinese Sci. Bull., 53(22): 3433−3445. doi: 10.1007/s11434-008-0494-z
    [10] 陈浩, 陈静, 汪娇阳, 等. 2017. 观测误差对GRAPES区域集合预报影响的敏感性试验 [J]. 大气科学学报, 40(2): 193−201. doi: 10.13878/j.cnki.dqkxxb.20151102001

    Chen Hao, Chen Jing, Wang Jiaoyang, et al. 2017. Sensitivity tests of the influence of observation mean square error on GRAPES regional ensemble prediction [J]. Trans. Atmos. Sci., 40(2): 193−201. doi: 10.13878/j.cnki.dqkxxb.20151102001
    [11] 杜钧, 陈静. 2010. 单一值预报向概率预报转变的基础: 谈谈集合预报及其带来的变革 [J]. 气象, 36(11): 1−11. doi: 10.7519/j.issn.1000-0526.2010.11.001

    Du Jun, Chen Jing. 2010. The corner stone in facilitating the transition from deterministic to probabilistic forecasts-ensemble forecasting and its impact on numerical weather prediction [J]. Meteor. Mon., 36(11): 1−11. doi: 10.7519/j.issn.1000-0526.2010.11.001
    [12] 杜钧, 邓国. 2010. 单一值预报向概率预报转变的价值: 谈谈概率预报的检验和应用 [J]. 气象, 36(12): 10−18. doi: 10.7519/j.issn.1000-0526.2010.12.002

    Du Jun, Deng Guo. 2010. The utility of the transition from deterministic to probabilistic weather forecasts-verification and application of probabilistic forecasts [J]. Meteor. Mon., 36(12): 10−18. doi: 10.7519/j.issn.1000-0526.2010.12.002
    [13] Epstein E S. 1969. Stochastic dynamic prediction [J]. Tellus, 21(6): 739−759. doi: 10.3402/tellusa.v21i6.10143
    [14] Hoffman R H, Kalnay E. 1983. Lagged average forecasting, an alternative to Monte Carlo forecasting [J]. Tellus A:Dyn. Meteor. Oceanog., 35(2): 100−118. doi: 10.3402/tellusa.v35i2.11425
    [15] Keresturi E, Wang Y, Meier F, et al. 2019. Improving initial condition perturbations in a convection-permitting ensemble prediction system [J]. Quart. J. Roy. Meteor. Soc., 145(720): 993−1012. doi: 10.1002/qj.3473
    [16] Leith C E. 1974. Theoretical skill of Monte Carlo forecasts [J]. Mon. Wea. Rev., 102(6): 409−418. doi:10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
    [17] 李晓莉, 刘永柱. 2019. GRAPES全球奇异向量方法改进及试验分析 [J]. 气象学报, 77(3): 552−562. doi: 10.11676/qxxb2019.020

    Li Xiaoli, Liu Yongzhu. 2019. The improvement of GRAPES global extratropical singular vectors and experimental study [J]. Acta Meteor. Sinica, 77(3): 552−562. doi: 10.11676/qxxb2019.020
    [18] 李晓莉, 陈静, 刘永柱, 等. 2019. GRAPES全球集合预报初始条件及模式物理过程不确定性方法研究 [J]. 大气科学学报, 42(3): 348−359. doi: 10.13878/j.cnki.dqkxxb.20190318001

    Li Xiaoli, Chen Jing, Liu Yongzhu, et al. 2019. Representations of initial uncertainty and model uncertainty of GRAPES global ensemble forecasting [J]. Trans. Atmos. Sci., 42(3): 348−359. doi: 10.13878/j.cnki.dqkxxb.20190318001
    [19] 刘永柱, 沈学顺, 李晓莉. 2013. 基于总能量模的GRAPES全球模式奇异向量扰动研究 [J]. 气象学报, 71(3): 517−526. doi: 10.11676/qxxb2013.043

    Liu Yongzhu, Shen Xueshun, Li Xiaoli. 2013. Research on the singular vector perturbation of the GRAPES global model based on the total energy norm [J]. Acta Meteor. Sinica, 71(3): 517−526. doi: 10.11676/qxxb2013.043
    [20] Lorenz E N. 1963. The predictability of hydrodynamic flow [J]. Trans. New York Acad. Sci., 25(4): 289−307. doi: 10.3402/tellusa.v21i3.10086
    [21] 马旭林, 薛纪善, 陆维松. 2008. GRAPES全球集合预报的集合卡尔曼变换初始扰动方案初步研究 [J]. 气象学报, 66(4): 526−536. doi: 10.3321/j.issn:0577-6619.2008.04.006

    Ma Xulin, Xue Jishan, Lu Weisong. 2008. Preliminary study on ensemble transform Kalman filter-based initial perturbation scheme in GRAPES global ensemble prediction [J]. Acta Meteor. Sinica, 66(4): 526−536. doi: 10.3321/j.issn:0577-6619.2008.04.006
    [22] 马旭林, 庄照荣, 薛纪善, 等. 2009. GRAPES非静力数值预报模式的三维变分资料同化系统的发展 [J]. 气象学报, 67(1): 50−60. doi: 10.3321/j.issn:0577-6619.2009.01.006

    Ma Xulin, Zhuang Zhaorong, Xue Jishan, et al. 2009. Development of 3-D variational data assimilation system for the nonhydrostatic numerical weather prediction model-GRAPES [J]. Acta Meteor. Sinica, 67(1): 50−60. doi: 10.3321/j.issn:0577-6619.2009.01.006
    [23] 马旭林, 陆续, 于月明, 等. 2014. 数值天气预报中集合-变分混合资料同化及其研究进展 [J]. 热带气象学报, 30(6): 1188−1195. doi: 10.3969/j.issn.1004-4965.2014.06.020

    Ma Xulin, Lu Xu, Yu Yueming, et al. 2014. Progress on HYBRID ensemble-variational data assimilation in numerical weather prediction [J]. J. Trop. Meteor., 30(6): 1188−1195. doi: 10.3969/j.issn.1004-4965.2014.06.020
    [24] 马旭林, 计燕霞, 周勃旸, 等. 2018. GRAPES区域集合预报尺度混合初始扰动构造的新方案 [J]. 大气科学学报, 41(2): 248−257. doi: 10.13878/j.cnki.dqkxxb.20160104001

    Ma Xulin, Ji Yanxia, Zhou Boyang, et al. 2018. A new scheme of blending initial perturbation of the GRAPES regional ensemble prediction system [J]. Trans. Atmos. Sci., 41(2): 248−257. doi: 10.13878/j.cnki.dqkxxb.20160104001
    [25] 马旭林, 张瑜, 时洋, 等. 2021. 集合预报风场扰动的物理结构及演变特征 [J]. 大气科学学报. Ma Xulin, Zhang Yu, Shi Yang, et al. 2021. The physical structures and evolution characteristics of wind perturbation in ensemble prediction [J]. Trans. Atmos. Sci. (in Chinese).
    [26] Molteni F, Buizza R, Palmer T N, et al. 1996. The ECMWF ensemble prediction system: Methodology and validation [J]. Quart. J. Roy. Meter. Soc., 122(529): 73−119. doi: 10.1002/qj.49712252905
    [27] Szunyogh I, Kostelich E J, Gyarmati G, et a1. 2008. A local ensemble transform Kalman filter data assimilation system for the NCEP global model [J]. Tellus A:Dyn. Meteor. Oceanog., 60(1): 113−130. doi: 10.1111/j.1600-0870.2007.00274.x
    [28] Toth Z, Kalnay E. 1993. Ensemble forecasting at NMC: The generation of perturbations [J]. Bull. Amer. Meteor. Soc., 74(12): 2317−2330. doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
    [29] Toth Z, Kalnay E. 1997. Ensemble forecasting at NCEP and the breeding method [J]. Mon. Wea. Rev., 125(12): 3297−3319. doi:10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2
    [30] Walser A, Arpagaus M, Appenzeller C, et al. 2006. The impact of moist singular vectors and horizontal resolution on short-range limited-area ensemble forecasts for two European winter storms [J]. Mon. Wea. Rev., 134(10): 2877−2887. doi: 10.1175/MWR3210.1
    [31] Wang X G, Bishop C H. 2003. A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes [J]. J. Atmos. Sci., 60(9): 1140−1158. doi:10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2
    [32] Wang Y, Bellus M, Geleyn J F, et al. 2014. A new method for generating initial condition perturbations in a regional ensemble prediction system: Blending [J]. Mon. Wea. Rev., 142(5): 2043−2059. doi: 10.1175/MWR-D-12-00354.1
    [33] 王婧卓, 陈静, 庄照荣, 等. 2018. GRAPES区域集合预报模式的初值扰动增长特征 [J]. 大气科学, 42(2): 367−382. doi: 10.3878/j.issn.1006-9895.1708.17141

    Wang Jingzhuo, Chen Jing, Zhuang Zhaorong, et al. 2018. Characteristics of initial perturbation growth rate in the regional ensemble prediction system of GRAPES [J]. Chinese Journal of Atmospheric Sciences, 42(2): 367−382. doi: 10.3878/j.issn.1006-9895.1708.17141
    [34] Wang J W A, Sardeshmukh P D, Compo G P, et al. 2019. Sensitivities of the NCEP global forecast system [J]. Mon. Wea. Rev., 147(4): 1237−1256. doi: 10.1175/MWR-D-18-0239.1
    [35] Wei M Z, Toth Z, Wobus R, et al. 2006. Ensemble transform Kalman Filter-based ensemble perturbations in an operational global prediction system at NCEP [J]. Tellus A:Dyn. Meteor. Oceanog., 58(1): 28−44. doi: 10.1111/j.1600-0870.2006.00159.x
    [36] Wei M Z, Toth Z, Wobus R, et al. 2008. Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system [J]. Tellus A:Dyn. Meteor. Oceanog., 60(1): 62−79. doi: 10.1111/j.1600-0870.2007.00273.x
    [37] 张瑜. 2019. 集合预报扰动的物理结构和时间演变特征 [D]. 南京信息工程大学硕士学位论文. Zhang Yu. 2019. The physical structures and evolution characteristics of perturbation in ensemble prediction [D]. M. S. thesis (in Chinese), Nanjing University of Information Science & Technology.
    [38] Zhang H B, Chen J, Zhi X F, et al. 2015. Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system [J]. Adv. Atmos. Sci., 32(8): 1143−1155. doi: 10.1007/s00376-015-4232-6
    [39] 张涵斌, 智协飞, 陈静, 等. 2017. 区域集合预报扰动方法研究进展综述 [J]. 大气科学学报, 40(2): 145−157. doi: 10.13878/j.cnki.dqkxxb.20160405001

    Zhang Hanbin, Zhi Xiefei, Chen Jing, et al. 2017. Achievement of perturbation methods for regional ensemble forecast [J]. Trans. Atmos. Sci., 40(2): 145−157. doi: 10.13878/j.cnki.dqkxxb.20160405001
  • 加载中
图(11)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  17
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 录用日期:  2021-05-19
  • 网络出版日期:  2021-05-28
  • 刊出日期:  2021-11-25

目录

    /

    返回文章
    返回