Seasonal Differences in the Trend Turning Characteristics of Surface Sensible Heat over the Central and Eastern Tibetan Plateau
-
摘要: 本文利用气候变化趋势转折判别模型(PLFIM),分析了1982~2018年青藏高原中东部70个气象站点地表感热趋势演变特征的季节差异,并利用线性倾向估计和方差分析方法定量评估了影响不同季节地表感热变化的关键气象要素。结果显示:(1)高原中东部四季平均地表感热通量均存在显著趋势转折特征,整体来看,秋、冬季转折时间较早(1999年),春、夏季稍晚(2000年);分区来看,高原Ⅱ区(东部)的转折时间最早,然后向Ⅳ区(东南部)和Ⅰ区(北部)扩展,高原Ⅲ区(西南部)转折时间最晚。在地表感热趋势转折之前,以夏季的感热减弱最突出,其次为春季和秋季,冬季最弱;在地表感热趋势转折之后,冬季的地表感热的增强最强,其他季节增强趋势相当。冬季和春季高原地表感热趋势转折的关键区分别在高原的东部和南部,夏、秋季的关键区主要为高原的Ⅱ区(东部)和Ⅲ区(西南部)。(2)在地表感热趋势转折之前,地面风速的减小对高原四季地表感热的减弱趋势均有重要贡献;但地表感热趋势转折之后,影响其趋势变化的关键气象要素在四季存在显著差异,夏季仍以地面风速的变化为主导,秋、冬季受地气温差和地面风速变化的共同影响,而春季地气温差的增大成为其趋势增强的主因。同时,在地表感热的年际变化中,地气温差的影响比地面风速更加突出,特别是在秋、冬季,转折前后地气温差始终是决定其年际变化的主导因子,春季高原东部也主要受地气温差变化所影响,夏季在地表感热趋势转折之前,受地气温差和地面风速的共同影响,而转折后,地气温差对其的影响更加突出。Abstract: This paper employed the piecewise linear fitting model (PLFIM) to analyze the seasonal differences of Surface Sensible Heat (SSH) trend evolution characteristics at 70 meteorological stations on the central and eastern part of Tibetan Plateau (TP) during 1982–2018. The key meteorological factors influencing the changes of SSH in different seasons were quantitatively evaluated using the linear tendency estimation and variance method analysis. Results show that: (1) the seasonal average SSH fluxes on the central and eastern TP have a trend turning feature in all four seasons. As a whole, the trend turning time of autumn and winter is earlier (1999) and that of spring and summer is later (2000). In terms of region, the turning time is earliest in Zone II (Eastern part of TP) and then expands to Zone IV (Southeastern part of TP) and Zone I (Northern part of TP), while the turning time is latest in Zone III (Southwestern part of TP). Before the trend turning time, the weakening of the SSH is most prominent in summer, followed by spring and autumn, and weakest in winter. After the trend turning time, the enhancement of SSH is strongest in winter and the enhancement trend is similar in other seasons. In winter and spring, the key areas for the trend turning of SSH are in the eastern and southern part of TP, respectively, while the key areas are mainly in Zone II and III in summer and autumn. (2) Before the trend turning time, the decrease in the surface wind speed has an important contribution to the decreasing trend of the SSH in four seasons; however, after the trend turning time, the key meteorological factors affecting the trend of SSH have significant differences in the four seasons, i.e., the change of surface wind speed is still dominant in summer, whereas winter and autumn are affected by both the variations of the ground-air temperature difference and surface wind speed. The increase of ground-air temperature difference in spring is the main reason for the trend strengthening of SSH. Additionally, in the interannual variability of SSH, the effect of the ground-air temperature difference is more prominent than that of the surface wind speed, particularly in autumn and winter. The ground-air temperature difference is always the dominant factor affecting its interannual variation. The eastern part of TP is primarily affected by the ground-air temperature difference in spring. Before the trend turning time, the interannual variability of the SSH in summer is affected by both the variations of ground-air temperature difference and surface wind speed. After the trend turning time, the influence of ground-air temperature difference on the SSH is more prominent.
-
图 1 青藏高原中东部70站分布及其下垫面草甸类型和气候区划分(引自张璐等, 2020)
Figure 1. Distribution of 70 stations in the Central and East Tibetan Plateau and their underlying surface meadow types and climatic zone division (cited from Zhang et al., 2020)
图 3 1982~2018年青藏高原四季70个气象站地表感热趋势转折年份分布:(a)冬季;(b)春季;(c)夏季;(d)秋季。N表示没有检测到趋势变化
Figure 3. Distribution of trend turning years of surface sensible heat at 70 meteorological stations on the Tibetan Plateau in (a) winter, (b) spring, (c) summer, and (d) autumn during 1982–2018. N indicates stations with no significant trend turning
图 4 1982~2018年青藏高原四季各站地表感热趋势(a1–d1)转折前和(a2–d2)转折后气候倾向率分布 [单位:W m−2 (10a)−1]:(a1,a2)冬季;(b1,b2)春季;(c1,c2)夏季;(d1,d2)秋季。实心圆点表示通过了α=0.05的显著性水平t检验
Figure 4. Distribution of climate tendency rates (a1–d1) before and (a2–d2) after the trend turning years of the surface sensible heat at 70 meteorological stations on the Tibetan Plateau in (a1, a2) winter, (b1, b2) spring, (c1, c2) summer, and (d1, d2) autumn [units: W m−2 (10a)−1]; Solid points are passing tested by α=0.05 significance level t-test
图 6 青藏高原四季地表感热趋势(a1–d1)转折前和(a2–d2)转折后各气象站点地气温差(红点)和地面风速(蓝星)对其影响的方差贡献率超过50%的站点分布(单位:%):(a1–a2)冬季;(b1–b2)春季;(c1–c2)夏季;(d1–d2)秋季。图中数值表示方差贡献率
Figure 6. Distribution of stations with the variance contribution rate of ground–air temperature difference (red dots) or surface wind speed (blue stars) on the surface sensible heat variation over 50% before and after the trend turning years of the surface sensible heat on the Tibetan Plateau in (a1–a2) winter, (b1–b2) spring, (c1–c2) summer, and (d1–d2) autumn (units: %). The values in the figures represent the variance contribution rate
图 7 82~2018年东亚副热带地区四季平均200 hPa(U200,实线)和500 hPa(U500,虚线)纬向风变化(范围:25°~45°N,80°~120°E):(a)冬季;(b)春季;(c)夏季;(d)秋季
Figure 7. Seasonal mean zonal wind variations of 200 hPa (U200, solid line) and 500 hPa (U500, dotted line) over the East Asian subtropics (range: 25°N–45°N, 80°E–120°E) during 1982–2018 in (a) winter, (b) spring, (c) summer, and (d) autumn
表 1 青藏高原四季整体及各区地表感热趋势转折年份及其趋势转折前、后的气候倾向率
Table 1. Table 1 Climatic tendency rates before and after the trend turning time of the surface sensible heat flux on each district and the whole Tibetan Plateau in four seasons
气候倾向率 /W m−2 (10a)−1 Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区 全区 冬季 转折年 1998 1998 2004 2000 1999 转折前 −2.23** −1.43** −0.60 −2.43** −1.29** 转折后 3.90** 3.80** 3.07* 2.89** 3.12** 春季 转折年 2003 1997 2002 2000 2000 转折前 −3.14** −1.98* −4.68** −5.57* −3.25** 转折后 1.17 2.73** 2.60* 3.94* 2.82** 夏季 转折年 2000 2000 2001 2000 2000 转折前 −4.76** −2.59* −6.99** −5.88** −4.57** 转折后 1.14 3.14* 3.45* 1.94 2.86* 秋季 转折年 2000 1998 2002 1999 1999 转折前 −2.41** −2.14** −2.33** −2.69* −2.39** 转折后 4.59** 2.69** 3.15* 2.28* 2.78** 注:**表示通过α=0.01显著性水平t检验,*表示通过α=0.05显著性水平t检验 表 2 青藏高原四季各区及整体地表温度(
$T_{\rm{s}} $ )、气温($T_{\rm{a}} $ )、地气温差($T_{\rm{s}} $ -$T_{\rm{a}} $ )和地面风速($V $ )在地表感热趋势转折前、后的气候倾向率($R_{\rm{ct}} $ )Table 2. Climate tendency rates (
$R_{\rm{ct}} $ ) of the ground temperature ($T_{\rm{s}} $ ), air temperature ($T_{\rm{a}} $ ), ground-air temperature difference ($T_{\rm{s}} $ -$T_{\rm{a}} $ ), and surface wind speed ($V $ ) before and after the trend turning years of surface sensible heat on each district and whole Tibetan Plateau in four seasonsⅠ区 Ⅱ区 Ⅲ区 Ⅳ区 全区 冬季 转折年 1998 1998 2004 2000 1999 Rct (Ts)/°C (10a)−1 转折前 0.17 0.02 0.59* 0.47 0.36 转折后 0.73* 0.90** 0.34 0.63** 0.72** Rct (Ta)/°C(10a)−1 转折前 0.40 0.13 0.51 0.57 0.38 转折后 0.14 0.35 0.08 0.42 0.31 Rct (Ts-Ta) /°C(10a)−1 转折前 −0.23* −0.10 0.08 −0.10 −0.02 转折后 0.59** 0.54** 0.26 0.22 0.41** Rct (V) /m s−1 (10a)−1 转折前 −0.13 −0.29** −0.40** −0.30** −0.29** 转折后 0.04 0.20** 0.30** 0.20** 0.18** 春季 转折年 2003 1997 2002 2000 2000 Rct (Ts)/°C (10a)−1 转折前 0.79** 0.54** 0.48 0.45 0.69** 转折后 0.60* 0.58* 0.32 0.63* 0.73** Rct (Ta)/°C (10a)−1 转折前 0.73** 0.46 0.30 0.50* 0.59* 转折后 0.40 0.32 0.14 0.47* 0.51* Rct (Ts-Ta)/°C (10a)−1 转折前 0.06 0.08 0.17 −0.06 0.10 转折后 0.20 0.25** 0.18 0.16 0.22 Rct (V)/m s−1 (10a)−1 转折前 −0.26** −0.26** −0.49** −0.37* −0.33** 转折后 −0.06 0.06 0.11 0.16* 0.08 夏季 转折年 2000 2000 2001 2000 2000 Rct (Ts)/°C (10a)−1 转折前 0.91** 0.63** −0.03 0.03 0.39** 转折后 0.31 0.45 0.39 0.20 0.40 Rct (Ta)/°C (10a)−1 转折前 0.89** 0.55** 0.14 0.07 0.40** 转折后 0.21 0.44 0.39 0.40* 0.40* Rct (Ts-Ta)/°C (10a)−1 转折前 0.03 0.08 −0.17 −0.03 0.00 转折后 0.10 0.01 0.00 −0.19 0.00 Rct (V)/m s−1 (10a)−1 转折前 −0.28** −0.21** −0.40** −0.36** −0.29** 转折后 0.04 0.17** 0.21** 0.19** 0.17** 秋季 转折年 2000 1998 2002 1999 1999 Rct (Ts)/°C (10a)−1 转折前 0.29 0.18 0.56* 0.63* 0.47 转折后 0.85** 0.47** 0.54 0.32 0.52* Rct (Ta)/°C (10a)−1 转折前 0.50 0.25 0.53* 0.68* 0.50 转折后 0.10 0.22 0.42 0.35 0.28 Rct (Ts-Ta)/°C (10a)−1 转折前 −0.21* −0.08 0.03 −0.04 −0.03 转折后 0.75** 0.25* 0.12 −0.03 0.24* Rct (V)/m s−1 (10a)−1 转折前 −0.13* −0.19** −0.29** −0.21** −0.23** 转折后 0.04 0.15** 0.32** 0.20** 0.16** 注:**表示通过α=0.01显著性t检验,*表示通过α=0.05显著性t检验 表 3 青藏高原地表感热趋势转折前、后地气温差和地面风速对其年际变化影响的方差贡献率超过50%的站点比例
Table 3. Proportion of stations with the variance contribution rate of the ground-air temperature difference and surface wind speed on the surface sensible heat variation over 50% before and after the trend turning years of the surface sensible heat on each district and the whole Tibetan Plateau in four seasons
季节 影响因子 方差贡献率超过50%的站点比例 转折前 转折后 Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区 全区 Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区 全区 冬季 地气温差 6/7 24/24 13/14 8/8 51/53 7/7 21/23 12/13 9/9 49/52 地面风速 1/7 0/24 1/14 0/8 2/53 0/7 2/23 1/13 0/9 3/52 春季 地气温差 2/5 18/22 6/14 8/9 34/50 3/5 21/25 4/13 8/10 36/53 地面风速 3/5 4/22 8/14 1/9 16/50 2/5 4/25 9/13 2/10 17/53 夏季 地气温差 2/4 12/23 6/14 4/8 24/49 3/4 18/22 7/13 8/9 36/48 地面风速 2/4 11/23 8/14 4/8 25/49 1/4 4/22 6/13 1/9 12/48 秋季 地气温差 5/6 16/25 9/12 7/9 37/52 7/7 24/27 9/14 8/9 48/57 地面风速 1/6 9/25 3/12 2/9 15/52 0/7 3/27 5/14 1/9 9/57 -
[1] 蔡英, 李栋梁, 汤懋苍, 等. 2003. 青藏高原近50年来气温的年代际变化 [J]. 高原气象, 22(5): 464−470. doi: 10.3321/j.issn:1000-0534.2003.05.006Cai Ying, Li Dongliang, Tang Maocang, et al. 2003. Decadal temperature changes over Qinghai–Xizang Plateau in recent 50 years [J]. Plateau Meteorology (in Chinese), 22(5): 464−470. doi: 10.3321/j.issn:1000-0534.2003.05.006 [2] 曹雯, 段春锋, 申双和. 2015. 1971–2010年中国大陆潜在蒸散变化的年代际转折及其成因 [J]. 生态学报, 35(15): 5085−5094. doi: 10.5846/stxb201309022184Cao Wen, Duan Chunfeng, Shen Shuanghe. 2015. Inter–decadal breakpoint in potential evapotranspiration trends and the main causes in China during the period 1971–2010 [J]. Acta Ecologica Sinica (in Chinese), 35(15): 5085−5094. doi: 10.5846/stxb201309022184 [3] Chen L X, Reiter E R, Feng Z Q. 1985. The atmospheric heat source over the Tibetan Plateau: May–August 1979 [J]. Mon. Wea. Rev., 113: 1771−1790. doi:10.1175/1520-0493(1985)113<1771:TAHSOT>2.0.CO;2 [4] Chen L, Pryor S C, Wang H, et al. 2019. Distribution and variation of the surface sensible heat flux over the central and eastern Tibetan Plateau: Comparison of station observations and multireanalysis products [J]. J. Geophys. Res. Atmos., 124(12): 6191−6206. doi: 10.1029/2018JD030069 [5] 程国栋, 赵林, 李韧, 等. 2019. 青藏高原多年冻土特征、变化及影响 [J]. 科学通报, 64(27): 2783−2795. doi: 10.1360/TB-2019-0191Cheng Guodong, Zhao Lin, Li Ren, et al. 2019. Characteristic, changes and impacts of permafrost on Qinghai–Tibet Plateau [J]. Chinese Science Bulletin (in Chinese), 64(27): 2783−2795. doi: 10.1360/TB-2019-0191 [6] Chung P H, Li T. 2013. Interdecadal relationship between the mean state and El Niño types [J]. J. Climate, 26(2): 361−379. doi: 10.1175/JCLI-D-12-00106.1 [7] Cui Y F, Duan A M, Liu Y M, et al. 2015. Interannual variability of the spring atmospheric heat source over the Tibetan Plateau forced by the North Atlantic SSTA [J]. Clim. Dyn., 45(5-6): 1617−1634. doi: 10.1007/s00382-014-2417-9 [8] 戴逸飞, 王慧, 李栋梁. 2016. 卫星遥感结合气象资料计算的青藏高原地面感热特征分析 [J]. 大气科学, 40(5): 1009−1021. doi: 10.3878/j.issn.1006-9895.1512.15225Dai Yifei, Wang Hui, Li Dongliang. 2016. Characteristics of surface sensible heat flux calculated from satellite remote sensing and field observations in the Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(5): 1009−1021. doi: 10.3878/j.issn.1006-9895.1512.15225 [9] 戴逸飞, 李栋梁, 王慧. 2017. 青藏高原感热指数的建立及与华南降水的联系 [J]. 应用气象学报, 28(2): 157–167. Dai Yifei, Li Dongliang, Wang Hui. 2017. A new index for surface sensible heat flux over the Tibetan Plateau and its possible impacts on the rainfall in South China [J]. Journal of Applied Meteorological Science (in Chinese), 28(2): 157−167. doi: 10.11898/1001-7313.20170203 [10] Duan A M, Wu G X. 2005. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia [J]. Clim. Dyn., 24(7): 793−807. doi: 10.1007/s00382-004-0488-8 [11] Duan A M, Wu G X. 2008. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations [J]. J. Climate, 21(13): 3149−3164. doi: 10.1175/2007JCLI1912.1 [12] Duan A M, Li F, Wang M R, et al. 2011. Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon [J]. J. Climate, 24(21): 5671−5682. doi: 10.1175/JCLI-D-11-00052.1 [13] Duan A M, Wu G X, Liu Y M, et al. 2012. Weather and climate effects of the Tibetan Plateau [J]. Adv. Atmos. Sci., 29(5): 978−992. doi: 10.1007/s00376-012-1220-y [14] 冯松, 姚檀栋, 江灏, 等. 2001. 青藏高原近600年的温度变化 [J]. 高原气象, 20(1): 105−108. doi: 10.3321/j.issn:1000-0534.2001.01.018Feng Song, Yao Tandong, Jiang Hao, et al. 2001. Temperature variations over Qinghai–Xizang Plateau in the past 600 years [J]. Plateau Meteorology (in Chinese), 20(1): 105−108. doi: 10.3321/j.issn:1000-0534.2001.01.018 [15] 符淙斌, 王强. 1992. 气候突变的定义和检测方法 [J]. 大气科学, 16(4): 482−493. doi: 10.3878/j.issn.1006-9895.1992.04.11Fu Congbin, Wang Qiang. 1992. The definition and detection of the abrupt climatic change [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 16(4): 482−493. doi: 10.3878/j.issn.1006-9895.1992.04.11 [16] Guo D L, Wang H J. 2013. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010 [J]. J. Geophys. Res. Atmos., 118(11): 5216−5230. doi: 10.1002/jgrd.50457 [17] 李栋梁, 魏丽, 李维京, 等. 2003. 青藏高原地面感热对北半球大气环流和中国气候异常的影响 [J]. 气候与环境研究, 8(1): 60−70. doi: 10.3878/j.issn.1006-9585.2003.01.08Li Dongliang, Wei Li, Li Weijing, et al. 2003. The effect of surface sensible heat flux of the Qinghai–Xizang Plateau on general circulation over the Northern Hemisphere and climatic anomaly of China [J]. Climatic and Environmental Research (in Chinese), 8(1): 60−70. doi: 10.3878/j.issn.1006-9585.2003.01.08 [18] Li R, Zhao L, Ding Y J, et al. 2012. Temporal and spatial variations of the active layer along the Qinghai–Tibet highway in a permafrost region [J]. Chin. Sci. Bull., 57(35): 4609−4616. doi: 10.1007/s11434-012-5323-8 [19] 李潇, 李栋梁, 王颖. 2015. 中国西北东部汛期降水对青藏高原东部春季感热在准3a周期上的响应 [J]. 气象学报, 73(4): 737−748. doi: 10.11676/qxxb2015.054Li Xiao, Li Dongliang, Wang Ying. 2015. Quasi 3-year period response of the rainy season precipitation over the eastern parts of Northwest China to the spring sensible heat flux over the eastern part of the Tibetan Plateau [J]. Acta Meteorologica Sinica (in Chinese), 73(4): 737−748. doi: 10.11676/qxxb2015.054 [20] 刘森峰, 段安民. 2017. 基于青藏高原春季感热异常信号的中国东部夏季降水统计预测模型 [J]. 气象学报, 75(6): 903−916. doi: 10.11676/qxxb2017.066Liu Senfeng, Duan Anmin. 2017. A statistical forecast model for summer precipitation in eastern China based on spring sensible heat anomaly in the Tibetan Plateau [J]. Acta Meteorologica Sinica (in Chinese), 75(6): 903−916. doi: 10.11676/qxxb2017.066 [21] 刘珂, 姜大膀. 2014. 中国夏季和冬季极端干旱年代际变化及成因分析 [J]. 大气科学, 38(2): 309−321. doi: 10.3878/j.issn.1006-9895.2013.12219Liu Ke, Jiang Dabang. 2014. Interdecadal change and cause analysis of extreme summer and winter droughts over China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(2): 309−321. doi: 10.3878/j.issn.1006-9895.2013.12219 [22] Liu Y M, Wu G X, Hong J L, et al. 2012. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. change [J]. Clim. Dyn., 39(5): 1183−1195. doi: 10.1007/s00382-012-1335-y [23] Ma W Q, Ma Y M. 2016. Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau [J]. Theor. Appl. Climatol., 125(1): 45−52. doi: 10.1007/S00704-015-1495-X [24] 马耀明, 胡泽勇, 田立德, 等. 2014. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展 [J]. 地球科学进展, 29(2): 207−215. doi: 10.11867/j.issn.1001-8166.2014.02.0207Ma Yaoming, Hu Zeyong, Tian Lide, et al. 2014. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia [J]. Advances in Earth Science (in Chinese), 29(2): 207−215. doi: 10.11867/j.issn.1001-8166.2014.02.0207 [25] 任芝花, 余予, 邹凤玲, 等. 2012. 部分地面要素历史基础气象资料质量检测 [J]. 应用气象学报, 23(6): 739−747. doi: 10.3969/j.issn.1001-7313.2012.06.011Ren Zhihua, Yu Yu, Zou Fengling, et al. 2012. Quality detection of surface historical basic meteorological data [J]. Journal of Applied Meteorological Science (in Chinese), 23(6): 739−747. doi: 10.3969/j.issn.1001-7313.2012.06.011 [26] 施晓晖, 徐祥德. 2006. 中国大陆冬夏季气候型年代际转折的区域结构特征 [J]. 科学通报, 51(17): 2075–2084. Shi Xiaohui, Xu Xiangde. 2007. Regional characteristics of the interdecadal turning of winter/summer climate modes in Chinese mainland [J]. Chinese Science Bulletin, 52(1): 101–112. doi: 10.3321/j.issn:0023-074X.2006.17.017 [27] Syed F S, Giorgi F, Pal J S, et al. 2010. Regional climate model simulation of winter climate over Central–Southwest Asia, with emphasis on NAO and ENSO effects [J]. Int. J. Climatol., 30(2): 220−235. doi: 10.1002/JOC.1887 [28] Tomé A R, Miranda P M A. 2004. Piecewise linear fitting and trend changing points of climate parameters [J]. Geophys. Res. Lett., 31(2): L02207. doi: 10.1029/2003GL019100 [29] Wang S Z, Ma Y M. 2011. Characteristics of land–atmosphere interaction parameters over the Tibetan Plateau [J]. J. Hydrometeorol, 12(4): 702−708. doi: 10.1175/2010JHM1275.1 [30] Wang H, Li D L. 2019. Decadal variability in summer precipitation over eastern China and its response to sensible heat over the Tibetan Plateau since the early 2000s [J]. Int. J. Climatol., 39(3): 1604−1617. doi: 10.1002/joc.5903 [31] 王欢, 李栋梁. 2020. 21世纪初青藏高原感热年代际增强对中国东部季风雨带关键区夏季降水年代际转折的影响 [J]. 地球物理学报, 63(2): 412−426. doi: 10.6038/cjg2020M0397Wang Huan, Li Dongliang. 2020. Impacts of decadal variability in sensible heat over the Tibetan Plateau on decadal turning of summer precipitation over dominant regions of monsoon rainfall band in eastern China since the early 2000s [J]. Chinese Journal of Geophysics (in Chinese), 63(2): 412−426. doi: 10.6038/cjg2020M0397 [32] 王慧, 李栋梁, 胡泽勇, 等. 2008. 陆面上总体输送系数研究进展 [J]. 地球科学进展, 23(12): 1249−1259. doi: 10.11867/j.issn.1001-8166.2008.12.1249Wang Hui, Li Dongliang, Hu Zeyong, et al. 2008. A review of the study of the bulk transfer coefficients over the land [J]. Advances in Earth Science (in Chinese), 23(12): 1249−1259. doi: 10.11867/j.issn.1001-8166.2008.12.1249 [33] 王美蓉, 周顺武, 段安民. 2012. 近30年青藏高原中东部大气热源变化趋势: 观测与再分析资料对比 [J]. 科学通报, 57(2–3): 178–188.Wang Meirong, Zhou Shunwu, Duan Anmin. 2012. Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: Comparison of observations and reanalysis data [J]. Chinese Science Bulletin, 57(5): 548–557. doi: 10.1007/s11434-011-4838-8 [34] Wang H, Hu Z Y, Li D L, et al. 2019. Estimation of the surface heat transfer coefficient over the east–central Tibetan Plateau using satellite remote sensing and field observation data [J]. Theor. Appl. Climatol., 138(1): 169−183. doi: 10.1007/S00704-019-02815-X [35] 王婷, 李照国, 吕世华, 等. 2019. 青藏高原积雪对陆面过程热量输送的影响研究 [J]. 高原气象, 38(5): 920−934. doi: 10.7522/j.issn.1000-0534.2019.00026Wang Ting, Li Zhaoguo, Lü Shihua, et al. 2019. Study on the effects of snow cover on heat transport in land surface processes over Qinghai–Tibetan Plateau [J]. Plateau Meteorology (in Chinese), 38(5): 920−934. doi: 10.7522/j.issn.1000-0534.2019.00026 [36] 魏凤英. 2007. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社, 124ppWei Fengying. 2007. Statistical Diagnosis and Prediction Technology of the Climate (in Chinese) [M]. 2nd ed. Beijing: China Meteorological Press, 124pp. [37] 吴国雄, 刘屹岷, 刘新, 等. 2005. 青藏高原加热如何影响亚洲夏季的气候格局 [J]. 大气科学, 29(1): 47−56. doi: 10.3878/j.issn.1006-9895.2005.01.06Wu Guoxiong, Liu Yimin, Liu Xin, et al. 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer [J]. Chinese Journal of Atmospheric Science (in Chinese), 29(1): 47−56. doi: 10.3878/j.issn.1006-9895.2005.01.06 [38] Wu Q B, Zhang T J, Liu Y Z. 2010. Permafrost temperatures and thickness on the Qinghai–Tibet Plateau [J]. Global Planet. Change, 72(1-2): 32−38. doi: 10.1016/j.gloplacha.2010.03.001 [39] 解晋, 余晔, 刘川, 等. 2018. 青藏高原地表感热通量变化特征及其对气候变化的响应 [J]. 高原气象, 37(1): 28−42. doi: 10.7522/j.issn.1000-0534.2017.00019Xie Jin, Yu Ye, Liu Chuan, et al. 2018. Characteristics of surface sensible heat flux over the Qinghai–Tibetan Plateau and its response to climate change [J]. Plateau Meteorology (in Chinese), 37(1): 28−42. doi: 10.7522/j.issn.1000-0534.2017.00019 [40] 徐祥德, 赵天良, 施晓晖, 等. 2015. 青藏高原热力强迫对中国东部降水和水汽输送的调制作用 [J]. 气象学报, 73(1): 20−35. doi: 10.11676/qxxb2014.051Xu Xiangde, Zhao Tianliang, Shi Xiaohui, et al. 2015. A study of the role of the Tibetan Plateau’s thermal forcing in modulating rainband and moisture transport in eastern China [J]. Acta Meteorologica Sinica (in Chinese), 73(1): 20−35. doi: 10.11676/qxxb2014.051 [41] 严晓强, 胡泽勇, 孙根厚, 等. 2019. 那曲高寒草地长时间地面热源特征及其气候影响因子分析 [J]. 高原气象, 38(2): 253−263. doi: 10.7522/j.issn.1000-0534.2018.00091Yan Xiaoqiang, Hu Zeyong, Sun Genhou, et al. 2019. Characteristics of long–term surface heat source and its climate influence factors in Nagqu alpine meadow [J]. Plateau Meteorology (in Chinese), 38(2): 253−263. doi: 10.7522/j.issn.1000-0534.2018.00091 [42] Yang K, Guo X F, Wu B Y. 2011. Recent trends in surface sensible heat flux on the Tibetan Plateau [J]. Sci. China Earth Sci., 54(1): 19−28. doi: 10.1007/s11430-010-4036-6 [43] Yang K, Wu H, Qin J, et al. 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review [J]. Global Planet. Change, 112: 79−91. doi: 10.1016/j.gloplacha.2013.12.001 [44] Ye D Z, Wu G X. 1998. The role of the heat source of the Tibetan Plateau in the general circulation [J]. Meteor Atmos. Phys., 67(1-4): 181−198. doi: 10.1007/BF01277509 [45] Yeh T C. 1982. Some aspects of the thermal influences of the Qinghai–Tibetan Plateau on the atmospheric circulation [J]. Arch. Meteor. Geophys. Bioclimatol. Ser. A, 31(3): 205−220. doi: 10.1007/BF02258032 [46] 于威, 刘屹岷, 杨修群, 等. 2018. 青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析 [J]. 高原气象, 37(5): 1161−1176. doi: 10.7522/j.issn.1000-0534.2018.00027Yu Wei, Liu Yimin, Yang Xiuqun, et al. 2018. The interannual and decadal variation characteristics of the surface sensible heating at different elevations over the Qinghai–Tibetan Plateau and attribution analysis [J]. Plateau Meteorology (in Chinese), 37(5): 1161−1176. doi: 10.7522/j.issn.1000-0534.2018.00027 [47] 于涵, 张杰, 刘诗梦. 2019. 青藏高原地表非绝热加热模态及其与中国北方环流异常的联系 [J]. 高原气象, 38(2): 237−252. doi: 10.7522/j.issn.1000-0534.2018.00079Yu Han, Zhang Jie, Liu Shimeng. 2019. Surface diabatic heating mode of the Qinghai–Tibetan Plateau and its relationship with the anomalous circulation in northern China [J]. Plateau Meteorology (in Chinese), 38(2): 237−252. doi: 10.7522/j.issn.1000-0534.2018.00079 [48] 张长灿, 李栋梁, 王慧, 等. 2017. 青藏高原春季地表感热特征及其对中国东部夏季雨型的影响 [J]. 高原气象, 36(1): 13−23. doi: 10.7522/j.issn.1000-0534.2016.00028Zhang Changcan, Li Dongliang, Wang Hui, et al. 2017. Characteristics of the surface sensible heat on the Qinghai–Xizang Plateau in the spring and its influences on the summertime rainfall pattern over the Eastern China [J]. Plateau Meteorology (in Chinese), 36(1): 13−23. doi: 10.7522/j.issn.1000-0534.2016.00028 [49] 张超, 田荣湘, 茆慧玲, 等. 2018. 青藏高原4月感热通量异常对长江以南夏季降水的影响 [J]. 大气科学学报, 41(6): 775−785. doi: 10.13878/j.cnki.dqkxxb.20170124003Zhang Chao, Tian Rongxiang, Mao Huiling, et al. 2018. Impact of the sensible heat flux anomaly over the Tibetan Plateau in April on summer precipitation in the south of the Yangtze River region [J]. Transactions of Atmospheric Sciences (in Chinese), 41(6): 775−785. doi: 10.13878/j.cnki.dqkxxb.20170124003 [50] Zhang H X, Li W P, Li W J. 2019. Influence of late springtime surface sensible heat flux anomalies over the Tibetan and Iranian plateaus on the location of the south Asian high in early summer [J]. Adv. Atmos. Sci., 36(1): 93−103. doi: 10.1007/s00376-018-7296-2 [51] 张璐, 王慧, 石兴东, 等. 2020. 青藏高原中东部地表感热趋势转折特征及成因分析 [J]. 高原气象, 39(5): 912−924. doi: 10.7522/j.issn.1000-0534.2020.00050Zhang Lu, Wang Hui, Shi Xingdong, et al. 2020. Characteristics and causes of surface sensible heat trend transition in central and eastern Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 39(5): 912−924. doi: 10.7522/j.issn.1000-0534.2020.00050 [52] 赵勇, 钱永甫. 2007. 青藏高原地表热力异常与我国江淮地区夏季降水的关系 [J]. 大气科学, 31(1): 145−154. doi: 10.3878/j.issn.1006-9895.2007.01.15Zhao Yong, Qian Yongfu. 2007. Relationships between the surface thermal anomalies in the Tibetan Plateau and the rainfall in the Jianghuai area in summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(1): 145−154. doi: 10.3878/j.issn.1006-9895.2007.01.15 [53] 周秀骥, 赵平, 陈军明, 等. 2009. 青藏高原热力作用对北半球气候影响的研究 [J]. 中国科学D辑: 地球科学, 39(11): 1473–1486. Zhou Xiuji, Zhao Ping, Chen Junming, et al. 2009. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate [J]. Science in China Series D: Earth Sciences, 52(11): 1679–1693. doi: 10.1007/s11430-009-0194-9 [54] Zhu Z C, Bi J, Pan Y Z, et al. 2013. Global data sets of vegetation leaf area index (LAI) 3g and fraction of photosynthetically active radiation (FPAR) 3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011 [J]. Remote Sens., 5(2): 927−948. doi: 10.3390/rs5020927 [55] Zhu Y L, Wang H J, Ma J H, et al. 2015. Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s’ shift in East China summer rainfall [J]. J. Geophys. Res. Atmos., 120(17): 8817−8827. doi: 10.1002/2015JD023545 [56] Zhu L H, Huang G, Fan G Z, et al. 2017. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus [J]. Adv. Atmos. Sci., 34(10): 1249−1262. doi: 10.1007/s00376-017-6298-9 [57] Zuo Z Y, Zhang R H, Zhao P. 2011. The relation of vegetation over the Tibetan Plateau to rainfall in China during the boreal summer [J]. Clim. Dyn., 36(5-6): 1207−1219. doi: 10.1007/s00382-010-0863-6 [58] Zou D F, Zhao L, Sheng Y, et al. 2017. A new map of permafrost distribution on the Tibetan Plateau [J]. Cryosphere, 11(6): 2527−2542. doi: 10.5194/tc-11-2527-2017 -