高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太平洋上云水路径反演产品及其气候变化特征分析

钱小立 秦正坤 张文君

钱小立, 秦正坤, 张文君. 2022. 太平洋上云水路径反演产品及其气候变化特征分析[J]. 大气科学, 46(6): 1−13 doi: 10.3878/j.issn.1006-9895.2105.21063
引用本文: 钱小立, 秦正坤, 张文君. 2022. 太平洋上云水路径反演产品及其气候变化特征分析[J]. 大气科学, 46(6): 1−13 doi: 10.3878/j.issn.1006-9895.2105.21063
QIAN Xiaoli, QIN Zhengkun, ZHANG Wenjun. 2022. Cloud Liquid Water Path Retrieval Products over the Pacific Ocean and Their Climate Change Characteristics [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1−13 doi: 10.3878/j.issn.1006-9895.2105.21063
Citation: QIAN Xiaoli, QIN Zhengkun, ZHANG Wenjun. 2022. Cloud Liquid Water Path Retrieval Products over the Pacific Ocean and Their Climate Change Characteristics [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1−13 doi: 10.3878/j.issn.1006-9895.2105.21063

太平洋上云水路径反演产品及其气候变化特征分析

doi: 10.3878/j.issn.1006-9895.2105.21063
基金项目: 国家重点研发计划项目2016YFC0402702,国家自然科学基金青年项目41805076,中国气象科学研究院基本科研业务费专项资金项目2019Z006
详细信息
    作者简介:

    钱小立,男,1997年出生,硕士生,主要从事卫星资料的气候应用研究。E-mail:20191201014@nuist.edu.cn

    通讯作者:

    秦正坤,E-mail: qzk_0@nuist.edu.cn

  • 中图分类号: P467

Cloud Liquid Water Path Retrieval Products over the Pacific Ocean and Their Climate Change Characteristics

Funds: National Key R&D Program of China (Grant 2016YFC0402702), National Natural Science Foundation of China (Grant 41805076), Fundamental Research Funds of the Chinese Academy of Meteorological Sciences (Grant 2019Z006)
  • 摘要: 基于极轨卫星NOAA-15上的微波温度计AMSU-A(Advanced Microwave Sounding Unit-A)多年亮温观测资料,建立了全球海洋上的云液态水路径反演产品,并通过对比ERA5和FNL/NCEP再分析资料的云水路径产品,分析了反演产品对云液态水路径气候变化特征的再现能力,进一步通过线性回归和EEMD(Ensemble Empirical Mode Decomposition)方法分别分析了太平洋地区大气云水路径的线性和非线性气候变化趋势特征。结果表明,云水路径反演资料可以很好的再现多年平均空间分布特征及相应的气候变化趋势,云水路径气候趋势表现出明显的纬度带特征,增多和减小趋势随纬度带间隔出现,而且在北半球东太平洋地区,云水路径气候趋势的纬度带特征有向北迁移的现象。相比而言,反演产品的气候趋势与ERA5再分析资料有更好的相似性,而FNL资料对趋势的纬度带特征,尤其是纬度带特征的北移现象未能很好的再现,只是表现为赤道地区水汽减少,而两侧云水路径显著增加的特征。
  • 图  1  2000年1月10日太平洋地区的云液态水路径反演结果的空间分布图

    Figure  1.  Spatial distribution of cloud liquid water path inversion results in the Pacific on January 10, 2000

    图  2  云液态水路径CLWP反演结果随海表(a)温度和(b)风速的变率

    Figure  2.  Variability of CLWP (Cloud Liquid Water Path) change inversion results with sea surface (a) temperature and (b) wind speed

    图  3  (a, b)2005年、(c, d)2020年太平洋地区夏季平均CLWP空间分布:(a, c)反演1;(b, d)ERA5的CLWP产品

    Figure  3.  Spatial distribution of summer average CLWP in the Pacific region in (a, b) 2005 and (c, d) 2020: (a, c) Inversion 1; (b, d) CLWP products from ERA5

    图  4  2000~2020年太平洋地区不同区域平均CLWP的逐月变化(蓝线:反演1;红线:ERA5/CLWP产品):(a)(0°~10°S,120°~130°W);(b)(0°~10°N,110°~120°W);(c)(35°~45°N,170°~180°E)

    Figure  4.  Monthly variation of average CLWP in different regions of the Pacific from 2000 to 2020: (a) (0°–10°S, 120°–130°W); (b) (0°–10°N, 110°–120°W); (c) (35°–45°N, 170°–180°E). Blue lines: inversion 1; red lines: CLWP products from ERA5

    图  5  2002~2020年太平洋地区多年平均CLWP空间分布:(a)反演1;(b)反演2;(c)ERA5的CLWP产品;(d)FNL的CLWP产品

    Figure  5.  Spatial distribution of multi-year average CLWP in the Pacific region from 2002 to 2020: (a) Inversion 1; (b) inversion 2; (c) CLWP products from ERA5; (d) CLWP products from FNL

    图  6  2000~2020年太平洋上不同纬度带上CLWP的线性趋势。黑色实线:反演1,红色实线:反演2,黑色虚线:FNL的CLWP产品,红色虚线:ERA5的CLWP产品

    Figure  6.  Linear trend of CLWP at different latitudes in the Pacific from 2000 to 2020. Black solid line: inversion 1, red solid line: inversion 2, black dash line: CLWP products from FNL, red dash line: CLWP product from ERA5

    图  7  2000~2020年基于ERA5资料的CLWP反演产品的线性趋势与非线性趋势(实线:EEMD方法;虚线:线性趋势)

    Figure  7.  Linear trend and nonlinear trend of CLWP inversion products based on ERA5 data from 2000 to 2020. Solid lines: EEMD (Ensemble Empirical Mode Decomposition) method; dash lines: linear trend)

    图  8  2000~2020年太平洋各纬度带上CLWP反演产品的变化趋势

    Figure  8.  Variation trend of CLWP inversion products in various latitudes of the Pacific from 2000 to 2020

    图  9  (a)2005、(b)2010、(c)2015和(d)2020年7月太平洋上月平均CLWP反演产品的气候趋势空间分布

    Figure  9.  Spatial distribution of climate trend of last month’s average CLWP inversion products in the Pacific in July in (a) 2005, (b) 2010, (c) 2015, and (d) 2020

    图  10  5°N纬度带 EEMD趋势的不确定度。灰色线:100次EEMD趋势;红色线:趋势的平均值;蓝色线:表示一个标准偏差

    Figure  10.  Uncertainty of 5°N latitude zone EEMD trend.Gray line: 100 EEMD trends; Red line: average value of trend; Blue line: indicates a standard deviation

    图  11  各纬度带上的EEMD趋势的不确定度的标准差:(a)CLWP反演1;(b)ERA5的CLWP产品;(c)FNL的CLWP产品

    Figure  11.  Standard deviation of uncertainty of EEMD trend in each latitude band: (a) CLWP inversion 1; (b) CLWP products from ERA5; (c) CLWP products from FNL

    图  12  太平洋各纬度带上CLWP气候变化趋势:(a)ERA5的CLWP产品;(b)FNL的CLWP产品

    Figure  12.  Climate change trend of CLWP in various latitudes of the Pacific: (a) CLWP products from ERA5; (b) CLWP products from FNL

    图  13  (a)2005、(b)2010、(c)2015和2020年7月ERA5的CLWP产品太平洋上月平均CLWP EEMD分解后的空间分布

    Figure  13.  Spatial distribution of CLWP products from ERA5 in the Pacific Ocean after decomposition of last month’ s average CLWP EEMD in July (a) 2005, (b) 2010, (c) 2015 and (d) 2020

    图  14  图13,但为FNL的CLWP产品

    Figure  14.  Same as Fig. 13, but for CLWP products from FNL

    表  1  NOAA15/AMSU-A的各通道参数特征

    Table  1.   parameter characteristics of each channel of NOAA15/AMSU-A

    通道各通道参数
    频率/GHz辐射温度灵敏度/K带宽/MHz波束宽度
    123.8000.2112703.53°
    231.4000.2651803.41°
    350.3000.2191803.76°
    452.8000.1434003.72°
    553.596±0.1150.1481703.70°
    654.4000.1544003.68°
    754.9400.1324003.61°
    855.5000.1413303.63°
    9f0=57.2903440.2363303.51°
    10f0±0.2170.250783.51°
    11f0±0.322±0.0480.280363.51°
    12f0±0.322±0.0220.400163.51°
    13f0±0.322$ \pm $0.0100.53983.51°
    14f0±0.322±0.00450.91433.51°
    1589.0000.16660003.80°
    下载: 导出CSV
  • [1] Dai A G, Karl T R, Sun B M, et al. 2006. Recent trends in cloudiness over the United States: A tale of monitoring inadequacies [J]. Bull. Amer. Meteor. Soc., 87: 597−606. doi: 10.1175/BAMS-87-5-597
    [2] Greenwald T J, Stephens G L, Vonder Haar T H, et al. 1993. A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations [J]. J. Geophys. Res., 98: 18471−18488. doi: 10.1029/93JD00339
    [3] Grody N, Zhao J, Ferraro R, et al. 2001. Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit [J]. J. Geophys. Res., 106: 2943−2953. doi: 10.1029/2000JD900616
    [4] Huang N E, Wu Z H. 2008. A review on Hilbert-Huang transform: Method and its applications to geophysical studies [J]. Rev. Geophys., 46: RG2006. doi: 10.1029/2007RG000228
    [5] Mo T. 1999. AMSU-A antenna pattern corrections [J]. IEEE Trans. Geosci. Remote Sens., 37: 103−112. doi: 10.1109/36.739131
    [6] Norris J R. 1999. On trends and possible artifacts in global ocean cloud cover between 1952 and 1995 [J]. J. Climate, 12: 1864−1870. doi: 10.1175/1520-0442(1999)012<1864:OTAPAI>2.0.CO;2
    [7] Prabhakara C, Wang I, Chang A T C, et al. 1983. A statistical examination of Nimbus-7 SMMR data and remote sensing of sea surface temperature, liquid water content in the atmosphere and surface wind speed [J]. J. Climate Appl. Meteor., 22: 2023−2037. doi: 10.1175/1520-0450(1983)022<2023:ASEONS>2.0.CO;2
    [8] Qin Z, Zou X, Weng F. 2012. Comparison between linear and nonlinear trends in NOAA-15 AMSU-A brightness temperatures during 1998–2010 [J]. Climate Dyn., 39: 1763−1779. doi: 10.1007/s00382-012-1296-1
    [9] Wentz F J. 1997. A well-calibrated ocean algorithm for special sensor microwave/imager [J]. J. Geophys. Res., 102: 8703−8718. doi: 10.1029/96JC01751
    [10] Weng F Z, Grody N C. 1994. Retrieval of cloud liquid water using the Special Sensor Microwave Imager (SSM/I) [J]. J. Geophys. Res., 99: 25535−25551. doi: 10.1029/94JD02304
    [11] Weng F Z, Grody N C. 2000. Retrieval of ice cloud parameters using a microwave imaging radiometer [J]. J. Atmos. Sci., 57: 1069−1081. doi: 10.1175/1520-0469(2000)057<1069:ROICPU>2.0.CO;2
    [12] Weng F Z, Grody N C, Ferraro R, et al. 1997. Cloud liquid water climatology from the Special Sensor Microwave/Imager [J]. J. Climate, 10: 1086−1098. doi: 10.1175/1520-0442(1997)010<1086:CLWCFT>2.0.CO;2
    [13] Weng F Z, Ferraro R R, Grody N C. 2000. Effects of AMSU cross-scan asymmetry of brightness temperatures on retrieval of atmospheric and surface parameters [M]//Pampaloni P, Paloscia S. Microwave Radiometry and Remote Sensing of the Earth’ s Surface and Atmosphere. Utrecht: VSP, 255–262.
    [14] Weng F Z, Zhao L M, Ferraro R R, et al. 2003. Advanced microwave sounding unit cloud and precipitation algorithms [J]. Radio Sci., 38: 8068. doi: 10.1029/2002RS002679
    [15] Wu Z H, Huang N E. 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method [J]. Adv. Adapt. Data Anal., 1: 1−41. doi: 10.1142/S1793536909000047
    [16] Wu Z H, Huang N E, Chen X Y. 2009. The multi-dimensional ensemble empirical mode decomposition method [J]. Adv. Adapt. Data Anal., 1: 339−372. doi: 10.1142/S1793536909000187
    [17] Wu Z H, Huang N E, Wallace J M, et al. 2011. On the time-varying trend in global-mean surface temperature [J]. Climate Dyn., 37: 759−773. doi: 10.1007/s00382-011-1128-8
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  13
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 录用日期:  2021-09-08
  • 网络出版日期:  2021-10-08

目录

    /

    返回文章
    返回