高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

物理协调大气变分客观分析模型及其在青藏高原的应用I: 方法与评估

王东海 姜晓玲 张春燕 庞紫豪 梁钊明 张明华

王东海, 姜晓玲, 张春燕, 等. 2022. 物理协调大气变分客观分析模型及其在青藏高原的应用I: 方法与评估[J]. 大气科学, 46(3): 621−644 doi: 10.3878/j.issn.1006-9895.2106.21068
引用本文: 王东海, 姜晓玲, 张春燕, 等. 2022. 物理协调大气变分客观分析模型及其在青藏高原的应用I: 方法与评估[J]. 大气科学, 46(3): 621−644 doi: 10.3878/j.issn.1006-9895.2106.21068
WANG Donghai, JIANG Xiaoling, ZHANG Chunyan, et al. 2022. Physically Consistent Atmospheric Variational Objective Analysis Model and Its Applications over the Tibetan Plateau. Part I: Method and Evaluation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 621−644 doi: 10.3878/j.issn.1006-9895.2106.21068
Citation: WANG Donghai, JIANG Xiaoling, ZHANG Chunyan, et al. 2022. Physically Consistent Atmospheric Variational Objective Analysis Model and Its Applications over the Tibetan Plateau. Part I: Method and Evaluation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 621−644 doi: 10.3878/j.issn.1006-9895.2106.21068

物理协调大气变分客观分析模型及其在青藏高原的应用I: 方法与评估

doi: 10.3878/j.issn.1006-9895.2106.21068
基金项目: 第二次青藏高原综合科学考察研究项目2019QZKK0105,国家自然科学基金项目91837204、 91437221
详细信息
    作者简介:

    王东海,男,1965年出生,教授,主要从事灾害天气动力学、数值模式发展及应用等研究。E-mail: wangdh7@mail.sysu.edu.cn

  • 中图分类号: P413

Physically Consistent Atmospheric Variational Objective Analysis Model and Its Applications over the Tibetan Plateau. Part I: Method and Evaluation

Funds: Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grant 2019QZKK0105), National Natural Science Foundation of China (Grants 91837204, 91437221)
  • 摘要: 本文系统地介绍了基于约束变分客观分析法构建的物理协调大气变分客观分析模型,并将模型首次应用于青藏高原那曲试验区。该模型可融合不同时空分辨率的多来源数据,通过利用地面降水和地面、大气顶部的热通量等大气上下边界的观测资料来约束调整探空观测变量,从而尽可能保证气柱内的质量、热量、水汽和动量收支平衡。对模型及其产生的第三次青藏高原大气科学试验那曲试验区2014年8月期间的大气分析数据集进行评估分析,结果表明模型生成的常规状态量很好地保留了观测特征,模型生成的重要大尺度衍生量(如,垂直速度、散度、温度/水汽平流、视热源、视水汽汇等)可以较好地反映试验期内大气柱的动力、热力和水汽结构特征,有利于对大气降水过程的分析研究。分析发现,350~400 hPa高度层是该时期那曲试验区的动力、热量和水汽的重要变化中心。从各种观测资料对模型生成的分析场的影响来看,探空观测对高空风场的影响最大,但这种影响的幅度在1 m/s以内;降水和上下边界通量观测主要影响大尺度衍生量,如垂直速度,其中降水主要影响降水时期的上升运动,通量观测主要影响弱/无降水时期的下沉运动。总体而言,物理协调大气变分客观分析模型具备较好的稳定性和合理性。
  • 图  1  基于传统客观分析方法的物理概念模型(左)和基于约束变分客观分析方法的物理概念模型(右)

    Figure  1.  Physical conceptions based on a traditional objective analysis method with only mass constraint (left) and the constrained variational analysis (CVA) method (right)

    图  2  2014年8月青藏高原那曲试验区的资料分布。“+”表示0.25°×0.25°的ERA5背景场格点;“••”表示121个地面气象自动站,其中只有78个黄色站可提供除了降水以外的温、压、湿、风等其他常规地面要素的有效观测;“o”表示探空站;“×”表示1°×1°的CERES格点;“◊”为边界层观测站点;“*”为人为选定的分析点(F0~F12),构成气柱边界和中心

    Figure  2.  Data network of the Tibetan Plateau-Naqu analysis region during August 2014. Symbols “+” represent the ERA5 background grid points with a spatial resolution of 0.25°×0.25°; “••” represent the 121 surface meteorological automatic stations in which the yellow ones denote only 78 stations that could give the measurements of other state variables besides precipitation; “o” represent the sounding stations; “×” represent the CERES (Clouds and the Earth’ s Radiant Energy System) grid points with a spatial resolution of 1°×1°; “◊” represent the boundary-layer stations; and “*” represent the artificial analysis points (F0–F12) which form the air column boundary and the center of the Tibetan Plateau-Naqu analysis region during August 2014

    图  3  2014年8月物理协调大气变分客观分析模型在变分客观分析前(左)和变分客观分析后(右)的气柱(a、b)质量剩余(单位:g m−2 s−1)、(c、d)水汽剩余(单位:mm d−1)和(e、f)热量剩余(单位:kW m−2

    Figure  3.  Residuals of (a, b) mass (units: g m−2 s−1), (c, d) moisture (mm d−1), and (e, f) heat (kW m−2) before (left) and after (right) the CVA procedure in the physically consistent atmospheric variational objective analysis model during August 2014

    图  4  2014年8月青藏高原那曲试验区区域平均的(a)物理协调大气变分客观分析模型输出数据(实线)和ERA5再分析资料(虚线)的地面气压(单位:hPa)的时间变化,以及(b)试验区气象自动站观测和(c)ERA5再分析资料的地面气压频率分布

    Figure  4.  (a) Time series of the domain-averaged surface pressure (units: hPa) derived from the physically consistent atmospheric variational objective analysis model (solid line) and the ERA5 reanalysis data (dashed line), and frequency of the surface pressure from (b) automatic stations and (c) ERA5 reanalysis data in the Tibetan Plateau-Naqu analysis region during August 2014

    图  5  2014年8月青藏高原那曲试验区高空纬向风(左,单位:m/s)、经向风(右,单位:m/s):(a、b)那曲探空站数据,观测时间分辨率为12 h,白色矩形条表示缺测;(c、d)物理协调大气变分客观分析模型输出数据,时间分辨率为1 h;(e、f)ERA5再分析资料,时间分辨率为1 h

    Figure  5.  Upper-level zonal wind (left column, units: m/s) and meridional wind (right column, units: m/s) in the Tibetan Plateau-Naqu analysis region during August 2014: (a, b) Naqu sounding station with 12-h temporal resolution, the white blanks represent missing data; (c, d) the physically consistent atmospheric variational objective analysis model with 1-h temporal resolution; (e, f) ERA5 reanalysis data with 1-h temporal resolution

    图  6  2014年8月13~22日青藏高原那曲试验区高空(a、b)垂直速度(单位:hPa/h)和(c、d)散度(单位:10−5 s−1)。左边为物理协调大气变分客观分析模型输出结果,右边为ERA5结果,黑色实线表示地面降水率(单位:mm/d)

    Figure  6.  Domain-averaged (a, b) vertical velocity (units: hPa/h) and (c, d) divergence (units: 10−5 s−1) derived from the physically consistent atmospheric variational objective analysis model (left column) and the ERA5 reanalysis (right column) the Tibetan Plateau-Naqu analysis region from 13 August to 22 August 2014. The black line represents the surface rainfall rate (units: mm/d)

    图  7  2014年8月青藏高原那曲试验区区域平均地面降水率(单位:mm/d)的时间序列

    Figure  7.  Time series of the domain-averaged surface rainfall rate (units: mm/d) in the Tibetan Plateau-Naqu analysis region during August 2014

    图  8  2014年8月青藏高原那曲试验区不同降水强度的垂直速度廓线(单位:m/s,正值表示上升运动)。黑色实线表示8月的平均结果,虚线表示强降水时期(>5 mm/d)的平均结果,点线表示弱降水时期(1~5 mm/d)的平均结果,点虚线表示无雨时期(<1 mm/d)的平均结果

    Figure  8.  Profiles of vertical velocity (units: m/s, positive values mean upward motion) for monthly average (solid line), strong rainfall (>5 mm/d, dashed line), weak rainfall (1–5 mm/d, dotted line), and no rainfall (<1 mm/d, dash-dotted line) in the Tibetan Plateau-Naqu analysis region during August 2014

    图  9  2014年8月青藏高原那曲试验区不同降水强度的平流廓线:(a)水平热量(单位:K/h);(b)垂直热量(单位:K/h);(c)水平水汽(单位:g kg−1 h−1);(d)垂直水汽(单位:g kg−1 h−1)。黑色实线表示8月平均的结果,虚线表示强降水时期(>5 mm/d)的结果,点线表示弱降水时期(1~5 mm/d)的结果,点虚线表示无雨时期(<1 mm/d)的结果

    Figure  9.  Advection profiles of (a) horizontal heat (units: K/h), (b) vertical heat (units: K/h), (c) horizontal moisture (units: g kg−1 h−1), and (d) vertical moisture (units: g kg−1 h−1) for monthly average (solid line), strong rainfall (>5 mm/d, dashed line), weak rainfall (1–5 mm/d, dotted line), and no rainfall (<1 mm/d, dash-dotted line) in the Tibetan Plateau-Naqu analysis region during August 2014

    图  10  2014年8月青藏高原那曲试验区不同降水强度的(a)视热源Q1(单位:K/h)和(b)视水汽汇Q2(单位:K/h)的廓线。黑色实线表示8月平均的结果,虚线表示强降水时期(>5 mm/d)的结果,点线表示弱降水时期(1~5 mm/d)的结果,点虚线表示无雨时期(<1 mm/d)的结果

    Figure  10.  Profiles of (a) apparent heat source Q1 (units: K/h) and (b) apparent moisture sink Q2 (units: K/h) for monthly average (solid line), strong rainfall (>5 mm/d, dashed line), weak rainfall (1–5 mm/d, dotted line), and no rainfall (<1 mm/d, dash-dotted line) in the Tibetan Plateau-Naqu analysis region during August 2014

    图  11  物理协调大气变分客观分析模型仅输入ERA-Interim再分析资料时青藏高原那曲试验区资料点分布。“*”表示由人为补充站构成的分析点,“o”表示探空站,“+”表示背景场格点

    Figure  11.  Data network of the physically consistent atmospheric variational objective analysis model, with only inputs from the ERA-Interim reanalysis data. “*” represents artificial analysis points, “o” represents fictitious sounding stations, and “+” represents background grid points

    图  12  E0试验(蓝色点线)和E1试验(绿色虚线)所得的2014年8月青藏高原那曲试验区平均的(a)纬向风(u, 单位:m/s)、(b)经向风(v, 单位:m/s)、(c)温度(T, 单位:°C)、(d)水汽混合比(q, 单位:g/kg)

    Figure  12.  Profiles of the (a) zonal wind (u, units: m/s), (b) meridional wind (v, units: m/s), (c) temperature (T, units: °C), and (d) water vapor mixing ratio (q, units: g/kg) averaged in the Tibetan Plateau-Naqu analysis region during August 2014, produced by two sensitivity tests E0 (dotted blue line) and E1 (dashed green line)

    图  13  (a)E0试验和(b)E1试验分析所得的2014年8月青藏高原那曲试验区平均的垂直速度(彩色阴影,单位:hPa/h)、地面观测降水演变(黑色实线)

    Figure  13.  Domain-averaged vertical velocity (color shadings, units: hPa/h) and surface rainfall rate (black line) in the Tibetan Plateau-Naqu analysis region during August 2014, produced by two sensitivity tests (a) E0 and (b) E1

    图  14  2014年8月青藏高原那曲试验区平均的降水率(单位:mm/d)。绿色点线:ERA-Interim再分析资料;蓝色虚线:CMORPH融合降水资料;黑色实线:地面自动站观测资料

    Figure  14.  Time series of the domain-averaged surface rainfall rate (units: mm/d) from ERA-Interim reanalysis (green dotted line), CMORPH fusion precipitation data (blue dashed line), and surface automatic stations (black solid line) in the Tibetan Plateau-Naqu analysis region during August 2014

    图  15  2014年8月青藏高原那曲试验区平均的E2试验、E3试验分析结果与E1试验所获得分析结果的差异:(a)纬向风(单位:m/s);(b)经向风(单位:m/s);(c)温度(单位:°C);(d)水汽混合比(单位:g/kg)

    Figure  15.  Differences of the (a) zonal wind (units: m/s), (b) meridional wind (units: m/s), (c) temperature (units: °C), and (d) water vapor mixing ratio (units: g/kg) between test E2 and test E1, between test E3 and test E1 averaged in the Tibetan Plateau-Naqu analysis region during August 2014

    图  16  2014年8月青藏高原那曲试验区平均的(a)E2试验输入L波段探空和自动站观测降水资料以及(b)E3试验输入L波段探空和CMORPH融合降水资料后的高空垂直速度(彩色阴影,单位:hPa/h)、地面降水强度演变(黑色实线)。(c)2014年8月14~17日、20~22日青藏高原那曲试验区模型输入不同降水资料后平均的垂直速度廓线

    Figure  16.  Domain-averaged vertical velocity (color shadings, units: hPa/h) and surface rainfall rate (black line) in the Tibetan Plateau-Naqu analysis region during August 2014, produced by two sensitivity tests (a) E2 and (b) E3. (c) Profiles of the vertical velocity (units: hPa/h) from E2 and E3 averaged in the Tibetan Plateau-Naqu analysis region from 14 to 17 August 2014 and from 20 to 22August 2014

    图  17  2014年8月青藏高原那曲试验区平均的(a)地面潜热通量、(b)地面感热通量、(c)地面净向上辐射通量、(d)大气顶净向下辐射通量。图a、b中,实线表示边界层综合观测结果(8月30日后存在缺测);图c、d中,实线表示CERES卫星观测订正后的结果。虚线表示ERA-Interim再分析结果

    Figure  17.  Time series of the domain-averaged (a) surface latent heat flux, (b) surface sensible heat flux, (c) surface net upward radiative flux, (d) top-of-atmosphere (TOA) net downward radiative flux in the Tibetan Plateau-Naqu analysis region during August 2014. In Figs. a and b, the solid lines mean observation from the boundary-layer station; in Figs. c and d, the solid lines mean CERES (Clouds and the Earth’ s Radiant Energy System)-produced results. The dashed lines mean ERA-Interim reanalysis

    图  18  2014年8月青藏高原那曲试验区平均的E0试验、E2试验、E4试验分析所得的(a)纬向风(单位:m/s)、(b)经向风(单位:m/s)、(c)温度(单位:°C)、(d)水汽混合比(单位:g/kg)

    Figure  18.  Profiles of the (a) zonal wind (units: m/s), (b) meridional wind (units: m/s), (c) temperature (units: °C), and (d) water vapor mixing ratio (units: g/kg) averaged in the Tibetan Plateau-Naqu analysis region during August 2014, produced by three sensitivity tests E0, E2, and E4

    表  1  2014年8月青藏高原那曲试验区物理协调大气变分客观分析模型的输入资料

    Table  1.   Information of the input data for the physically consistent atmospheric variational objective analysis model during August 2014 in the Tibetan Plateau-Naqu analysis region

    资料种类资料来源变量时间
    分辨率
    空间
    分辨率
    背景场ERA5气压层纬向风1 h0.25°×
    0.25°
    气压层经向风
    气压层温度
    气压层湿度
    高空观测L波段探空高空纬向风12 h站点
    高空经向风
    高空气压
    高空温度
    高空湿度
    地面观测地面自动气象站10 m纬向风1 h站点
    10 m经向风
    地面气压
    2 m温度
    2 m湿度
    地面降水
    边界层观测TIPEX-III地面潜热通量0.5 h站点
    地面感热通量
    卫星资料CERES地面向上短波辐射1 h1°×1°
    地面向下短波辐射
    地面向上长波辐射
    地面向下长波辐射
    大气顶向下短波辐射
    大气顶向下长波辐射
    大气云液态水含量
    下载: 导出CSV

    表  2  物理协调大气变分客观分析模型输出的变量产品

    Table  2.   Variables derived by the physically consistent atmospheric variational objective analysis model

    单层变量单层变量
    序号变量名单位序号变量名单位
    1降水率mm/h14大气顶向上长波辐射W/m2
    2地面潜热通量W/m215大气云液态水含量cm
    3地面感热通量W/m216气柱整层水汽变化mm/h
    4气柱平均地面气压hPa17气柱整层水汽平流mm/h
    5中心点地面气压hPa18地面蒸发率mm/h
    6地面温度°C19气柱整层热量变化W/m2
    7地面相对湿度%20气柱整层热量平流W/m2
    8地面全风速m/s21气柱净辐射W/m2
    9地面纬向风m/s22气柱潜热W/m2
    10地面经向风m/s23地面垂直速度hPa/h
    11地面净向下短波辐射W/m2242 m水汽混合比g/kg
    12地面净向上长波辐射W/m2252 m干静力能K
    13大气顶向下短波辐射W/m226大气可降水量cm
    多层变量多层变量
    序号变量名单位序号变量名单位
    1温度K10垂直水汽平流g kg−1 h−1
    2水汽混合比g/kg11热能K
    3纬向风m/s12水平热能平流K/h
    4经向风m/s13垂直热能平流K/h
    5垂直速度hPa/h14热能变化率K/h
    6水平辐合辐散1/s15温度变化率K/h
    7水平温度平流K/h16水汽变化率g kg−1 h−1
    8垂直温度平流K/h17视热源K/h
    9水平水汽平流g kg−1 h−118视水汽汇K/h
    下载: 导出CSV

    表  3  输入物理协调大气变分客观分析模型的不同来源资料的敏感性试验

    Table  3.   Sensitivity tests to examine the effect of different sources of the input data on the physically consistent atmospheric variational objective analysis model

    变量来源资料
    试验E0试验E1试验E2试验E3试验E4
    垂直多层次的气压、温度、湿度、风(背景场)ERA-InterimERA-InterimERA-InterimERA-InterimERA-Interim
    垂直多层次的气压、温度、湿度、风(探空场)ERA-InterimL波段探空L波段探空L波段探空L波段探空
    降水量ERA-InterimERA-Interim自动站CMORPH自动站
    地面气压、温度、湿度、风ERA-InterimERA-InterimERA-InterimERA-Interim自动站
    地面感热、潜热通量ERA-InterimERA-InterimERA-InterimERA-Interim边界层观测站
    地面和大气顶和大气顶净辐射ERA-InterimERA-InterimERA-InterimERA-InterimCERES
    云液态水含量ERA-InterimERA-InterimERA-InterimERA-InterimCERES
    下载: 导出CSV
  • [1] Bao X H, Zhang F Q. 2013. Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau [J]. J. Climate, 26(1): 206−214. doi: 10.1175/JCLI-D-12-00056.1
    [2] Cressman G P. 1959. An operational objective analysis system [J]. Mon. Wea. Rev., 87(10): 367−374. doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
    [3] Davies-Jones R. 1993. Useful, formulas for computing divergence, vorticity, and their errors from three or more stations [J]. Mon. Wea. Rev., 121(3): 713−725. doi:10.1175/1520-0493(1993)121<0713:UFFCDV>2.0.CO;2
    [4] 奉超. 2007. 浅谈L波段探空系统资料及在预报中的应用 [J]. 气象研究与应用, 28(2): 84−87. doi: 10.3969/j.issn.1673-8411.2007.02.023

    Feng C. 2007. Shallowly discussion of the meteorological sounding data and application in weather forecasting [J]. Journal of Meteorological Research and Application (in Chinese), 28(2): 84−87. doi: 10.3969/j.issn.1673-8411.2007.02.023
    [5] Ghan S, Randall D, Xu K M, et al. 2000. A comparison of single column model simulations of summertime midlatitude continental convection [J]. J. Geophys. Res.: Atmos., 105(D2): 2091−2124. doi: 10.1029/1999JD900971
    [6] Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Quart. J. Roy. Meteor. Soc., 146(730): 1999−2049. doi: 10.1002/qj.3803
    [7] 姜晓玲. 2016. 青藏高原试验区物理协调大气分析模型的研究与应用 [D]. 中国气象科学研究院硕士学位论文. Jiang X L. 2016. Constraint objective analysis over the Tibetan Plateau: Method and application [D]. M. S. thesis (in Chinese), Chinese Academy of Meteorological Sciences.
    [8] 姜晓玲, 王东海, 尹金方, 等. 2016. 夏季风爆发前后中国区域对流层顶高度变化特征 [J]. 应用气象学报, 27(4): 445−453. doi: 10.11898/1001-7313.20160407

    Jiang X L, Wang D H, Yin J F, et al. 2016. Characteristics of tropopause height over China during East Asian summer monsoon [J]. Journal of Applied Meteorological Science (in Chinese), 27(4): 445−453. doi: 10.11898/1001-7313.20160407
    [9] Kennedy A D, Dong X Q, Xi B K, et al. 2011. A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data [J]. J. Climate, 24(17): 4541−4557. doi: 10.1175/2011JCLI3978.1
    [10] 梁智豪, 王东海, 梁钊明. 2020. 探空观测的边界层高度时空变化特征 [J]. 应用气象学报, 31(4): 447−459. doi: 10.11898/1001-7313.20200407

    Liang Z H, Wang D H, Liang Z M. 2020. Spatio-temporal characteristics of boundary layer height derived from soundings [J]. Journal of Applied Meteorological Science (in Chinese), 31(4): 447−459. doi: 10.11898/1001-7313.20200407
    [11] Lin X, Johnson R H. 1996. Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE [J]. J. Atmos. Sci., 53(5): 695−715. doi:10.1175/1520-0469(1996)053<0695:KATCOT>2.0.CO;2
    [12] 刘凑华, 曹勇, 符娇兰. 2013. 基于变分法的客观分析算法及应用 [J]. 气象学报, 71(6): 1172−1182. doi: 10.11676/qxxb2013.091

    Liu C H, Cao Y, Fu J L. 2013. An objective analysis algorithm based on the variational method [J]. Acta Meteorologica Sinica (in Chinese), 71(6): 1172−1182. doi: 10.11676/qxxb2013.091
    [13] Lord S J. 1982. Interaction of a cumulus cloud ensemble with the large-scale environment. Part III: Semi-prognostic test of the Arakawa-Schubert cumulus parameterization [J]. J. Atmos. Sci., 39(1): 88−103. doi:10.1175/1520-0469(1982)039<0088:IOACCE>2.0.CO;2
    [14] Luo Y L, Xu K M, Morrison H, et al. 2008. Multi-layer arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity experiments [J]. J. Geophys. Res.: Atmoss, 113(D12): D12208. doi: 10.1029/2007JD009563
    [15] Morrison H, Pinto J O. 2004. A new approach for obtaining advection profiles: Application to the SHEBA column [J]. Mon. Wea. Rev., 132(3): 687−702. doi:10.1175/1520-0493(2004)132<0687:ANAFOA>2.0.CO;2
    [16] O’ Brien J J. 1970. Alternative solutions to the classical vertical velocity problem [J]. J. Appl. Meteor. Climatol., 9(2): 197−203. doi:10.1175/1520-0450(1970)009<0197:ASTTCV>2.0.CO;2
    [17] Ogura Y, Cho H R. 1973. Diagnostic determination of cumulus cloud populations from observed large-scale variables [J]. J. Atmos. Sci., 30(7): 1276−1286. doi:10.1175/1520-0469(1973)030<1276:DDOCCP>2.0.CO;2
    [18] 庞紫豪. 2018. 基于物理协调大气分析模型的青藏高原试验区云和降水过程的研究 [D]. 中国气象科学研究院硕士学位论文. Pang Z H. 2018. The analysis on characteristics of cloud and precipitation process in Tibet Plateau experimental region based on constrained objective variational analysis [D]. M. S. thesis (in Chinese), Chinese Academy of Meteorological Sciences.
    [19] 庞紫豪, 王东海, 姜晓玲, 等. 2019. 基于变分客观分析方法的青藏高原试验区夏季对流降水过程热动力特征分析 [J]. 大气科学, 43(3): 511−524. doi: 10.3878/j.issn.1006-9895.1806.18135

    Pang Z H, Wang D H, Jiang X L, et al. 2019. Analysis on thermodynamic characteristics of summer convective precipitation in the Qinghai–Tibet Plateau experimental region based on constrained objective variational analysis [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(3): 511−524. doi: 10.3878/j.issn.1006-9895.1806.18135
    [20] Panofsky R A. 1949. Objective weather-map analysis [J]. J. Atmos. Sci., 6(6): 386−392. doi:10.1175/1520-0469(1949)006<0386:OWMA>2.0.CO;2
    [21] Schumacher C, Zhang M H, Ciesielski P E. 2007. Heating structures of the TRMM field campaigns [J]. J. Atmos. Sci., 64(7): 2593−2610. doi: 10.1175/JAS3938.1
    [22] Tang S Q, Xie S C, Zhang Y Y, et al. 2016. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment [J]. Atmos. Chem. Phys., 16(22): 14249−14264. doi: 10.5194/acp-16-14249-2016
    [23] Waliser D E, Ridout J A, Xie S, et al. 2002. Variational objective analysis for atmospheric field programs: A model assessment [J]. J. Atmos. Sci., 59(24): 3436−3456. doi:10.1175/1520-0469(2002)059<3436:VOAFAF>2.0.CO;2
    [24] Wang J Y, Randall D A. 1996. A cumulus parameterization based on the generalized convective available potential energy [J]. J. Atmos. Sci., 53(5): 716−727. doi:10.1175/1520-0469(1996)053<0716:ACPBOT>2.0.CO;2
    [25] Wang A H, Zeng X B. 2012. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau [J]. J. Geophys. Res.: Atmos., 117(D5): D05102. doi: 10.1029/2011JD016553
    [26] Wang X C, Zhang M H. 2015. The coupling of mixed Rossby-gravity waves with diabatic heating during the TRMM-KWAJEX field campaign [J]. Geophys. Res. Lett., 42(19): 8241−8249. doi: 10.1002/2015GL065813
    [27] Wielicki B A, Barkstrom B R, Harrison E F, et al. 1996. Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment [J]. Bull. Amer. Meteor. Soc., 77(5): 853−868. doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
    [28] Xie P P, Xiong A Y. 2011. A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses [J]. J. Geophys. Res.: Atmos., 116(D21): D21106. doi: 10.1029/2011JD016118
    [29] Xie S C, Xu K M, Cederwall R T, et al. 2002. Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions [J]. Quart. J. Roy. Meteor. Soc., 128(582): 1095−1135. doi: 10.1256/003590002320373229
    [30] Xie S C, Cederwall R T, Zhang M H, et al. 2003. Comparison of SCM and CSRM forcing data derived from the ECMWF model and from objective analysis at the ARM SGP site [J]. J. Geophys. Res.: Atmos., 108(D16): 4499. doi: 10.1029/2003JD003541
    [31] Xie S C, Cederwall R T, Zhang M H. 2004. Developing long-term single-column model/cloud system–resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations [J]. J. Geophys. Res.: Atmos., 109(D1): D01104. doi: 10.1029/2003JD004045
    [32] Xie S C, Klein S A, Zhang M H, et al. 2006a. Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment [J]. J. Geophys. Res.: Atmos., 111(D19): D19104. doi: 10.1029/2005JD006950
    [33] Xie S C, Klein S A, Yio J J, et al. 2006b. An assessment of ECMWF analyses and model forecasts over the North Slope of Alaska using observations from the ARM Mixed-Phase Arctic Cloud Experiment [J]. J. Geophys. Res.: Atmos., 111(D5): D05107. doi: 10.1029/2005JD006509
    [34] Xie S C, Hume T, Jakob C, et al. 2010. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE [J]. J. Climate, 23(1): 57−79. doi: 10.1175/2009JCLI3071.1
    [35] Xie S C, Zhang Y Y, Giangrande S E, et al. 2014. Interactions between cumulus convection and its environment as revealed by the MC3E sounding array [J]. J. Geophys. Res.: Atmos., 119(20): 11784−11808. doi: 10.1002/2014JD022011
    [36] Xu K M, Cederwall R T, Donner L J, et al. 2002. An intercomparison of cloud-resolving models with the atmospheric radiation measurement summer 1997 intensive observation period data [J]. Quart. J. Roy. Meteor. Soc., 128(580): 593−624. doi: 10.1256/003590002321042117
    [37] Yanai M, Johnson R. 1993. Impacts of cumulus convection on thermodynamic fields [M]//Emanuel K A, Raymond D J. The Representation of Cumulus Convection in Numerical Models. Boston: American Meteorological Society, 39–62. doi: 10.1007/978-1-935704-13-3_4
    [38] Yanai M, Esbensen S, Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets [J]. J. Atmos. Sci., 30(4): 611−627. doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2
    [39] 杨湘婧, 徐祥德, 陈宏尧, 等. 2011. L波段探空高分辨率廓线中近地层信息分析及相关模型 [J]. 气象, 37(12): 1504−1510. doi: 10.7519/j.issn.1000-0526.2011.12.005

    Yang X J, Xu X D, Chen H Y, et al. 2011. The analysis and correlation model of the surface layer information in L-band radiosonde high resolution profile [J]. Meteorological Monthly (in Chinese), 37(12): 1504−1510. doi: 10.7519/j.issn.1000-0526.2011.12.005
    [40] You Q L, Min J Z, Zhang W, et al. 2015. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau [J]. Climate Dyn., 45(3): 791−806. doi: 10.1007/s00382-014-2310-6
    [41] Zeng X P, Tao W K, Zhang M H, et al. 2007. Evaluating clouds in long-term cloud-resolving model simulations with observational data [J]. J. Atmos. Sci., 64(12): 4153−4177. doi: 10.1175/2007JAS2170.1
    [42] Zhang M H, Lin J L. 1997. Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements [J]. J. Atmos. Sci., 54(11): 1503−1524. doi:10.1175/1520-0469(1997)054<1503:CVAOSD>2.0.CO;2
    [43] Zhang M H, Lin J L, Cederwall R T, et al. 2001a. Objective analysis of ARM IOP data: Method and sensitivity [J]. Mon. Wea. Rev., 129(2): 295−311. doi:10.1175/1520-0493(2001)129<0295:OAOAID>2.0.CO;2
    [44] Zhang M H, Xie S C, Cederwall R T, et al. 2001b. Description of the ARM operational objective analysis system [R]. Office of Scientific & Technical Information Technical Reports, UCRL-ID-144292. doi: 10.2172/802094
    [45] Zhang M H, Somerville R C J, Xie S C. 2016. The SCM concept and creation of ARM forcing datasets [J]. Meteor. Monogr., 57(1): 24.1−24.12. doi: 10.1175/AMSMONOGRAPHS-D-15-0040.1
    [46] Zhang C Y, Wang D H, Pang Z H, et al. 2021a. Large-scale dynamic, heat and moisture structures of monsoon-influenced precipitation in the East Asian monsoon rainy area [J]. Quart. J. Roy. Meteor. Soc., 147(735): 1007−1030. doi: 10.1002/qj.3956
    [47] Zhang C Y, Wang D H, Pang Z H, et al. 2021b. Observed large-scale structures and diabatic heating profiles of precipitation over the Tibetan Plateau and South China [J]. J. Geophys. Res.: Atmos., 126(7): e2020JD033949. doi: 10.1029/2020JD033949
    [48] Zhao P, Xu X D, Chen F, et al. 2018. The third atmospheric scientific experiment for understanding the earth–atmosphere coupled system over the Tibetan Plateau and its effects [J]. Bull. Amer. Meteor. Soc., 99(4): 757−776. doi: 10.1175/BAMS-D-16-0050.1
    [49] 赵平, 李跃清, 郭学良, 等. 2018. 青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验 [J]. 气象学报, 76(6): 833−860. doi: 10.11676/qxxb2018.060

    Zhao P, Li Y Q, Guo X L, et al. 2018. The Tibetan Plateau surface–atmosphere coupling system and its weather and climate effects: The third Tibetan Plateau atmospheric scientific experiment [J]. Acta Meteorologica Sinica (in Chinese), 76(6): 833−860. doi: 10.11676/qxxb2018.060
    [50] Гандин. 1963. Об ъективний АнализМетео рологических Полей. Ленинград: Гидрометеороло гическое Издательство. 气象领域的客观分析. 列宁格勒: 水文气象出版社
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  68
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 录用日期:  2021-07-16
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回