高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河北冬奥赛区一次夜间增温过程的数值模拟及诊断

章鸣 连志鸾 平凡 祝善友

章鸣, 连志鸾, 平凡, 等. 2021. 河北冬奥赛区一次夜间增温过程的数值模拟及诊断[J]. 大气科学, 45(6): 1−13 doi: 10.3878/j.issn.1006-9895.2103.21031
引用本文: 章鸣, 连志鸾, 平凡, 等. 2021. 河北冬奥赛区一次夜间增温过程的数值模拟及诊断[J]. 大气科学, 45(6): 1−13 doi: 10.3878/j.issn.1006-9895.2103.21031
ZHANG Ming, LIAN Zhiluan, PING Fan, et al. 2021. Numerical Simulation and Diagnosis of a Nocturnal Warming Process in the Hebei Winter Olympic Games Area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1−13 doi: 10.3878/j.issn.1006-9895.2103.21031
Citation: ZHANG Ming, LIAN Zhiluan, PING Fan, et al. 2021. Numerical Simulation and Diagnosis of a Nocturnal Warming Process in the Hebei Winter Olympic Games Area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1−13 doi: 10.3878/j.issn.1006-9895.2103.21031

河北冬奥赛区一次夜间增温过程的数值模拟及诊断

doi: 10.3878/j.issn.1006-9895.2103.21031
基金项目: 国家重点研究开发项目2018YFC1506801、2018YFF0300102
详细信息
    作者简介:

    章鸣,女,1997年出生,硕士研究生,主要从事特殊天气诊断及机理分析研究。E-mail: 19850070361@163.com

    通讯作者:

    祝善友,E-mail: zsyzgx@163.com

  • 中图分类号: P458

Numerical Simulation and Diagnosis of a Nocturnal Warming Process in the Hebei Winter Olympic Games Area

Funds: National Key Research and Development Program of China (Grants 2018YFC1506801, 2018YFF0300102)
  • 摘要: 夜间增温是河北冬奥赛区冬季频发的天气现象,对其进行准确的模拟与预报对赛区建设及比赛保障至关重要。本文针对河北冬奥赛区2020年2月8日夜间至9日凌晨发生的一次夜间增温过程,通过引入高分辨率地形数据,利用中尺度区域数值模式WRF4.1.5精细化再现了此次夜间增温过程,并探究了此次过程的气象特征及成因。研究结果表明:此次夜间增温过程受东北冷涡影响,中高空冷平流显著,高低层风切变较强,有明显的平流差异,同时,近地面气象要素变化特征明显,包括相对湿度降低、风速增大、海平面气压降低、地表热通量及长波辐射增强等;增温发生时,强冷平流在范围及强度上均明显增加,导致强烈的下沉运动,使得低层大气温度升高,并且高低层强风切变以及平流差异容易产生垂直混合,等熵面波动明显,湍流加强,进一步加强湍流垂直混合运动,运动热通量输送增强,产生夜间温度异常升高现象。
  • 图  1  河北崇礼冬奥赛区地形对比图:(a)模式默认高程数据;(b)ASTER GDEM第三版高程数据,单位:m

    Figure  1.  Topographic comparison map of the Chongli Winter Olympic Games area in Hebei Province: (a) Model default elevation data; (b) ASTER GDEM third edition elevation data, units: m

    图  2  冬奥赛区2020年2月8日08:00至9日08:00(北京时,下同)(a)实测站点累积增温幅度及其位置分布以及(b)实测站点气温逐时变化曲线

    Figure  2.  Geographical distribution and automatic stations of temperature increase in the Winter Olympic Games area from 0800 BT (Beijing time) February 8 to 0800 BT February 9, 2020: (a) Cumulative temperature increase amplitude and location distribution of the measuring stations; (b) hourly variation curve of temperature at the measuring stations

    图  3  2020年2月8日14:00(左列)、20:00(右列)天气形势图:(a, b)500 hPa、(c, d)700 hPa、(e, f)850 hPa和(g, h)1000 hPa。蓝线为位势高度,单位:dagpm;红线为气温,单位:°C;箭头为风场,单位:m s−1;橘色粗线为槽线。打点区域为急流区,单位:m s−1,(a、b)中为200 hPa高空急流,(c、d)中为700 hPa低空急流

    Figure  3.  (a, b) 500 hPa, (c, d) 700 hPa, (e, f) 850 hPa, and (g, h) 1000 hPa at 1400 BT (left column) and 2000 BT (right column) February 8, 2020 weather situation map. The blue lines are the geopotential height, units: dagpm; the red lines are the temperature, units: °C; the arrow is the wind field, units: m s−1; the thick orange lines are the trough lines. The dotted area is the jet flow area, units: m s−1, (a) and (b) are 200-hPa upper-level jet, (c) and (d) are 700-hPa lower-level jet

    图  4  2020年2月8日20:00张家口站的探空曲线图,其中绿线为露点温度曲线,蓝线为温度曲线,红线为状态曲线

    Figure  4.  Sounding curve of Zhangjiakou station at 2000 BT February 8, 2020, the green line is the dew point temperature curve, the blue line is the temperature curve, and the red line is the state curve

    图  5  模拟区域设置

    Figure  5.  Simulation area setting

    图  6  2020年2月8日08:00至9日08:00冬奥赛区内(a)15个站点模拟的24 h平均气温的绝对偏差,(b)冬两1号、(c)云顶山底以及(d)冬两2号三个站点模拟的气温与实测逐时对比

    Figure  6.  (a) Absolute deviation of the simulated 24-h average temperature of 15 stations, and hourly comparison of the simulated and measured temperature of (b) Dongliang NO. 1, (c) Yundingshandi, and (d) Dongliang NO. 2 stations in the competition area from 1400 BT February 8 to 0800 BT February 9, 2020

    图  7  2020年2月9日00:00与02:00近地面气象要素差值场分布:(a)2 m气温,单位:°C;(b)2 m相对湿度;(c)海平面气压(填色),单位:hPa;(d)10 m风速(填色),单位:m s−1。黑色圆点为自动站,黑色方框为冬奥赛区范围;(c、d)中矢量箭头分别表示9日01:00和02:00地面10 m风场

    Figure  7.  Difference field of the near-surface meteorological elements between 0000 BT and 0200 BT February 9, 2020: (a) 2-m temperature, units: °C; (b) 2-m relative humidity; (c) sea level pressure (shaded), units: hPa; (d) 10 m wind speed (coloring), units: m s−1. The black dot is the automatic station and the black box is the scope of the Winter Olympic Games area; the arrows in (c, d) represent surface 10-m wind field at (c) 0100 BT and (d) 0200 BT February 9, 2020

    图  8  2020年2月8日14:00至9日14:00冬奥赛区(图7黑色方框范围)区域平均(a)水平风场及垂直速度随时间演变(风羽杆为水平风场,单位:m s−1;填色表示垂直速度,单位:m s−1)以及公式(1)中(b)温度平流项和(c)垂直运动项的时间—高度剖面,单位:10−3°C s−1

    Figure  8.  Regional average of the Winter Olympic Games area (black box in Figure 7) from 1400 BT February 8 to 0800 BT February 9, 2020: (a) horizontal wind field and vertical velocity evolution with time (wind plume: horizontal wind field, units: m s−1; shaded: vertical velocity, units: m s−1), time–height profiles of (b) temperature advection and (c) vertical movement in Equation (1), units: 10−3°C s-1

    图  9  冬奥赛场异常增温区域地表能量及辐射随时间变化的曲线:(a1)蓝线为潜热通量LH、红线为感热通量HFX,单位:W m−2;(a2)蓝线为到达地面的长波辐射GLW、红线为到达地面的短波辐射SWDOWN,单位:W m−2。冬奥赛区2020年2月9日00:00与02:00地表通量及辐射差值场(b1)感热通量,单位:W m−2、(b2)潜热通量,单位:W m−2、(b3)到达地表的长波辐射,单位:W m−2

    Figure  9.  Curve of the surface energy and radiation with time in the abnormal warming area of the Winter Olympic Games area: (a1) the blue line is the latent heat flux, the red line is the sensible heat flux, (a2) the blue line is the long-wave radiation to the ground, and the red line is the short-wave radiation to the ground, units: W m−2. The difference between 0100 BT and 0200 BT February 9, 2020, in the Winter Olympic Games area: (b1) sensible heat flux, (b2) latent heat flux, and (b3) long-wave radiation, units: W m−2

    图  10  冬两1号站点不同气象要素垂直廓线:(a)气温,单位:°C;(b)露点温度,单位:°C;(c)位温,单位:K;(d)比湿,单位:g kg−1

    Figure  10.  Vertical profiles of different meteorological elements at Dongliang NO.1 station: (a) Air temperature, units: °C; (b) dew point temperature, units: °C; (c) potential temperature, units: K; and (d) specific humidity, units: g kg−1

    图  11  2020年(a)2月8日23:30与(b)9日02:00位温沿40.91°N剖面分布,单位:K。图中黑色区域为地形

    Figure  11.  Potential temperature distribution along 40.91°N profile at (a) 2330 BT February 9 and (b) 0200 BT February 8, 2020, units: K. The black area is the terrain

    图  12  2020年2月8日20:00至9日08:00河北冬奥赛区冬两1号站点(a)摩擦速度(单位:m s−1)随时间演变曲线;2020年2月9日00:30至02:30河北冬奥赛区冬两1号站点垂直分布变化(b)湍流动能(单位:m2 s−2)以及(c)运动热通量(单位:K·m s−1

    Figure  12.  Time evolution curves of Dongliang NO. 1 station in the Hebei Winter Olympic Games area from 2000 BT February 8 to 0800 BT February 9, 2020: (a) friction velocity (units: m s−1);, Vertical distribution of Dongliang NO. 1 station in the Hebei Winter Olympic Games area from 0030 BT to 0800 BT February 9, 2020:(b) turbulent kinetic energy (TKE) (units: m2 s−2), (c) kinetic heat flux (KHF) (units: K m s−1)

  • [1] Bernstein B C, Johnson R H. 1994. A dual-Doppler radar study of an OK PRE-STORM heat burst event [J]. Mon. Wea. Rev., 122(2): 259−273. doi:10.1175/1520-0493(1994)122<0259:ADDRSO>2.0.CO;2
    [2] Brinkmann W A R. 1971. What is a foehn? [J]. Weather, 26(6): 230−240. doi: 10.1002/j.1477-8696.1971.tb04200.x
    [3] Clarke R H, Smith R K, and Reid D G. 1981. The morning glory of the Gulf of Carpentaria: An atmospheric undular bore [J]. Mon. Wea. Rev., 109(8): 1726−1750. doi:10.1175/1520-0493(1981)109<1726:TMGOTG>2.0.CO;2
    [4] Doswell III C A, Haugland M J. 2007. A comparison of two cold fronts-effects of the planetary boundary layer on the mesoscale [J]. Electron. J. Severe Storms Meteor., 2(4): 1−12.
    [5] Elvidge A D, Renfrew I A. 2016. The causes of Foehn warming in the lee of mountains [J]. Bull. Amer. Meteor. Soc., 97(3): 455−466. doi: 10.1175/BAMS-D-14-00194.1
    [6] 甘茹蕙, 马媛媛, 杨毅, 等. 2016. 兰州地区突发性夜间增温的统计特征[J]. 兰州大学学报(自然科学版), 52(5): 652–659. Gan Ruhui, Ma Yuanyuan, Yang Yi, et al. 2016. Statistical characteristics of sudden nocturnal warming events in Lanzhou Region[J]. J. Lanzhou Univ

    Nat. Sci. Ed. ) (in Chinese), 52(5): 652–659. doi: 10.13885/j.issn.0455-2059.2016.05.014
    [7] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134(9): 2318−2341. doi: 10.1175/MWR3199.1
    [8] 黄少妮, 王建鹏, 王丹, 等. 2015. 西安一次夜间异常增温过程的数值模拟及诊断 [J]. 干旱气象, 33(2): 270−277. doi: 10.11755/j.issn.1006-7639(2015)-02-0270

    Huang Shaoni, Wang Jianpeng, Wang Dan, et al. 2015. Simulation and diagnosis of a temperature anomaly increase event at night in Xi'an region [J]. J. Arid Meteor., 33(2): 270−277. doi: 10.11755/j.issn.1006-7639(2015)-02-0270
    [9] Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiativeransfer models [J]. J. Geophys. Res. Atmos., 113(D13): D13103. doi: 10.1029/2008JD009944
    [10] 李万彪. 2010. 大气物理[M]. 北京: 北京大学出版社, 84–86

    Li Wanbiao. 2010. Atmospheric Physics (in Chinese)[M]. Beijing: Peking University Press, 84–86.
    [11] 梁新兰, 孟妙志. 2007. 2006年春季宝鸡高温天气分析 [J]. 陕西气象(4): 23−25. doi: 10.3969/j.issn.1006-4354.2007.04.007

    Liang Xinlan, Meng Miaozhi. 2007. Synoptic analysis of high temperature in Bao Ji city in spring of 2006 [J]. J. Shaanxi Meteor.(4): 23−25. doi: 10.3969/j.issn.1006-4354.2007.04.007
    [12] 吕健. 2017. 2015年4月初浙江省一次高温天气过程分析 [J]. 浙江气象, 38(3): 8−13. doi: 10.16000/j.cnki.zjqx.2017.03.002

    Lü Jian. 2017. Analysis of a high temperature weather process in Zhejiang Province in early April 2015 [J]. J. Zhejiang Meteor., 38(3): 8−13. doi: 10.16000/j.cnki.zjqx.2017.03.002
    [13] 李子良, 黄仪方. 2006. 地形影响的飞机颠簸及其数值仿真实验 [J]. 气象, 32(11): 32−35. doi: 10.3969/j.issn.1000-0526.2006.11.005

    Li Ziliang, Huang Yifang. 2006. Simulations of aircraft bump caused by topography [J]. Meteor. Mon., 32(11): 32−35. doi: 10.3969/j.issn.1000-0526.2006.11.005
    [14] 罗然, 郑永光, 陈敏. 2020. 北京一次罕见夜间突发性强增温事件成因分析 [J]. 气象, 46(4): 478−489. doi: 10.7519/j.issn.1000-0526.2020.04.003

    Luo Ran, Zheng Yongguang, Chen Min. 2020. Mechanism of a rare night sudden intense warming event in Beijing and surrounding area [J]. Meteor. Mon., 46(4): 478−489. doi: 10.7519/j.issn.1000-0526.2020.04.003
    [15] McPherson R A, Lane J D, Crawford K C, et al. 2011. A climatological analysis of heatbursts in Oklahoma (1994–2009) [J]. Int. J. Climatol., 31(4): 531−544. doi: 10.1002/joc.2087
    [16] Ma Y Y, Yang Y, Hu X M, et al. 2015. Characteristics and mechanisms of the sudden warming events in the nocturnal atmospheric boundary layer: A case study using WRF [J]. J. Meteor. Res., 29(5): 747−763. doi: 10.1007/s13351-015-4101-3
    [17] Morrison, H., Thompson, G., & Tatarskii, V 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation ina simulated squall line: Comparison of one- and two-moment schemes [J]. Mon. Wea. Rev., 137(3): 991−1007. doi: 10.1175/2008MWR2556.1
    [18] Nallapareddy A, Shapiro A, Gourley J J. 2011. A climatology of nocturnal warming events associated with cold-frontal passages in Oklahoma [J]. J. Appl. Meteor. Climatol., 50(10): 2042−2061. doi: 10.1175/JAMC-D-11-020.1
    [19] 钱敏伟, 李军. 1996. 夜间近地面稳定边界层湍流间歇与增温 [J]. 大气科学, 20(2): 250−254. doi: 10.3878/j.issn.1006-9895.1996.02.16

    Qian Minwei, Li Jun. 1996. Intermittent turbulence and temperature burst in the nocturnal surface layer [J]. Chinese Journal of Atmospheric Sciences, 20(2): 250−254. doi: 10.3878/j.issn.1006-9895.1996.02.16
    [20] Sanders F, Kessler F. 1999. Frontal analysis in the light of abrupt temperature changes in a shallow valley [J]. Mon. Wea. Rev., 127(6): 1125−1133. doi:10.1175/1520-0493(1999)127<1125:FAITLO>2.0.CO;2
    [21] 孙永刚, 孟雪峰, 荀学义, 等. 2014. 温度平流在沙尘暴和大风天气预报中的差异分析 [J]. 气象, 40(11): 1302−1307. doi: 10.7519/j.issn.1000-0526.2014.11.002

    Sun Yonggang, Meng Xuefeng, Xun Xueyi, et al. 2014. Difference analysis of temperature advection in severe sandstorm and strong wind prediction [J]. Meteor. Mon., 40(11): 1302−1307. doi: 10.7519/j.issn.1000-0526.2014.11.002
    [22] Smith R K, Redder M J, Tapper N J, et al. 1995. Central Australian cold fronts [J]. Mon. Wea. Rev., 123(1): 16−38. doi:10.1175/1520-0493(1995)123<0016:CACF>2.0.CO;2
    [23] Sun J L, Mahrt L, Banta R M, et al. 2012. Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99 [J]. J. Atmos. Sci., 69(1): 338−351. doi: 10.1175/JAS-D-11-082.1
    [24] 盛裴轩, 毛节泰, 李建国, 等. 2003. 大气物理学[M]. 北京: 北京大学出版社, 132–165

    Sheng Peixuan, Mao Jietai, Li Jianguo, et al. 2003. Atmospheric Physics (in Chinese) [M]. Beijing: Peking University Press, 132–165.
    [25] White L D. 2009. Sudden nocturnal warming events in Mississippi [J]. J. Appl. Meteor. Climatol., 48(4): 758−775. doi: 10.1175/2008JAMC1971.1
    [26] 吴志鹏, 李跃清, 李晓岚, 等. 2021. WRF模式边界层参数化方案对川渝盆地西南涡降水模拟的影响 [J]. 大气科学, 45(1): 58−72. doi: 10.3878/j.issn.1006-9895.2005.19171

    Wu Zhipeng, Li Yueqing, Li Xiaolan, et al. 2021. Influence of different planetary boundary layer parameterization schemes on the simulation of precipitation caused by southwest china vortex in Sichuan basin based on the WRF model [J]. Chinese Journal Atmospheric Science, 45(1): 58−72. doi: 10.3878/j.issn.1006-9895.2005.19171
    [27] 杨晓亮, 杨敏, 李江波, 等. 2018. 一次太行山焚风对霾强度的影响分析 [J]. 气象, 44(2): 313−319. doi: 10.7519/j.issn.1000-0526.2018.02.011

    Yang Xiaoliang, Yang Min, Li Jiangbo, et al. 2018. Impact analysis of a Taihang mountain Fohn on haze intensity [J]. Meteor. Mon., 44(2): 313−319. doi: 10.7519/j.issn.1000-0526.2018.02.011
    [28] 赵世林, 王荣科, 郭彦波, 等. 1993. 太行山中段的焚风 [J]. 气象, 19(2): 3−6,29. doi: 10.7519/j.issn.1000-0526.1993.02.001

    Zhao Shilin, Wang Rongke, Guo Yanbo, et al. 1993. The Foehn in the middle range of Taihang Mountain [J]. Meteor. Mon., 19(2): 3−6,29. doi: 10.7519/j.issn.1000-0526.1993.02.001
    [29] 周国华, 王盘兴, 罗小莉, 等. 2011. 基于160站资料的我国表面气温异常特征 [J]. 应用气象学报, 22(3): 283−291. doi: 10.3969/j.issn.1001-7313.2011.03.004

    Zhou Guohua, Wang Panxing, Luo Xiaoli, et al. 2011. Characteristics of surface air temperature anomalies in china based on observations at 160 stations [J]. J. Appl. Meteor. Sci., 22(3): 283−291. doi: 10.3969/j.issn.1001-7313.2011.03.004
    [30] 周宇, 史军, 孙国武, 等. 2012. 1873–2009年上海气温日较差变化及其影响因素 [J]. 气象与环境学报, 28(1): 24−30. doi: 10.3969/j.issn.1673-503X.2012.01.004

    Zhou Yu, Shi Jun, Sun Guowu, et al. 2012. Changes of diurnal temperature range and its influencing factors from 1873 to 2009 in Shanghai [J]. J. Meteor. Environ., 28(1): 24−30. doi: 10.3969/j.issn.1673-503X.2012.01.004
  • 加载中
图(12)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  22
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 录用日期:  2021-03-15
  • 网络出版日期:  2021-06-03

目录

    /

    返回文章
    返回