高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂地形强降雪过程中垂直运动诊断分析

马淑萍 冉令坤 曹洁

马淑萍, 冉令坤, 曹洁. 2021. 复杂地形强降雪过程中垂直运动诊断分析[J]. 大气科学, 45(5): 1−19 doi: 10.3878/j.issn.1006-9895.2105.20206
引用本文: 马淑萍, 冉令坤, 曹洁. 2021. 复杂地形强降雪过程中垂直运动诊断分析[J]. 大气科学, 45(5): 1−19 doi: 10.3878/j.issn.1006-9895.2105.20206
MA Shuping, RAN Lingkun, CAO Jie. 2021. Diagnosis and Analysis of Vertical Motion during Complex Topographical Heavy Snowfall [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−19 doi: 10.3878/j.issn.1006-9895.2105.20206
Citation: MA Shuping, RAN Lingkun, CAO Jie. 2021. Diagnosis and Analysis of Vertical Motion during Complex Topographical Heavy Snowfall [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−19 doi: 10.3878/j.issn.1006-9895.2105.20206

复杂地形强降雪过程中垂直运动诊断分析

doi: 10.3878/j.issn.1006-9895.2105.20206
基金项目: 国家重点研发计划项目2018YFC1507104,中国科学院战略性先导科技专项XDA17010105,吉林省科技发展计划项目20180201035SF,国家自然科学基金项目41775140
详细信息
    作者简介:

    马淑萍,女,1993年出生,博士研究生,主要从事中小尺度天气动力学与数值模拟研究。E-mail: msp1123@126.com

    通讯作者:

    冉令坤,E-mail: rlk@mail.iap.ac.cn

  • 中图分类号: P458

Diagnosis and Analysis of Vertical Motion during Complex Topographical Heavy Snowfall

Funds: National Key Research and Development Project (Grant 2018YFC1507104), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA17010105), Key Scientific and Technology Research and Development Program of Jilin Province (Grant 20180201035SF), National Natural Science Foundation of China (Grant 41775140)
  • 摘要: 利用WRF模式对2018年11月30日伊犁河谷和天山北坡强降雪过程进行数值模拟,并分析复杂地形强降雪过程垂直速度和垂直动能变化机制。研究表明,冷锋过境造成地表气压升高,干空气气柱质量增大,从而导致垂直气压梯度力和干空气气柱浮力发生变化,进而引起垂直运动发生发展。垂直速度局地时间变化主要取决于扰动垂直气压梯度力、水物质拖曳力和扰动干空气浮力。在天山北坡,气流过山时,迎风坡的扰动垂直气压梯度力较大,扰动干空气浮力较小,二者合力促进上升运动;在背风坡,扰动垂直气压梯度力和扰动空气浮力形成向下的合力,产生下沉加速度,导致背风坡下沉大风。扰动垂直气压梯度力做功和扰动干空气浮力做功情况基本相反,背风坡扰动垂直气压梯度力和综合强迫做功项抑制垂直动能,扰动干空气浮力和水物质拖曳力做功项增强垂直动能。此外,扰动垂直气压梯度力和扰动干空气浮力做功项主要出现在中低层,水物质拖曳力做功项主要位于低层,平缓地形处的综合强迫做功明显小于地形复杂处。
  • 图  1  2018年(a)11月30日16时(协调世界时,下同)1 h累计观测降雪量(单位:mm),(b)11月30日18时、(c)12月1日00时、(d)12月1日06时6 h累计观测降雪(单位:mm)。图a中A点是伊犁河谷的新源县所在位置

    Figure  1.  (a) One-hour accumulated observed snowfall (units: mm) at 1600 UTC 30 November, (b) 6-h accumulated observed snowfall (units: mm) at 1800 UTC 30 November, (c) 0000 UTC 1 December, and (d) 0600 UTC 1 December 2018. In Fig. a, point A is the location of Xinyuan County in the Yili River valley

    图  2  2018年11月30日12时(a)200 hPa风场(阴影区风速≥30 m s−1),(b)500 hPa位势高度场(黑色实线,单位:gpm)、温度场(红色虚线,单位:°C)、涡度(阴影,单位:10−4 s−1),(c)700 hPa风场(风向杆)、地形(阴影,单位:km),(d)850 hPa水汽通量(单位:g cm−1 hPa−1 s−1

    Figure  2.  (a) 200-hPa wind field (wind speed in the shaded area is ≥30 m s−1), (b) geopotential height (solid black lines, units: gpm), temperature field (dashed red lines, units: °C), and the vorticity (shadings, units: 10−4 s−1) at 500 hPa, (c) 700-hPa wind field (barbs), terrain (shadings, units: km), (d) 850-hPa water vapour fluxes (units: g cm−1 hPa−1 s−1) at 1200 UTC 30 November 2018

    图  3  2018年(a)11月30日16时1 h累计模拟降雪(单位:mm),(b)11月30日18时、(c)12月1日00时和(d)12月1日06时6 h累计模拟降雪(单位:mm)。图b中的BC点分别表示霍城县、博乐市,图c中的D点表示新源县

    Figure  3.  (a) One-hour accumulated simulated snowfall (units: mm) at 1600 UTC 30 November, (b) 6-h accumulated simulated snowfall (units: mm) at 1800 UTC 30 November, (c) 0000 UTC 1 December, and (d) 0600 UTC 1 December 2018. In Fig. b, points B, C indicate the locations of Huocheng County, Bole City, respectively; in Fig. c, point D is the location of Xinyuan County

    图  4  2018年11月30日(a)18:00时刻700 hPa相当位温(单位:K),18:30(b)垂直累积水物质含量(单位:kg m−2)、近地面(模式层的第一层)(c)1 h累计降水量(单位:mm)、(d)扰动气压(单位:hPa)、(e)扰动干空气质量(单位:hPa)、(f)水平流场、(g)垂直速度(单位:m s−1)。阴影代表地形高度(单位:km);图f、g中的EFG点风别为科古琴山、博罗科努山、阿拉套山;红色实线表示下图中的剖线

    Figure  4.  (a) Equivalent potential temperature (units: K) at 700 hPa at 1800 UTC, (b) vertically integrated liquid water content (units: kg m−2), (c) 1-h accumulated precipitation (units: mm), (d) perturbation pressure (units: hPa), (e) perturbation dry air mass (units: hPa), (f) horizontal flow field, (g) vertical velocity (units: m s−1) near the ground (the first layer of the model layer) at 1830 UTC 30 November 2018. The shadings denote terrain height (units: km); in Figs. f and g, points E, F, G indicate the locations of Keguqin Mountain, Bolhinur Mountain, Alataw Mountain; the solid red lines represent the section lines in the figure below

    图  5  2018年11月30日(a)16:30时、(b)18:30时垂直速度(阴影,单位:m s−1)、风矢量(箭头,单位:m s−1)沿图4中红线的垂直剖面。左纵坐标为$\eta $层数值。绿实线代表30 min累计降雪量(右侧纵坐标,单位:mm),红色实线代表水成物的混合比含量(单位:10−4 kg kg−1),下方图代表地形高度(单位:km),下同

    Figure  5.  Vertical cross sections of vertical velocity (shadings, units: m s−1) and wind vectors (arrows, units: m s−1) along the red line in Fig. 4 at (a) 1630 UTC and (b) 1830 UTC 30 November 2018. The left y-axis denotes the value of the $\eta $ (near-surface scheme) layer. The solid green lines denote the 30-min accumulated snowfall (right y-axis, units: mm), the red solid lines denote the mixing ratio of hydrometeor (units: 10−4 kg kg−1), and the figure below denotes terrain height (units: km), the same below

    图  6  2018年11月30日18:30(a)方程(1)左端垂直速度局地时间变化项(阴影、黑色等值线,单位:10−4 m s−2)和方程(1)右端强迫项(b)纬向平流(黑色等值线,单位:10−3 m s−2)、(c)经向平流(黑色等值线,单位:10−3 m s−2)、(d)垂直平流(黑色等值线,单位:10−3 m s−2)、(e)垂直气压梯度力(黑色等值线,单位:10−2 m s−2)、(f)水物质拖曳力(黑色等值线,单位:10−3 m s−2)、(g)扰动空气浮力(黑色等值线,单位:10−2 m s−2)、(h)综合强迫(黑色等值线,单位:10−3 m s−2)沿图4中红线的垂直剖面。彩色阴影表示垂直速度局地时间变化(单位:10−4 m s−2

    Figure  6.  Vertical cross sections of (a) the vertical velocity local variation term (shadings, black contours, units: 10−4 m s−2) at the left side of Equation (1) and the forcing terms (b) zonal advection (black contours, units: 10−3 m s−2), (c) meridional advection (black contours, units: 10−3 m s−2), (d) vertical advection (black contours, units: 10−3 m s−2), (e) vertical pressure gradient force (black contours, units: 10−2 m s−2), (f) water material drag force (black contours, units: 10−3 m s−2), (g) perturbation air mass buoyancy (black contours, units: 10−2 m s−2), and (h) comprehensive force (black contours, units: 10−3 m s−2) at the right side of Equation (1) along the red line in Fig. 4 at 1830 UTC 30 November 2018. The shadings denote vertical velocity local variation (units: 10−4 m s−2)

    图  7  2018年11月30日(a)16:30时、(b)18:30时的垂直动能(阴影,单位:m2 s−2)和垂直动能局地时间变化(黑色等值线,单位:10−4 m2 s−3)沿图4中红线的垂直剖面

    Figure  7.  Vertical distributions of vertical kinetic energy (shadings, units: m2 s−2) and vertical kinetic energy local variation (black contours, units: 10−4 m2 s−3) along the red line in Fig. 4 at (a)1630 UTC and (b)1830 UTC 30 November 2018

    图  8  2018年11月30日18:30(a)方程(2)左端垂直动能局地时间变化项(阴影、黑色等值线,单位:10−4 m2 s−3)和方程(2)右端强迫项(b)纬向平流(黑色等值线,单位:10−3 m2 s−3)、(c)经向平流(黑色等值线,单位:10−3 m2 s−3)、(d)垂直平流(黑色等值线,单位:10−3 m2 s−3)、(e)垂直扰动气压梯度力做功(黑色等值线,单位:10−2 m2 s−3)、(f)水物质拖曳力做功(黑色等值线,单位:10−3 m2 s−3)、(g)扰动空气浮力做功(黑色等值线,单位:10−2 m2 s−3)、(h)综合强迫做功(黑色等值线,单位:10−3 m2 s−3)沿图4中红线的垂直分布。阴影区代表垂直动能局地时间变化(单位:10−4 m2 s−3

    Figure  8.  Vertical cross sections of (a) the vertical kinetic energy local variation term (shadings, black contours, units: 10−4 m2 s−2) at the left side of Equation (2) and the forcing terms (b) zonal advection (black contours, units: 10−3 m2 s−3), (c) meridional advection (black contours, units: 10−3 m2 s−3), (d) vertical advection (black contours, units: 10−3 m2 s−3), (e) vertical pressure gradient force (black contours, units: 10−2 m2 s−3), (f) water material drag force (black contours, units: 10−3 m2 s−3), (g) perturbation dry air mass buoyancy (black contours, units: 10−2 m2 s−3), and (h) comprehensive force (black contours, units: 10−3 m2 s−3) at the right side of Equation (2) along the red line in Fig. 4 at 1830 UTC 30 November 2018. The shadings denote vertical kinetic energy local variation (units: 10−4 m s−2)

    图  9  2018年11月30日18:30(a)扰动位势高度梯度力做功(黑色等值线,单位:10−2 m2 s−3)和(b)扰动浮力做功(黑色等值线,10−2 m2 s−3)沿图4中红线的垂直剖面图。阴影区代表垂直动能局地时间变化(单位:10−4 m2 s3

    Figure  9.  Vertical cross sections of the work done by (a) perturbation geopotential height gradient force (black contours, units: 10−2 m2 s−3) and (b) perturbation buoyancy (black contours, units: 10−2 m2 s−3) along the red line in Fig. 4 at 1830 UTC 30 November 2018. The shadings denote vertical kinetic energy local variation (units: 10−4 m2 s−3)

    图  10  2018年11月30日18:30地形敏感性试验的(a)方程(1)左端垂直速度局地时间变化项(阴影、黑色等值线,单位:10−4 m s−2)和方程(1)右端强迫项(b)纬向平流(黑色等值线,单位:10−3 m s−2)、(c)经向平流(黑色等值线,单位:10−3 m s−2)、(d)垂直平流(黑色等值线,单位:10−3 m s−2)、(e)垂直气压梯度力(黑色等值线,单位:10−3 m s−2)、(f)水物质拖曳力(黑色等值线,单位:10−3 m s−2)、(g)扰动空气浮力(黑色等值线,单位:10−3 m s−2)、(h)综合强迫项(黑色等值线,单位:10−3 m s−2)沿图4中红线的垂直分布。阴影区代表垂直速度局地时间变化(单位:10−4 m s−2

    Figure  10.  Vertical cross sections of (a) the vertical velocity local variation term (shadings, black contours, units: 10−4 m s−2) at the left side of Equation (1) and the forcing terms at the right side of Equation (1) (b) zonal advection (black contours, units: 10−3 m s−2), (c) meridional advection (black contours, units: 10−3 m s−2), (d) vertical advection (black contours, units: 10−3 m s−2), (e) vertical pressure gradient force (black contours, units: 10−2 m s−2), (f) water material drag force (black contours, units: 10−3 m s−2), (g) perturbation air mass buoyancy (black contours, units: 10−2 m s−2), and (h) comprehensive force (black contours, units: 10−3 m s−2) of topographic sensitive experiment along the red line in Fig. 4 at 1830 UTC 30 November 2018. The shadings denote vertical velocity local variation (units: 10−4 m s−2)

    图  11  2018年11月30日18:30时地形敏感性试验的(a)方程(2)左端垂直动能局地时间变化项(阴影、黑色等值线,单位:10−4 m2 s−3)和方程(2)右端强迫项(b)纬向平流(黑色等值线,单位:10−3 m2 s−3)、(c)经向平流(黑色等值线,单位:10−3 m2 s−3)、(d)垂直平流(黑色等值线,单位:10−3 m2 s−3)、(e)垂直扰动气压梯度力做功(黑色等值线,单位:10−2 m2 s−3)、(f)水物质拖曳力做功(黑色等值线,单位:10−3 m2 s−3)、(g)扰动空气浮力做功(黑色等值线,单位:10−2 m2 s−3)、(h)综合强迫做功(黑色等值线,单位:10−3 m2 s−3)沿图4中红线的垂直分布。阴影区代表垂直动能局地时间变化(单位:10−4 m2 s−3

    Figure  11.  Vertical cross sections of (a) the vertical kinetic energy local variation term (shadings, black contours, units: 10−4 m2 s−2) at the left side of Equation (2) and the forcing terms (b) zonal advection (black contours, units: 10−3 m2 s−3), (c) meridional advection (black contours, units: 10−3 m2 s−3), (d) vertical advection (black contours, units: 10−3 m2 s−3), (e) vertical pressure gradient force (black contours, units: 10−2 m2 s−3), (f) water material drag force (black contours, units: 10−3 m2 s−3), (g) perturbation dry air mass buoyancy (black contours, units: 10−2 m2 s−3), and (h) comprehensive force (black contours, units: 10−3 m2 s−3) at the right side of Equation (2) of topographic sensitive experiment along the red line in Fig. 4 at 1830 UTC 30 November 2018. The shadings denote vertical kinetic energy local variation (units: 10−4 m s−2)

    图  12  2018年11月30日16:00至12月1日06:00伊犁河谷和天山北坡降雪天气过程的概念模型。红色箭头表示气流爬升,蓝色箭头表示气流下沉,白色箭头表示气流水平运动;P表示扰动垂直气压梯度力,G表示扰动干空气浮力,Q表示水物质拖曳力;黑色箭头方向表示力的方向,箭头长度表示力的相对大小;绿色箭头方向表征垂直运动方向,长度表征垂直运动的相对大小;蓝色曲线表征云体

    Figure  12.  Conceptual model of the snowy weather process in the Ili River valley and the northern slope of the Tianshan mountains from 1600 UTC 30 November to 0600 UTC 1 December 2018. The red arrows denote the climbing airflow, the blue arrows denote the sinking airflow, the white arrows denote the horizontal movement of the airflow. P denotes the perturbation vertical pressure gradient force, G denotes the perturbation dry air mass buoyancy, Q denotes the water material drag force. The black arrows denote the direction of the force, with its length denoting the relative magnitude of the force. The green arrows denote the direction of vertical movement, with its length denoting the relative magnitude of the vertical movement. The thin blue curve denotes the cloud

    表  1  2018年11月30日16:30~20:30低层($\eta $=0.9177)垂直运动方程各项、垂直动能方程各项以及垂直运动方程各项偏差在不同类型地形处的时间平均值

    Table  1.   Time average of each item in the vertical motion equation, each item in the vertical kinetic energy equation, and deviation of each item in the vertical motion equation at the lower layer ($\eta $=0.9177) at different types of terrain during 1630–2030 UTC 30 November 2018

    地形 垂直运动方程各项
    垂直速度局地
    时间变化/m s−2
    垂直速度的
    纬向平流/m s−2
    垂直速度的
    经向平流/m s−2
    垂直速度的
    垂直平流/m s−2
    垂直气压梯
    度力/m s−2
    水物质
    拖曳力/m s−2
    扰动空气
    浮力/m s−2
    综合强迫/m s−2
    平缓地形 4.637915×10−5 7.833584×10−4 9.291717×10−5 −9.035784×10−5 2.564991×10−1 −2.488067×10−2 −2.354567×10−1 2.899227×10−3
    迎风坡 2.895048×10−5 −1.985812×10−4 −4.138803×10−5 −8.599152×10−5 2.141709×10−1 −2.535466×10−2 −1.912092×10−1 2.407287×10−3
    山顶 2.364746×10−5 −4.50097×10−4 4.88021×10−4 -3.07629×10−4 1.460992×10−1 −1.984368×10−2 −1.287536×10−1 2.722863×10−3
    背风坡 −7.245734×10−6 1.624625×10−4 −2.80293×10−4 2.443034×10−4 1.512178×10−1 −1.721318×10−2 −1.369501×10−1 2.931914×10−3
    垂直动能方程各项
    垂直动能局地
    时间变化/m2 s−3
    垂直动能的
    纬向平流/m2 s−3
    垂直动能的
    经向平流/m2 s−3
    垂直动能的
    垂直平流/m2 s−3
    垂直气压梯
    度力做功/m2 s−3
    水物质拖曳力
    做功/m2 s−3
    扰动空气
    浮力做功/m2 s−3
    综合强迫做功/m2 s−3
    平缓地形 1.311433×10−5 2.715826×10−4 7.874529×10−5 −8.794355×10−5 1.107176×10−1 −8.549323×10−3 −1.037285×10−1 1.484196×10−3
    迎风坡 1.739467×10−6 2.743673×10−4 −6.617067×10−5 −4.758959×10−5 6.455613×10−2 −6.669233×10−3 −5.828185×10−2 1.182453×10−4
    山顶 −2.600059×10−5 1.696859×10−3 −4.709741×10−4 3.315231×10−4 −4.497091×10−2 6.465559×10−3 3.92896×10−2 −2.78791×10−3
    背风坡 −1.003375×10−4 −2.735115×10−3 2.945267×10−4 −2.666131×10−3 −1.549641×10−1 1.579314×10−2 1.485578×10−1 −4.547488×10−3
    垂直运动方程各项偏差
    垂直速度的
    偏差/m s−1
    垂直速度局地时间
    变化偏差/m s−2
    垂直速度的纬向
    平流偏差/m s−2
    垂直速度的经向
    平流偏差/m s−2
    垂直速度的垂直
    平流偏差/m s−2
    垂直气压
    梯度力偏差/m s−2
    水物质拖曳力
    偏差/m s−2
    扰动空气浮力
    偏差/m s−2
    综合强迫
    偏差/m s−2
    平缓地形 0.4431562 −7.262634×10−6 7.791471×10−4 6.206069×10−5 −9.134863×10−5 −9.707962×10−3 −7.046215×10−3 1.493587×10−2 8.269078×10−4
    迎风坡 0.3002416 9.486266×10−5 −1.939144×10−4 −5.512689×10−5 −8.606111×10−5 −4.424432×10−2 -7.646675×10−3 5.146855×10−2 2.181495×10−4
    山顶 −0.4263227 6.319609×10−5 −4.494901×10−4 4.711455×10−4 −3.090237×10−4 −1.023421×10−1 −6.575922×10−4 1.022226×10−1 1.166854×10−3
    背风坡 −1.135307 −2.279939×10−5 2.066309×10−4 −1.802696×10−4 2.444843×10−4 −9.142584×10−2 2.09353×10−3 8.789831×10−2 1.209113×10−3
    注:平缓地形(44.022°~44.123°N,80.982°~81.186°E) ;迎风坡(44.123°~44.335°N,81.186°~81.544°E) ;山顶(44.335°~44.548°N,81.544°~81.901°E) ;背风坡(44.548°~44.669°N,81.901°~82.105°E)
    下载: 导出CSV
  • [1] 陈贵川, 沈桐立, 何迪. 2006. 江南丘陵和云贵高原地形对一次西南涡暴雨影响的数值试验 [J]. 高原气象, 25(2): 277−284. doi: 10.3321/j.issn:1000-0534.2006.02.014

    Chen G C, Shen T L, He D. 2006. Simulation of topographic effect of hilly region to the south of Yangtze River and Yunnan–Guizhou Plateau on the Southwest vortex during a heavy rain process [J]. Plateau Meteorology (in Chinese), 25(2): 277−284. doi: 10.3321/j.issn:1000-0534.2006.02.014
    [2] 陈涛, 崔彩霞. 2012. “2010.1.6”新疆北部特大暴雪过程中的锋面结构及降水机制 [J]. 气象, 38(8): 921−931. doi: 10.7519/j.issn.1000-0526.2012.8.004

    Chen T, Cui C X. 2012. The frontal structure and precipitation mechanism in the 6 January 2010 heavy snowfall event happening in North Xinjiang [J]. Meteorological Monthly (in Chinese), 38(8): 921−931. doi: 10.7519/j.issn.1000-0526.2012.8.004
    [3] 董海萍, 赵思雄, 曾庆存. 2007. 低纬高原地形对强降水过程影响的数值试验研究 [J]. 气候与环境研究, 12(3): 381−396. doi: 10.3969/j.issn.1006-9585.2007.03.020

    Dong H P, Zhao S X, Zeng Q C. 2007. A numerical simulation of topography on heavy rainfall in lower latitude plateau [J]. Climatic and Environmental Research (in Chinese), 12(3): 381−396. doi: 10.3969/j.issn.1006-9585.2007.03.020
    [4] 郭玉娣, 徐祥德, 陈渭民, 等. 2014. “鱼尾”状地形热力效应对天山降水系统及水资源的影响 [J]. 高原气象, 33(5): 1363−1373. doi: 10.7522/j.issn.1000-0534.2013.00120

    Guo Y D, Xu X D, Chen W M, et al. 2014. Heat source over ‘Fishtail’ type topography effects on Tianshan Mountain regions precipitation systems and water resources [J]. Plateau Meteorology (in Chinese), 33(5): 1363−1373. doi: 10.7522/j.issn.1000-0534.2013.00120
    [5] 何钰, 李国平. 2013. 青藏高原大地形对华南持续性暴雨影响的数值试验 [J]. 大气科学, 37(4): 933−944. doi: 10.3878/j.issn.1006-9895.2012.12102

    He Y, Li G P. 2013. Numerical experiments on influence of Tibetan Plateau on persistent heavy rain in South China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(4): 933−944. doi: 10.3878/j.issn.1006-9895.2012.12102
    [6] 侯瑞钦, 景华, 王丛梅, 等. 2009. 太行山地形对一次河北暴雨过程影响的数值研究 [J]. 气象科学, 29(5): 687−693. doi: 10.3969/j.issn.1009-0827.2009.05.020

    Hou R Q, Jing H, Wang C M. 2009. Numerical simulation of the impacts of Taihang Mountain on rainfall in Heibei [J]. Scientia Meteorologica Sinica (in Chinese), 29(5): 687−693. doi: 10.3969/j.issn.1009-0827.2009.05.020
    [7] 景丽, 陆汉城, 朱民. 2004. 复杂地形与锋面系统共同作用对台湾岛暴雨影响的数值分析 [J]. 气象科学, 24(1): 35−44. doi: 10.3969/j.issn.1009-0827.2004.01.005

    Jing L, Lu H C, Zhu M. 2004. The effects of front and topography on heavy rain in Taiwan [J]. Scientia Meteorologica Sinica (in Chinese), 24(1): 35−44. doi: 10.3969/j.issn.1009-0827.2004.01.005
    [8] Kristovich D A R, Young G S, Verlinde J, et al. 2000. The lake-induced convection experiment and the snowband dynamics project [J]. Bull. Amer. Meteor. Soc., 81(3): 519−542. doi:10.1175/1520-0477(2000)081<0519:tlceat>2.3.co;2
    [9] 李博, 刘黎平, 赵思雄, 等. 2013. 局地低矮地形对华南暴雨影响的数值试验 [J]. 高原气象, 32(6): 1638−1650. doi: 10.7522/j.issn.1000-0534.2012.00156

    Li B, Liu L P, Zhao S X, et al. 2013. Numerical experiment of the effect of local low terrain on heavy rainstorm of South China [J]. Plateau Meteorology (in Chinese), 32(6): 1638−1650. doi: 10.7522/j.issn.1000-0534.2012.00156
    [10] 李川, 陈静, 何光碧. 2006. 青藏高原东侧陡峭地形对一次强降水天气过程的影响 [J]. 高原气象, 25(3): 442−450. doi: 10.3321/j.issn:1000-0534.2006.03.012

    Li C, Chen J, He G B. 2006. Impact of the steep terrain of eastern Qinghai–Xizang Plateau on the genesis and development of extreme heavy rainfall event [J]. Plateau Meteorology (in Chinese), 25(3): 442−450. doi: 10.3321/j.issn:1000-0534.2006.03.012
    [11] 李如琦, 唐冶, 肉孜•阿基. 2015. 2010年新疆北部暴雪异常的环流和水汽特征分析 [J]. 高原气象, 34(1): 155−162. doi: 10.7522/j.issn.1000-0534.2013.00163

    Li R Q, Tang Y, Rouzi A J. 2015. Atmospheric circulation and water vapor characteristics of snowstorm anomalies in northern Xinjiang in 2010 [J]. Plateau Meteorology (in Chinese), 34(1): 155−162. doi: 10.7522/j.issn.1000-0534.2013.00163
    [12] 马淑红, 席元伟. 1997. 新疆暴雨的若干规律性 [J]. 气象学报, 55(2): 239−248. doi: 10.11676/qxxb1997.025

    Ma S H, Xi Y W. 1997. Some regularities of storm rainfall in Xinjiang, China [J]. Acta Meteorologica Sinica (in Chinese), 55(2): 239−248. doi: 10.11676/qxxb1997.025
    [13] 马玉芬, 赵玲, 赵勇. 2012a. 一次强天气过程天山地形方案的敏感性试验研究 [J]. 中国沙漠, 32(4): 1127−1134.

    Ma Y F, Zhao L, Zhao Y. 2012a. A sensitive experiment of impact of Tianshan Mountains landform on a rainstorm process [J]. Journal of Desert Research (in Chinese), 32(4): 1127−1134.
    [14] 马玉芬, 赵玲, 赵勇. 2012b. 天山地形对新疆强降水天气影响的数值模拟研究 [J]. 沙漠与绿洲气象, 6(5): 40−45. doi: 10.3969/j.issn.1002-0799.2012.05.013

    Ma Y F, Zhao L, Zhao Y. 2012b. Numerical smulation of Tianshan topographic effect on the precipitation in Xinjiang [J]. Desert and Oasis Meteorology (in Chinese), 6(5): 40−45. doi: 10.3969/j.issn.1002-0799.2012.05.013
    [15] Moore J T, Blakley P D. 1988. The role of frontogenetical forcing and conditional symmetric instability in the midwest snowstorm of 30-31 January 1982 [J]. Mon. Wea. Rev., 116(11): 2155−2171. doi:10.1175/1520-0493(1988)116<2155:troffa>2.0.co;2
    [16] Ohigashi T, Tsuboki K. 2005. Structure and maintenance process of stationary double snowbands along the coastal region [J]. J. Meteor. Soc. Japan, 83(3): 331−349. doi: 10.2151/jmsj.83.331
    [17] Sanders F. 1986. Frontogenesis and symmetric stability in a major New England snowstorm [J]. Mon. Wea. Rev, 114(10): 1847−1862. doi:10.1175/1520-0493(1986)114<1847:FASSIA>2.0.CO;2
    [18] Sanders F, Bosart L F. 1985. Mesoscale structure in the Megalopolitan snowstorm of 11–12 February 1983. Part I: Frontogenetical forcing and symmetric instability [J]. J. Atmos. Sci., 42(10): 1050−1061. doi:10.1175/1520-0469(1985)042<1050:MSITMS>2.0.CO;2
    [19] 史玉光, 孙照渤, 杨青. 2008. 新疆区域面雨量分布特征及其变化规律 [J]. 应用气象学报, 19(3): 326−332. doi: 10.3969/j.issn.1001-7313.2008.03.008

    Shi Y G, Sun Z B, Yang Q. 2008. Characteristics of area precipitation in Xinjiang region with its variations [J]. J. Appl. Meteor. Sci. (in Chinese), 19(3): 326−332. doi: 10.3969/j.issn.1001-7313.2008.03.008
    [20] Skamarock W C, Klemp J B, Dudhia J, et al. 2019. A description of the advanced research WRF Version 4 [R]. NCAR Tech. Note NCAR/TN-556+STR. doi: 10.5065/1dfh-6p97
    [21] 孙晶, 楼小凤, 胡志晋. 2009. 祁连山冬季降雪个例模拟分析(Ⅰ): 降雪过程和地形影响 [J]. 高原气象, 28(3): 485−495.

    Sun J, Lou X F, Hu Z J. 2009. Numerical simulation of snowfall in winter of Qilian Mountains. Part (Ⅰ): Snowfall process and orographic influence [J]. Plateau Meteorology (in Chinese), 28(3): 485−495.
    [22] Tsuboki K, Fujiyoshi Y, Wakahama G. 1989. Structure of a land breeze and snowfall enhancement at the leading edge [J]. J. Meteor. Soc. Japan, 67(5): 757−770. doi: 10.2151/jmsj1965.67.5_757
    [23] 王宇虹, 徐国强, 贾丽红, 等. 2015. 太行山对北京”7.21”特大暴雨的影响及水汽敏感性分析的数值研究 [J]. 气象, 41(4): 389−400. doi: 10.7519/j.issn.1000-0526.2015.04.001

    Wang Y H, Xu G Q, Jia L H, et al. 2015. Numerical simulation analysis on impact of Taihang Mountain and vapor sensitivity on the 21 July 2012 extremely severe rainstorm in Beijing [J]. Meteorological Monthly (in Chinese), 41(4): 389−400. doi: 10.7519/j.issn.1000-0526.2015.04.001
    [24] 杨莲梅, 杨涛, 贾丽红, 等. 2005. 新疆大暴雪气候特征及其水汽分析 [J]. 冰川冻土, 27(3): 389−396. doi: 10.3969/j.issn.1000-0240.2005.03.011

    Yang L M, Yang T, Jia L H, et al. 2005. Analyses of the climate characteristics and water vapor of heavy snow in Xinjiang region [J]. Journal of Glaciology and Geocryology (in Chinese), 27(3): 389−396. doi: 10.3969/j.issn.1000-0240.2005.03.011
    [25] 杨莲梅, 刘雯. 2016. 新疆北部持续性暴雪过程成因分析 [J]. 高原气象, 35(2): 507−519. doi: 10.7522/j.issn.1000-0534.2014.00161

    Yang L M, Liu W. 2016. Cause analysis of persistent heavy snow processes in the northern Xinjiang [J]. Plateau Meteorology (in Chinese), 35(2): 507−519. doi: 10.7522/j.issn.1000-0534.2014.00161
    [26] 于碧馨, 张云惠, 宋雅婷. 2016. 2012年前冬伊犁河谷持续性大暴雪成因分析 [J]. 沙漠与绿洲气象, 10(5): 44−51. doi: 10.3969/j.issn.1002-0799.2016.05.007

    Yu B X, Zhang Y H, Song Y T. 2016. Cause analysis of continuous heavy blizzard over Yili in the previous winter of 2012 [J]. Desert and Oasis Meteorology (in Chinese), 10(5): 44−51. doi: 10.3969/j.issn.1002-0799.2016.05.007
    [27] 张家宝, 邓子风. 1987. 新疆降水概论 [M]. 北京: 气象出版社, 89–91.

    Zhang J B, Deng Z F. 1987. Introduction to Precipitation in Xinjiang (in Chinese) [M]. Beijing: China Meteorological Press, 89–91.
    [28] 庄晓翠, 李健丽, 李博渊, 等. 2019. 天山北坡2次暴雪过程机理分析 [J]. 沙漠与绿洲气象, 13(1): 29−38. doi: 10.12057/j.issn.1002-0799.2019.01.005

    Zhuang X C, Li J L, Li B Y, et al. 2019. Mechanism analysis of two class blizzard process in the north slope of Tianshan Mountains [J]. Desert and Oasis Meteorology (in Chinese), 13(1): 29−38. doi: 10.12057/j.issn.1002-0799.2019.01.005
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  30
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 录用日期:  2021-05-19
  • 网络出版日期:  2021-05-11

目录

    /

    返回文章
    返回