Study of Diurnal Variation of Cloud Macro Parameters in Three Important Weather Systems over the Tibetan Plateau Using Ka-Band Cloud Radar
-
摘要: 青藏高原上空云宏观参数的日变化受大尺度环流、当地太阳辐射和地表过程的联合作用,对辐射收支、辐射传输及感热、潜热的分布等有重要影响。由于缺乏持续定量的观测,对各类天气系统云宏观参数日变化特征的了解还十分不足。多波段多大气成分主被动综合探测系统APSOS(Atmospheric Profiling Synthetic Observation System)的Ka波段云雷达是首部在青藏高原实现长期观测云的雷达。本文基于2019年全年APSOS的Ka波段云雷达资料,采用统计和快速傅里叶变换方法研究了西风槽、切变线和低涡三类重要天气系统影响下的有云频率、单层非降水云或者降水云非降水时段的云顶高度、云底高度和云厚日变化的时域和频域特征,得到了统计回归方程。主要结论有:(1)西风槽系统日均有云频率为56.9%,切变线系统为50.8%,低涡系统达73%。(2)尽管西风槽和切变线系统的成因不同,但两类系统云宏观参数的日变化趋势和主要谐波周期相似:日变化趋势基本为单峰单谷型,日出前最低,日落前最高。有云频率表现为日变化和半日变化,单层云云顶高度、云底高度和云厚主要表现为日变化。(3)低涡系统云宏观参数的日变化特征与前两类系统明显不同:日变化趋势表现为多峰多谷型,虽然有云频率和单层云云顶高度、云底高度主要谐波中均以日变化振幅最大,但频谱分布分散,云厚主要变化中振幅最大的是周期为4.8 h的波动。(4)得到了各系统有云频率、单层云云顶高度、云底高度和云厚日变化的统计回归方程。Abstract: The diurnal variation of cloud macro parameters over the Tibetan Plateau is affected by the combined effects of large-scale circulation, local solar radiation and surface processes, while it also remarkably affects the radiation budget and transmission and the distribution of sensible and latent heat. Due to the lack of continuous quantitative observation, the understanding of the diurnal variation characteristics of the cloud macro parameters in various weather systems is still quite insufficient. Ka-band cloud radar of atmospheric profiling synthetic observation system (APSOS) is the first radar to realize long-term cloud observation in the Tibetan Plateau. In this paper, using statistical and Fast Fourier Transform methods, the data of the APSOS Ka-band cloud radar in 2019 are used to study the time- and frequency-domain diurnal variation characteristics of cloud frequency, single-layer cloud top height, cloud bottom height, and cloud thickness under the influence of westerly trough, shear line, and vortex system. The major conclusions are as follows: (1) The daily mean cloud frequency is 56.9% for the westerly trough system, 50.8% for the shear line system, and 73% for the vortex system. (2) Although the origins of the westerly trough and shear line system are different, the diurnal variation trend and main harmonic period of the cloud macro parameters of the two systems are similar: the diurnal variation trend is sinusoidal; the minimum value appears before sunrise, and the maximum value appears before sunset. The main harmonics of cloud frequency are diurnal (24 h) and semidiurnal (12 h), and the diurnal harmonics have the largest amplitude among the main harmonics of cloud top height, bottom height, and thickness. (3) The diurnal variation characteristics of cloud macro parameters in a vortex system are different from that in the first two systems. The diurnal variation of cloud parameters in the vortex system is multipeak type. Although the harmonic amplitude of the diurnal period is the largest among the main harmonics of the cloud frequency, single-layer cloud top height, and cloud bottom height, the spectrum distribution is discrete, and the maximum harmonic period of cloud thickness amplitude is 4.8 h. (4) The statistical regression equations of the diurnal variation of the cloud frequency, single-layer cloud top height, cloud bottom height, and cloud thickness are provided.
-
图 2 2019年西风槽系统(左)、切边线系统(中)、低涡系统(右)单层云(a、d、g)平均云顶高度、(b、e、h)平均云底高度、(c、f、i)平均云厚及标准差的日变化
Figure 2. Diurnal variations of the (a, d, g) mean cloud top height, (b, e, h) mean cloud base height, and (c, f, i) mean cloud thickness and their standard deviation averaged in the westerly trough system (left), shear line system (middle), and vortex system (right) in 2019
表 1 西风槽、低涡和切变线系统影响APSOS站起止时间的判断标准和2019年影响次数及总时长
Table 1. Criteria for judging the start and end times and duration of APSOS (Atmospheric Profiling Synthetic Observation System) station influenced by the westerly trough, vortex, and shear line in 2019
判断标准 开始条件 结束条件 影响总次数 总时长/h 去除降水后时长/h 位势高度场 水平风场 西风槽 APSOS站位于槽前 APSOS站位于槽前风场内 2个标准同时满足 至少1个标准不再满足 29次 1328 1170 切变线 / APSOS站位于风场切变区内 满足标准 不满足标准 15次 295 247 低涡 闭合低压形成 APSOS站位于低涡流场区内 2个标准同时满足 至少1个标准不再满足 17次 321 227 注:/表示判断标准中不包含此条件。 表 2 APSOS的Ka波段云雷达参数表
Table 2. Parameters of the APSOS Ka-band cloud radar
参数名称 数值 雷达工作波长 0.86 cm 时间分辨率 0.125 s 径向距离分辨率 30 m 发射机输出峰值功率 0.04 kW 发射脉冲宽度 120 μs 水平波束宽度 0.38° 垂直波束宽度 0.38° 天线增益 50.9 dB 馈线总损耗 2.2 dB 10 km最小可测回波强度 −32.9 dBZ 表 3 2019年西风槽、切变线及低涡系统有云频率傅里叶分析直流分量振幅和主要谐波参数
Table 3. Amplitude of the DC (direct-current) component and main frequency parameters of Fourier decomposition in cloud frequency in the westerly trough, shear line, and vortex system in 2019
直流分量振幅 一次谐波 二次谐波 三次谐波 五次谐波 七次谐波 振幅 周期/h 初相位/rad 振幅 周期/h 初相位/rad 振幅 周期/h 初相位/rad 振幅 周期/h 初相位/rad 振幅 周期/h 初相位/rad 西风槽 56.9% 12.5% 24 1.60 5.50% 12 −1.50 / / / / / / / / / 切变线 50.8% 17.6% 24 1.89 5.40% 12 −1.54 / / / / / / / / / 低涡 73.0% 9.50% 24 2.30 / / / 4.00% 8 0.83 5.50% 4.8 0.074 3.80% 3.4 2.75 注:/表示不包含此阶谐波。 表 4 2019年西风槽、切变线及低涡系统单层云云顶高度、云底高度、云厚日变化傅里叶分析直流分量振幅和主要谐波参数Table 4 Amplitude of the DC components, main frequency parameters of the Fourier decomposition of diurnal variations of cloud top, cloud base, and thickness of single-layer cloud of the westerly trough, shear line, and vortex system in 2019
直流分量振幅/km 一次谐波 二次谐波 三次谐波 四次谐波 五次谐波 六次谐波 振幅/km 周期/h 初相位/rad 振幅/km 周期/h 初相位/rad 振幅/km 周期/h 初相位/rad 振幅/km 周期/h 初相位/rad 振幅/km 周期/h 初相位/rad 振幅/km 周期/h 初相位/rad 西风槽 云顶高度 3.841 0.751 24 1.825 0.188 12 2.445 0.106 8 0.303 0.174 6 −0.890 / / / / / / 云底高度 2.234 0.697 24 2.190 0.120 12 2.693 / / / / / / / / / / / / 云厚 1.554 0.376 24 1.020 / / / 0.111 8 −0.372 0.157 6 −0.585 / / / / / / 切变线 云顶高度 4.074 0.679 24 1.522 0.088 12 −2.81 0.129 8 0.578 0.107 6 −0.552 / / / / / / 云底高度 2.670 0.488 24 1.553 / / / 0.102 8 1.604 0.099 6 −0.553 / / / / / / 云厚 1.348 0.305 24 1.812 0.092 12 −2.055 0.054 8 −0.708 0.067 6 0.870 / / / 0.086 4 −1.387 低涡 云顶高度 4.080 0.849 24 1.137 0.396 12 −1.224 0.453 8 0.625 / / / 0.338 4.8 0.135 / / / 云底高度 2.523 0.773 24 1.139 0.449 12 −0.552 0.410 8 0.255 / / / / / / / / / 云厚 1.565 0.222 24 −2.980 0.243 12 −2.544 0.191 8 2.300 0.276 6 0.078 0.388 4.8 −0.156 / / / 八次谐波 十一次谐波 十二次谐波 十五次谐波 十七次谐波 二十一次谐波 振幅/km 周期/h 初相位/rad 振幅/km 周期/h 初相位/rad 振幅/km 周期/h 初相位/rad 振幅/km 周期/h 初相位/rad 振幅/km 周期/h 初相位/rad 振幅/km 周期/h 初相位/rad 西风槽 云顶高度 / / / / / / / / / / / / / / / / / / 云底高度 / / / / / / / / / / / / / / / / / / 云厚 / / / / / / / / / / / / / / / / / / 切变线 云顶高度 / / / / / / / / / / / / / / / / / / 云底高度 / / / / / / / / / / / / / / / / / / 云厚 / / / 0.056 2.18 −1.743 / / / / / / / / / / / / 低涡 云顶高度 0.321 3 1.744 / / / 0.381 2 −1.674 0.277 1.6 −0.217 / / / / / / 云底高度 / / / / / / / / / / / / / / / / / / 云厚 / / / / / / 0.218 2 −1.671 0.218 1.7 2.013 0.196 1.4 −2.29 0.224 1.14 0.573 注:/表示不包含此阶谐波。 表 5 2019年西风槽、切变线和低涡系统有云频率、单层云云顶高度、云底高度及云厚日变化回归方程和拟合优度(R2)Table 5 Regression equations and goodness (R2) of fit of the daily variation in cloud frequency, single-layer cloud top height, cloud base height, and cloud thickness in the westerly trough, shear line, and vortex system in 2019
回归方程和拟合优度 有云频率 云顶高度 云底高度 云厚 西风槽 $\begin{gathered} y\left( t \right) = 0.569 + \\ 0.125\cos \left( {\displaystyle\frac{ { {\text{π}} t} }{ {12} } + 1.6} \right) + \\ 0.055{\text{cos} }\left( {\frac{ {\text{π} t} }{6} - 1.501} \right) \\ \end{gathered}$
${R^2} = 0.96$$\begin{gathered} T\left( t \right) = 3.841 + \\ 0.751\cos \left( {\frac{ {\text{π} t} }{ {12} } + 1.825} \right) + \\ 0.188\cos \left( {\frac{ {\text{π} t} }{6} + 2.445} \right) + \\ 0.174\cos \left( {\frac{ {\text{π} t} }{3} - 0.89} \right) + \\ 0.106{\text{cos} }\left( {\frac{ {\text{π} t} }{4} + 0.303} \right) \\ \end{gathered}$
${R^2} = 0.87$$\begin{gathered} B\left( t \right) = 2.234 + \\ 0.697\cos \left( {\frac{ {\text{π} t} }{ {12} } + 2.19} \right) + \\ 0.12{\text{cos} }\left( {\frac{ {\text{π} t} }{6} + 2.693} \right) \\ \end{gathered}$
${R^2} = 0.82$$\begin{gathered} H\left( t \right) = 1.554 + \\ 0.376\cos \left( {\frac{ {\text{π} t} }{ {12} } + 1.02} \right) + \\ 0.157\cos \left( {\frac{ {\text{π} t} }{3} - 0.585} \right) + \\ 0.111{\text{cos} }\left( {\frac{ {\text{π} t} }{4} - 0.372} \right) \\ \end{gathered}$
${R^2} = 0.55$切变线 $\begin{gathered} y\left( t \right) = 0.508 + \\ 0.176\cos \left( {\frac{ {\text{π} t} }{ {12} } + 1.892} \right) + \\ 0.054{\text{cos} }\left( {\frac{ {\text{π} t} }{6} - 1.542} \right) \\ \end{gathered}$
${R^2} = 0.99$$\begin{gathered} T\left( t \right) = 4.074 + \\ 0.679\cos \left( {\frac{ {\text{π} t} }{ {12} } + 1.522} \right) + \\ 0.129\cos \left( {\frac{ {\text{π} t} }{4} + 0.578} \right) + \\ 0.107\cos \left( {\frac{ {\text{π} t} }{3} - 0.552} \right) + \\ 0.088{\text{cos} }\left( {\frac{ {\text{π} t} }{6} - 2.81} \right) \\ \end{gathered}$
${R^2} = 0.91$$\begin{gathered} B\left( t \right) = 2.670 + \\ 0.488\cos \left( {\frac{ {\text{π} t} }{ {12} } + 1.553} \right) + \\ 0.102\cos \left( {\frac{ {\text{π} t} }{4} + 1.604} \right) + \\ 0.099{\text{cos} }\left( {\frac{ {\text{π} t} }{3} - 0.553} \right) \\ \end{gathered}$
${R^2} = 0.77$$\begin{gathered} H\left( t \right) = 1.348 + \\ 0.305\cos \left( {\frac{ {\text{π} t} }{ {12} } + 1.812} \right) + \\ 0.092\left( {\frac{ {\text{π} t} }{6} - 2.055} \right) + \\ 0.086\cos \left( {\frac{ {\text{π} t} }{2} - 1.387} \right) + \\ 0.067\cos \left( {\frac{ {\text{π} t} }{3} + 0.870} \right) + \\ 0.056\cos \left( {\frac{ {2\text{π} t} }{ {2.18} } - 1.743} \right) + \\ 0.054{\text{cos} }\left( {\frac{ {\text{π} t} }{4} - 0.708} \right) \\ \end{gathered}$
${R^2} = 0.67$低涡 $\begin{gathered} y\left( t \right) = 0.73 + \\ 0.095\cos \left( {\frac{ {\text{π} t} }{ {12} } + 2.3} \right) + \\ 0.055\cos \left( {\frac{ {5\text{π} t} }{ {12} } + 0.074} \right) + \\ 0.04\cos \left( {\frac{ {\text{π} t} }{4} - 0.83} \right) + \\ 0.038{\text{cos} }\left( {\frac{ {7\text{π} t} }{ {12} } + 2.75} \right) \\ \end{gathered}$
${R^2} = 0.69$$\begin{gathered} T\left( t \right) = 4.080 + \\ 0.849\cos \left( {\frac{ {\text{π} t} }{ {12} } + 1.137} \right) + \\ 0.453\cos \left( {\frac{ {\text{π} t} }{4} + 0.625} \right) + \\ 0.396\cos \left( {\frac{ {\text{π} t} }{6} - 1.224} \right) + \\ 0.381\cos \left( {\text{π} t - 1.674} \right) + \\ 0.338\cos \left( {\frac{ {\text{π} t} }{ {2.4} } + 0.135} \right) + \\ 0.321\cos \left( {\frac{ {2\text{π} t} }{3} + 1.744} \right) + \\ 0.277{\text{cos} }\left( {\frac{ {5\text{π} t} }{4} - 0.217} \right) \\ \end{gathered}$
${R^2} = 0.40$$\begin{gathered} B\left( t \right) = 2.523 + \\ 0.773\cos \left( {\frac{ {\text{π} t} }{ {12} } + 1.139} \right) + \\ 0.449\cos \left( {\frac{ {\text{π} t} }{6} - 0.552} \right) + \\ 0.410\cos \left( {\frac{ {\text{π} t} }{4} + 0.255} \right) \\ \end{gathered}$
${R^2} = 0.34$$\begin{gathered} H\left( t \right) = 1.565 + \\ 0.388\cos \left( {\frac{ {5\text{π} t} }{ {12} } - 0.156} \right) + \\ 0.276\cos \left( {\frac{ {\text{π} t} }{3} + 0.078} \right) + \\ 0.243\cos \left( {\frac{ {\text{π} t} }{6} - 2.544} \right) + \\ 0.224\cos \left( {\frac{ {2\text{π} t} }{ {1.14} } + 0.473} \right) + \\ 0.222\cos \left( {\frac{ {\text{π} t} }{ {12} } - 2.98} \right) + \\ 0.218cos\left( {\frac{ {2\text{π} t} }{ {1.7} } + 2.013} \right) + \\ 0.218\cos \left( {\text{π} t - 1.671} \right) + \\ 0.196\cos \left( {\frac{ {10\text{π} t} }{7} - 2.29} \right) + \\ 0.191{\text{cos} }\left( {\frac{ {\text{π} t} }{4} + 2.3} \right) \\ \end{gathered}$
${R^2} = 0.28$ -
[1] Adler R F, Huffman G J, Chang A, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present) [J]. Journal of Hydrometeorology, 4(6): 1147−1167. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 [2] Chan M A, Comiso J C. 2011. Cloud features detected by MODIS but not by CloudSat and CALIOP [J]. Geophys. Res. Lett., 38: L24813. doi: 10.1029/2011GL050063 [3] 常祎, 郭学良. 2016. 青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征 [J]. 科学通报, 61(15): 1706−1720. doi: 10.1360/N972015-01292Chang Yi, Guo Xueliang. 2016. Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau [J]. Chinese Science Bulletin (in Chinese), 61(15): 1706−1720. doi: 10.1360/N972015-01292 [4] Houze R A Jr. 2014. Cloud Dynamics [M]. 2nd ed. Oxford: Elsevier. [5] 蒋秋菲. 2019. 双频云雷达在青藏高原云参数观测的比较研究 [D]. 成都信息工程大学硕士学位论文. Jiang Qiufei. 2019. A comparative study of cloud parameters observed by two different frequency cloud radars over the Tibetan Plateau [D]. M. S. thesis (in Chinese), Chengdu University of Information Technology. [6] 李国平, 赵邦杰, 杨锦青. 2002. 地面感热对青藏高原低涡流场结构及发展的作用 [J]. 大气科学, 26(4): 519−525. doi: 10.3878/j.issn.1006-9895.2002.04.09Li Guoping, Zhao Bangjie, Yang Jinqing. 2002. A dynamical study of the role of surface sensible heating in the structure and intensification of the Tibetan Plateau vortices [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(4): 519−525. doi: 10.3878/j.issn.1006-9895.2002.04.09 [7] 李跃清, 郁淑华, 彭骏, 等. 2011. 青藏高原低涡切变线年鉴——2008 [M]. 北京: 科学出版社, 300ppLi Yueqing, Yu Shuhua, Peng Jun, et al. 2011.2008 Yearbook of Vortex and Shear Line over Tibetan Plateau (in Chinese) [M]. Beijing: Science Press, 300pp. [8] 李昀英, 宇如聪, 徐幼平, 等. 2003. 中国南方地区层状云的形成和日变化特征分析 [J]. 气象学报, 61(6): 733−743. doi: 10.3321/j.issn:0577-6619.2003.06.010Li Yunying, Yu Rucong, Xu Youping, et al. 2003. The formation and diurnal changes of stratiform clouds in southern China [J]. Acta Meteorologica Sinica (in Chinese), 61(6): 733−743. doi: 10.3321/j.issn:0577-6619.2003.06.010 [9] 刘黎平, 郑佳锋, 阮征, 等. 2015. 2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果 [J]. 气象学报, 73(4): 653−674. doi: 10.11676/qxxb2015.041Liu Liping, Zheng Jiafeng, Ruan Zheng, et al. 2015. The preliminary analyses of the cloud properties over the Tibetan Plateau from the field experiments in clouds precipitation with the various radars [J]. Acta Meteorologica Sinica (in Chinese), 73(4): 653−674. doi: 10.11676/qxxb2015.041 [10] Lü D R, Pan W L, Wang Y N. 2018. Atmospheric profiling synthetic observation system in Tibet [J]. Advances in Atmospheric Sciences, 35(3): 264−267. doi: 10.1007/s00376-017-7251-7 [11] Stephens G L, Vane D G, Boain R J, et al. 2002. The CLOUDSAT mission and the A-Train [J]. Bull. Amer. Meteor. Soc., 83(12): 1771−1790. doi: 10.1175/BAMS-83-12-1771 [12] 汪会, 罗亚丽, 张人禾. 2011. 用CloudSat/CALIPSO资料分析亚洲季风区和青藏高原地区云的季节变化特征 [J]. 大气科学, 35(6): 1117−1131. doi: 10.3878/j.issn.1006-9895.2011.06.11Wang Hui, Luo Yali, Zhang Renhe. 2011. Analyzing seasonal variation of clouds over the Asian monsoon regions and the Tibetan Plateau region using CloudSat/CALIPSO data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(6): 1117−1131. doi: 10.3878/j.issn.1006-9895.2011.06.11 [13] 汪宏七, 赵高祥. 1994. 云和辐射——(Ⅰ): 云气侯学和云的辐射作用[J]. 大气科学, 18(Z1): 910–921, 923–932Wang Hongqi, Zhao Gaoxiang. 1994. Cloud and radiation——I: Cloud climatology and radiative effects of clouds [J]. Scientia Atmospherica Sinica (in Chinese), 18(Z1): 910–921, 923–932. [14] 王胜杰, 何文英, 陈洪滨, 等. 2010. 利用CloudSat资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量 [J]. 高原气象, 29(1): 1−9.Wang Shengjie, He Wenying, Chen Hongbin, et al. 2010. Statistics of cloud height over the Tibetan Plateau and its surrounding region derived from the CloudSat data [J]. Plateau Meteorology (in Chinese), 29(1): 1−9. [15] Wu G X, Liu Y M. 2003. Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation [J]. Geophys. Res. Lett., 30(5): 1201. doi: 10.1029/2002GL016209 [16] 吴国雄, 刘屹岷, 何编, 等. 2018. 青藏高原感热气泵影响亚洲夏季风的机制 [J]. 大气科学, 42(3): 488−504. doi: 10.3878/j.issn.1006-9895.1801.17279Wu Guoxiong, Liu Yimin, He Bian, et al. 2018. Review of the impact of the Tibetan Plateau sensible heat driven air-pump on the Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(3): 488−504. doi: 10.3878/j.issn.1006-9895.1801.17279 [17] Yan Y F, Liu Y M, Lu J H. 2016. Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions [J]. J. Geophys. Res., 121(10): 5864−5877. doi: 10.1002/2015JD024591 [18] 叶笃正, 高由禧. 1979. 青藏高原气象学[M]. 北京: 科学出版社, 278ppYe Duzheng, Gao Youxi. 1979. Meteorology of the Tibetan Plateau (in Chinese) [M]. Beijing: Science Press, 278pp. [19] 叶笃正, 高由禧, 陈乾. 1977. 青藏高原及其紧邻地区夏季环流的若干特征 [J]. 大气科学, 1(4): 289−299. doi: 10.3878/j.issn.1006-9895.1977.04.06Ye Duzheng, Gao Youxi, Chen Qian. 1977. On some features of the summer atmospheric circulation over the Tsinghai-Tibetan Plateau and its neighbourhood [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 1(4): 289−299. doi: 10.3878/j.issn.1006-9895.1977.04.06 [20] 宇如聪, 李建, 陈昊明, 等. 2014. 中国大陆降水日变化研究进展 [J]. 气象学报, 72(5): 948−968. doi: 10.11676/qxxb2014.047Yu Rucong, Li Jian, Chen Haoming, et al. 2014. Progress in studies of the precipitation diurnal variation over contiguous China [J]. Acta Meteorologica Sinica (in Chinese), 72(5): 948−968. doi: 10.11676/qxxb2014.047 [21] 张涛, 郑佳锋, 刘艳霞. 2019. 利用Ka波段云雷达研究青藏高原对流云和降水的垂直结构及微观物理特征 [J]. 红外与毫米波学报, 38(6): 777−789. doi: 10.11972/j.issn.1001-9014.2019.06.015Zhang Tao, Zheng Jiafeng, Liu Yanxia. 2019. A study on the vertical structure and microphysical characteristic of convective cloud and precipitation over Tibetan Plateau by using Ka-band cloud radar [J]. Journal of Infrared and Millimeter Waves (in Chinese), 38(6): 777−789. doi: 10.11972/j.issn.1001-9014.2019.06.015 -