高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京和邢台新粒子生成的差别及其对CCN活性的影响

高颖 王玉莹 李占清 金筱艾 王靖凌 胡嵘 曾思琪 张睿 陈曦 许嘉璐

高颖, 王玉莹, 李占清, 等. 2022. 北京和邢台新粒子生成的差别及其对CCN活性的影响[J]. 大气科学, 46(5): 1087−1097 doi: 10.3878/j.issn.1006-9895.2107.21013
引用本文: 高颖, 王玉莹, 李占清, 等. 2022. 北京和邢台新粒子生成的差别及其对CCN活性的影响[J]. 大气科学, 46(5): 1087−1097 doi: 10.3878/j.issn.1006-9895.2107.21013
GAO Ying, WANG Yuying, LI Zhanqing, et al. 2022. Differences in the Effects of New Particle Formation on Cloud Condensation Nuclei Activity in Beijing and Xingtai [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1087−1097 doi: 10.3878/j.issn.1006-9895.2107.21013
Citation: GAO Ying, WANG Yuying, LI Zhanqing, et al. 2022. Differences in the Effects of New Particle Formation on Cloud Condensation Nuclei Activity in Beijing and Xingtai [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1087−1097 doi: 10.3878/j.issn.1006-9895.2107.21013

北京和邢台新粒子生成的差别及其对CCN活性的影响

doi: 10.3878/j.issn.1006-9895.2107.21013
基金项目: 国家自然科学基金青年项目42005067,国家自然科学基金重点项目42030606,国家重点研发计划项目 2017YFC1501702,江苏省高等学校大学生创新训练计划项目 202010300056Y
详细信息
    作者简介:

    高颖,女,1998年出生,学士,主要从事大气环境与大气化学研究,E-mail: gao990606@163.com

    通讯作者:

    王玉莹,E-mail: yuyingwang@nuist.edu.cn

  • 中图分类号: P421.1

Differences in the Effects of New Particle Formation on Cloud Condensation Nuclei Activity in Beijing and Xingtai

Funds: Youth Program of National Natural Science Foundation of China (Grant 42005067), Key Program of National Natural Science Foundation of China (Grant 42030606),National Key Basic Research and Development Program of China (Grant 2017YFC1501702),College Students ’Innovative Entrepreneurial Training Plan Program in Jiangsu Province (Grant 202010300056Y)
  • 摘要: 基于2016年冬季和2017年夏季在北京、2016年夏季在邢台的三次气溶胶外场观测实验,选取三次观测期间典型的新粒子生成事件,分析其对气溶胶吸湿和云凝结核(CCN)活化特性的影响。两地分别位于华北平原北部超大城市区域和中南部工业化区域,两地不同季节新粒子形成机制不同,对应的凝结汇、生长速率以及气溶胶化学组分也不同。北京站点新粒子生成事件的发生以有机物的生成主导,而邢台站点新粒子生成事件的发生则以硫酸盐和有机物的生成共同主导。邢台站点新粒子生成过程中气溶胶吸湿性及云凝结核活化能力明显强于北京站点,此特点在核模态尺度粒子中表现尤为明显。以上结果表明,在估算新粒子生成对CCN数浓度的影响时,应充分考虑气溶胶吸湿和活化特性的差异。
  • 图  1  北京(BJ)、邢台(XT)观测站点在地形高度图中的位置

    Figure  1.  Locations of Beijing (BJ) and Xingtai (XT) sampling sites in the topographic elevation map

    图  2  北京2016年冬季(左列)、北京2017年夏季(中间列)和邢台2016年夏季(右列)三次观测实验新粒子生成事件中的(a–c)气溶胶数浓度尺度谱(PNSD)的日变化、(d–e)三种模态粒子数浓度(N,单位:cm−3)和(g–i)凝结汇(Cs)的日变化

    Figure  2.  Diurnal variations of (a–c) aerosol particle number size distribution (PNSD), (d–e) aerosol number concentration (N, units: cm−3) in three modes, and (g–i) condensation sinks (Cs) during the selected new particle formation (NPF) events in the three experiments in Beijing winter 2016 (left column), Beijing Summer 2017 (middle column) and Xingtai summer 2016 (right column)

    图  3  北京冬季(左列)、北京夏季(中间列)和邢台夏季(右列)三次观测实验新粒子生成事件中的气溶胶化学组分质量浓度的平均日变化(第一行),各类化学组分质量占比的平均日变化(第二行)以及各类化学组分的平均质量占比(第三行)。图例中给出的分别为有机物(Organic,简称Org)、硫酸盐(Sulfate,简称SO4)、硝酸盐(Nitrate,简称NO3)、铵盐(Ammonium sal,简称NH4)、氯盐(Chloride salt,简称Chl)和黒碳(Black carbon,简称BC)

    Figure  3.  Diurnal variations of the mass concentrations (top line) and mass fractions of aerosol chemical compositions (second line); the mass fractions of aerosol chemical compositions (bottom line) during the selected new particle formation (NPF) events in the three experiments in Beijing winter (left), Beijing Summer (middle) and Xingtai summer (right). The legend shows organic matter (Org), sulfate (SO4), nitrate (NO3), ammonium salt (NH4), chloride (Chl) and black carbon (BC)

    图  4  三次观测实验新粒子生成事件中的细粒子(PM1)气溶胶化学组分质量浓度对比

    Figure  4.  Comparison of the mass concentrations of aerosol chemical compositions in PM1 (the particulate matter with diameter less than or equal to 1 μm) during the selected new particle formation (NPF) events in the three experiments.

    图  5  北京冬季(左列)、北京夏季(中间列)和邢台夏季(右列)三次观测实验新粒子生成事件中的吸湿性参数(κ)日变化(第一行)和不同过饱和度(SS)下CCN数浓度日变化(第二行)

    Figure  5.  Diurnal variations of aerosol hygroscopicity parameters (top line) and CCN number concentrations at different supersaturation (SS) levels (bottom line) during the selected new particle formation (NPF) events in the three experiments in Beijing winter (left), Beijing Summer (middle) and Xingtai summer (right)

    图  6  三次观测实验中新粒子生成事件中(a)不同粒径粒子的吸湿性参数和(b)不同过饱和度(SS)下CCN数浓度增强因子的对比

    Figure  6.  Comparisons of (a) hygroscopicity parameters and (b) enhancement ratios of CCN number concentrations at different supersaturation (SS) levels during the selected new particle formation (NPF) events in the three experiments

    表  1  三次观测实验新粒子生成事件中的粒径增长速率

    Table  1.   Aerosol growth rates ($G_r $) in selected NPF events during the three experiments

    地区季节粒径增长速率/nm h−1
    北京冬季1.8
    夏季2.4
    邢台夏季2.0
    下载: 导出CSV
  • [1] Bian Y X, Zhao C S, Ma N, et al. 2014. A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain [J]. Atmos. Chem. Phys., 14(12): 6417−6426. doi: 10.5194/acp-14-6417-2014
    [2] Cai R L, Yang D S, Fu Y Y, et al. 2017. Aerosol surface area concentration: A governing factor in new particle formation in Beijing [J]. Atmos. Chem. Phys., 17(20): 12327−12340. doi: 10.5194/acp-17-12327-2017
    [3] Chen X S, Yang W Y, Wang Z F, et al. 2019. Improving new particle formation simulation by coupling a volatility-basis set (VBS) organic aerosol module in NAQPMS+APM [J]. Atmos. Environ., 204: 1−11. doi: 10.1016/j.atmosenv.2019.01.053
    [4] Chu B W, Kerminen V M, Bianchi F, et al. 2019. Atmospheric new particle formation in China [J]. Atmos. Chem. Phys., 19(1): 115−138. doi: 10.5194/acp-19-115-2019
    [5] de España C D, Wonaschütz A, Steiner G, et al. 2017. Long-term quantitative field study of New Particle Formation (NPF) events as a source of Cloud Condensation Nuclei (CCN) in the urban background of Vienna [J]. Atmos. Environ., 164: 289−298. doi: 10.1016/j.atmosenv.2017.06.001
    [6] Du W, Dada L, Zhao J, et al. 2021. A 3D study on the amplification of regional haze and particle growth by local emissions [J]. npj Climate and Atmospheric Science, 4(1): 4. doi: 10.1038/s41612-020-00156-5
    [7] 胡敏, 尚冬杰, 郭松, 等. 2016. 大气复合污染条件下新粒子生成和增长机制及其环境影响 [J]. 化学学报, 74(5): 385−391. doi: 10.6023/A16020105

    Hu Min, Shang Dongjie, Guo Song, et al. 2016. Mechanism of new particle formation and growth as well as environmental effects under complex air pollution in China [J]. Acta Chimica Sinica (in Chinese), 74(5): 385−391. doi: 10.6023/A16020105
    [8] Hu W W, Hu M, Hu W, et al. 2016. Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter [J]. J. Geophys. Res., 121(4): 1955−1977. doi: 10.1002/2015JD024020
    [9] Kulmala M, Kontkanen J, Junninen H, et al. 2013. Direct observations of atmospheric aerosol nucleation [J]. Science, 339(6122): 943−946. doi: 10.1126/science.1227385
    [10] Lee S H, Gordon H, Yu H, et al. 2019. New particle formation in the atmosphere: From molecular clusters to global climate [J]. J. Geophys. Res., 124(13): 7098−7146. doi: 10.1029/2018JD029356
    [11] 李占清. 2020. 气溶胶对中国天气、气候和环境影响综述 [J]. 大气科学学报, 43(1): 76−92. doi: 10.13878/j.cnki.dqkxxb.20200115005

    Li Zhanqing. 2020. Impact of aerosols on the weather, climate and environment of China: An overview [J]. Transactions of Atmospheric Sciences (in Chinese), 43(1): 76−92. doi: 10.13878/j.cnki.dqkxxb.20200115005
    [12] Li Z Q, Wang Y, Guo J P, et al. 2019. East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST-AIRCPC) [J]. J. Geophys. Res., 124(23): 13026−13054. doi: 10.1029/2019JD030758
    [13] 刘新罡, 张远航. 2010. 大气气溶胶吸湿性质国内外研究进展 [J]. 气候与环境研究, 15(6): 808−816. doi: 10.3878/j.issn.1006-9585.2010.06.10

    2010. Liu Xingang, Zhang Yuanhang 2010. Advances in research on aerosol hygroscopic properties at home and abroad [J]. Climatic and Environmental Research (in Chinese), 15(6): 808−816. doi: 10.3878/j.issn.1006-9585.2010.06.10
    [14] Lohmann U. 2007. Aerosol effects on clouds and climate [J]. Space Sci. Rev., 125(1-4): 129−137. doi: 10.1007/s11214-006-9051-8
    [15] Ma N, Zhao C S, Tao J C, et al. 2016. Variation of CCN activity during new particle formation events in the North China Plain [J]. Atmos. Chem. Phys., 16(13): 8593−8607. doi: 10.5194/acp-16-8593-2016
    [16] Myhre G, Shindell D. 2014. Anthropogenic and natural radiative forcing [M]//IPCC. Climate Change 2013 – The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 659–740. doi: 10.1017/CBO9781107415324.018
    [17] 牛生杰, 章澄昌, 孙继明. 2001. 贺兰山地区沙尘气溶胶粒子谱分布的观测研究 [J]. 大气科学, 25(2): 243−252. doi: 10.3878/j.issn.1006-9895.2001.02.10

    Niu Shengjie, Zhang Chengchang, Sun Jiming. 2001. Observational researches on the size distribution of sand aerosol particles in the Helan Mountain area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25(2): 243−252. doi: 10.3878/j.issn.1006-9895.2001.02.10
    [18] Peng J F, Hu M, Wang Z B, et al. 2014. Submicron aerosols at thirteen diversified sites in China: Size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production [J]. Atmos. Chem. Phys., 14(18): 10249−10265. doi: 10.5194/acp-14-10249-2014
    [19] Petters M D, Kreidenweis S M. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity [J]. Atmos. Chem. Phys., 7(8): 1961−1971. doi: 10.5194/acp-7-1961-2007
    [20] Ren J Y, Zhang F, Wang Y Y, et al. 2018. Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing [J]. Atmos. Chem. Phys., 18(9): 6907−6921. doi: 10.5194/acp-18-6907-2018
    [21] Schmale J, Henning S, Decesari S, et al. 2018. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories [J]. Atmos. Chem. Phys., 18(4): 2853−2881. doi: 10.5194/acp-18-2853-2018
    [22] 沈小静. 2012. 泰山大气气溶胶数谱分布特征及光学特性研究 [D]. 中国气象科学研究院博士学位论文. Shen Xiaojing. 2012. Characteristics of the particle number size distribution and optical properties at Mt. Tai [D]. Ph. D. dissertation (in Chinese), Chinese Academy of Meteorological Sciences.
    [23] 石广玉, 王标, 张华, 等. 2008. 大气气溶胶的辐射与气候效应 [J]. 大气科学, 32(4): 826−840. doi: 10.3878/j.issn.1006-9895.2008.04.11

    Shi Guangyu, Wang Biao, Zhang Hua, et al. 2008. The Radiative and climatic effects of atmospheric aerosols [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 826−840. doi: 10.3878/j.issn.1006-9895.2008.04.11
    [24] Sun Y L, Wang Z F, Du W, et al. 2015. Long-term real-time measurements of aerosol particle composition in Beijing, China: Seasonal variations, meteorological effects, and source analysis [J]. Atmos. Chem. Phys., 15(17): 10149−10165. doi: 10.5194/acp-15-10149-2015
    [25] Swietlicki E, Hansson H C, Hämeri K, et al. 2008. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review [J]. Tellus B, 60(3): 432−469. doi: 10.1111/j.1600-0889.2008.00350.x
    [26] Tao W K, Chen J P, Li Z Q, et al. 2012. Impact of aerosols on convective clouds and precipitation [J]. Rev. Geophys., 50(2): RG2001. doi: 10.1029/2011RG000369
    [27] 王玉莹. 2019. 华北地区典型站点气溶胶吸湿增长及活化特性的观测研究 [D]. 北京师范大学博士学位论文. Wang Yuying. 2019. Observational studies of aerosol hygroscopic and activation properties at Typicle stations in North China [D]. Ph. D. dissertation (in Chinese), Beijing Normal University.
    [28] 王明星, 吕位秀, 任丽新, 等. 1981. 华北山区大气气溶胶的化学成份 [J]. 大气科学, 5(2): 136−144. doi: 10.3878/j.issn.1006-9895.1981.02.03

    Wang Mingxing, Lü Weixiu, Ren Lixin, et al. 1981. Aerosol composition in a nonurban area near the Great Wall [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 5(2): 136−144. doi: 10.3878/j.issn.1006-9895.1981.02.03
    [29] 王丽丽, 张仁健, 李定龙, 等. 2009. 北京秋季气溶胶化学成分的高分辨率观测及来源分析 [J]. 气候与环境研究, 14(4): 399−404.

    Wang Lili, Zhang Renjian, Li Dinglong, et al. 2009. High resolution observation of chemical components of atmospheric aerosol in autumn of Beijing and its source identification [J]. Climatic and Environmental Research (in Chinese), 14(4): 399−404.
    [30] Wang Z B, Hu M, Wu Z J, et al. 2013. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing [J]. Atmos. Chem. Phys., 13(20): 10159−10170. doi: 10.5194/acp-13-10159-2013
    [31] Wang Y Y, Zhang F, Li Z Q, et al. 2017a. Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing [J]. Atmos. Chem. Phys., 17(8): 5239−5251. doi: 10.5194/acp-17-5239-2017
    [32] Wang Z B, Wu Z J, Yue D L, et al. 2017b. New particle formation in China: Current knowledge and further directions [J]. Science of the Total Environment, 577: 258−266. doi: 10.1016/j.scitotenv.2016.10.177
    [33] Wang Y Y, Li Z Q, Zhang Y J, et al. 2018a. Characterization of aerosol hygroscopicity, mixing state, and CCN activity at a suburban site in the central North China Plain [J]. Atmos. Chem. Phys., 18(16): 11739−11752. doi: 10.5194/acp-18-11739-2018
    [34] Wang G H, Zhang F, Peng J F, et al. 2018b. Particle acidity and sulfate production during severe haze events in China cannot be reliably inferred by assuming a mixture of inorganic salts [J]. Atmos. Chem. Phys., 18(14): 10123−10132. doi: 10.5194/acp-18-10123-2018
    [35] Wang Y Y, Li Z Q, Zhang R Y, et al. 2019. Distinct ultrafine- and accumulation-mode particle properties in clean and polluted urban environments [J]. Geophys. Res. Lett., 46(19): 10918−10925. doi: 10.1029/2019GL084047
    [36] Wu Z J, Ma N, Größ J, et al. 2017. Thermodynamic properties of nanoparticles during new particle formation events in the atmosphere of North China Plain [J]. Atmospheric Research, 188: 55−63. doi: 10.1016/j.atmosres.2017.01.007
    [37] Yue D L, Hu M, Zhang R Y, et al. 2011. Potential contribution of new particle formation to cloud condensation nuclei in Beijing [J]. Atmos. Environ., 45(33): 6070−6077. doi: 10.1016/j.atmosenv.2011.07.037
    [38] 岳玎利, 钟流举, 沈劲, 等. 2015. 珠三角地区大气新粒子生成事件的参数模拟与特征 [J]. 中国科技论文, 10(21): 2500−2504,2508. doi: 10.3969/j.issn.2095-2783.2015.21.007

    Yue Dingli, Zhong Liuju, Shen Jin, et al. 2015. Parameter simulation and characterizations of new particle formation events in different seasons in the Pearl River Delta region [J]. China Sciencepaper (in Chinese), 10(21): 2500−2504,2508. doi: 10.3969/j.issn.2095-2783.2015.21.007
    [39] Zellner R. 2000. John H. Seinfeld and Spyros N. Pandis: Atmospheric chemistry and physics, from air pollution to climate change [J]. J. Atmos. Chem., 37(2): 212−214. doi: 10.1023/A:1006483708571
    [40] 张仁健, 王明星, 张文, 等. 2000. 北京冬春季气溶胶化学成分及其谱分布研究 [J]. 气候与环境研究, 5(1): 6−12. doi: 10.3878/j.issn.1006-9585.2000.01.02

    Zhang Renjian, Wang Mingxing, Zhang Wen, et al. 2000. Research on elemental concentrations and distributions of aerosols in Winter/Spring in Beijing [J]. Climatic and Environmental Research (in Chinese), 5(1): 6−12. doi: 10.3878/j.issn.1006-9585.2000.01.02
    [41] Zhang F, Wang Y Y, Peng J F, et al. 2017. Uncertainty in predicting CCN activity of aged and primary aerosols [J]. J. Geophys. Res., 122(21): 11723−11736. doi: 10.1002/2017JD027058
    [42] Zhang Y J, Du W, Wang Y Y, et al. 2018. Aerosol chemistry and particle growth events at an urban downwind site in North China Plain [J]. Atmos. Chem. Phys., 18(19): 14637−14651. doi: 10.5194/acp-18-14637-2018
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  654
  • HTML全文浏览量:  104
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 录用日期:  2021-08-31
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2022-09-22

目录

    /

    返回文章
    返回