Microphysical Characteristics of Winter Mixed-Phase Stratiform Clouds and Summer Convective Clouds in the Rocky Mountain Region Based on Airborne Measurements
-
摘要: 混合相态层状云与对流云的微物理特征有很大的差异性,但现阶段数值模式中并没有充分考虑两者的区别,这是导致云降水的模拟有较大不确定性的原因之一。为了加深对层状云与对流云的微物理特征差异的理解,并为模式的验证和参数化开发提供支撑,本文基于在中落基山地区进行的Ice in Clouds Experiment—Layer Clouds(ICE-L)项目和High Plain Cumulus(HiCu)项目的飞机观测资料,定量对比分析了该地区大陆性混合相态冬季较浅薄的层状云与较弱及中等强度的夏季对流云的微物理特征。其中,粒子图像和粒子谱通过2D-Cloud和2D-Precipitation探头得到,液态水含量通过热线式King探头测量得到,冰水含量基于粒子谱计算得到。主要结论有:(1)在−30°C~0°C的温度层范围内,夏季对流云内的液态水含量比冬季层状云高一个数量级,冰水含量高一到两个数量级,并且在对流云云顶附近观测到更多的过冷水。此外,夏季对流云中液态水含量在−20°C~0°C上随温度降低而升高,而冬季层状云则相反。夏季对流云中更活跃的冰晶生成和生长过程使得云内液态水质量分数小于层状云。(2)冬季层状云与夏季对流云内相态空间分布极不均匀。随着温度从0°C降低到−30°C,在冬季层状云中冰晶发生贝吉龙过程,云中的过冷水为主的区域向混合相态和冰相转化。而夏季对流云中相态结构更为复杂,体现了对流云中复杂的冰水相互作用。(3)在−30°C~0°C的温度范围内,夏季对流云的粒子谱宽度大于冬季层状云。随着温度的降低,冬季层状云与夏季对流云均存在粒子谱增宽的现象。(4)冬季层状云中,温度低于−20°C时冰晶主要为无规则状,在−20°C~−10°C观测到了辐枝状和无规则状冰晶,在−10°C以上观测到了柱状和无规则状冰晶,说明冰晶的生长主要为凝华增长和碰并增长。而夏季对流云以冻滴、霰粒子与不规则冰晶为主,说明主要为液滴冻结、淞附增长和碰并增长为主。(5)在夏季对流云较强的上升气流中存在较高的液态水含量,但垂直速度与云内冰水含量没有明显的相关性。Abstract: The microphysical characteristics of mixed-phase stratiform and convective clouds are different but have not been well considered in numerical models, leading to uncertainties in modeling clouds and precipitation. To improve our understanding of the difference in microphysics between mixed-phase stratiform and convective clouds and obtain quantitative results for model evaluation and parameterization, the microphysical characteristics of continental winter mixed-phase stratiform and summer convective clouds in the mid-Rocky Mountain region are compared using data collected during the Ice in Clouds Experiment—Layer Clouds (ICE-L) and the High Plain Cumulus (HiCu) projects. The particle images and Particle Size Distributions (PSD) were measured using 2D cloud and 2D precipitation probes, Liquid Water Content (LWC) was measured using the King hot-wire probes, and Ice Water Content (IWC) was calculated based on the particle spectrum. The main findings are as follows: (1) Between −30°C and 0°C, the LWC in summer convective clouds is an order of magnitude higher than that in winter stratiform clouds, and the IWC in summer convective clouds is 1–2 orders of magnitude higher than that in winter stratiform clouds. Supercooled liquid water was observed near the convective cloud top. The LWC in summer convective clouds increases with the decrease in temperature from 0°C to −20°C, while the LWC in winter stratiform clouds decreases with the decrease in temperature. The liquid fraction in summer convective clouds is smaller than that in winter stratiform clouds, indicating rapid ice production. (2) Both winter stratiform and summer convective clouds had large spatial variability in their phase distribution. As the temperature decreased from 0°C to −30°C, ice in winter stratiform clouds grew through the Bergeron process, and the water-dominated zones transformed into the mixed-phase and ice-dominated zones. The phase distribution was complicated in summer convective clouds, indicating a complex liquid–ice interaction. (3) The ice PSD in summer convective clouds was broader than that in winter stratiform clouds between 0°C and −30°C. As the temperature decreased, the ice PSDs in both winter stratiform and summer convective clouds broadened. (4) The observed particle images in winter stratiform clouds were irregular at temperatures lower than −20°C. Meanwhile, between −20°C and −10°C, the ice was dendritic and irregular, and at temperatures warmer than −10°C, the ice was mainly needle-shaped, columnar, and irregular, indicating that the ice grew through vapor diffusion and coalescence in winter stratiform clouds. In summer convective clouds, the ice mainly formed through drop freezing, riming, and coalescence. (5) In strong updrafts of summer convective clouds, a high LWC and large liquid fractions were observed. The IWC had no obvious correlation with vertical velocity, indicating that the efficiency of glaciation in HiCu clouds was independent of vertical velocity.
-
图 2 ICE-L实验(左)在2007年12月13日和HiCu实验在2003年7月28日(右)采样到的云个例的(a、g)雷达反射率(单位:dBZ)、(b、h)温度T(单位:°C)、(c、i)垂直速度w(单位:m s−1)、(d、j)液态水含量LWC(单位:g m−3)、(e、k)FSSP探头探测的数浓度(单位:cm−3)、(f、l)2D-C探头探测的数浓度(L−1)
Figure 2. (a, g) Radar reflectivity (units: dBZ), (b, h) temperature (T, units: °C), (c, i) vertical velocity (w, units: m s−1), (d, j) LWC (liquid water content, units: g m−3), and NC (number concentration) measured by (e, k) FSSP probe and (f, l) 2D-C probe in cloud examples from ICE-L project (left) on 13 December 2007 and HiCu project (right) on 28 July 2003
图 3 (a)CDP探头与King探头测量的ICE-L实验、(b)FSSP探头与King探头测量的ICE-L实验、(c)FSSP探头与King探头测量的HiCu实验云样本中液态水含量对比。红色直线为散点的线性拟合线
Figure 3. Comparison of LWC measured by (a) the CDP probe and the King probe in ICE-L clouds, (b) the FSSP probe and the King probe in ICE-L clouds, (c) the FSSP probe and the King probe in HiCu clouds. The red line is a linear fit line with scattered points
图 4 (a)ICE-L、(b)HiCu采样到的云区在不同参数方案下计算的冰水含量在温度层上的分布。公式表示适用层状云、对流云的参数方法,红色、蓝色五角星符号分别代表适用方法下计算的冰水含量分布
Figure 4. Ice water content (IWC) calculated based on different mass–diameter relationships in temperature level observed in (a) ICE-L clouds and (b) HiCu clouds. IWC in stratiform and convective clouds is calculated by the formulas. The results are denoted by red and blue pentagrams, respectively
图 5 ICE-L、HiCu整体以及HiCu云顶(与云顶距离小于500 m)的云内(a)液态水含量、(b)冰水含量、(c)液态水质量分数分别在各温度层上的分布。标记符号为平均值,误差线左右两端为10、90百分位点
Figure 5. (a) LWC, (b) IWC, and (c) liquid mass fraction in temperature level observed in whole ICE-L, whole HiCu, and HiCu near the convective cloud top (<500 m). The symbols represent the mean. The left and right ends of error bars represent the 10th, 90th percentile values, respectively
图 8 ICE-L和HiCu实验中使用FSSP探头、2D-C探头、2D-P探头测量的(a)全部温度下、(b–d)不同温度层的粒子谱。直径(D)在1~50 μm为FSSP探头探测的小粒子谱分布,大于50 μm为2D-C探头和2D-P探头共同探测的大粒子谱分布。N表示粒子数浓度
Figure 8. Particle size distributions (PSDs) derived from FSSP, 2D-C, and 2D-P probes at (a) full temperature ranges and (b–d) different temperature ranges in ICE-L and HiCu. Diameters from 1 to 50 μm are measured by FSSP probe, while those larger than 50 μm are measured by 2D-C probe and 2D-P probe. N represents particle number concentration
表 1 ICE-L项目在不同温度层和高度层的云内采样时长和云内采样路程
Table 1. Time in clouds and flight length in clouds sampled at different temperature and height ranges in ICE-L project
温度范围/°C 高度范围/m 云内采样时长/s 云内采样路程/km −32.5~−27.5 7107.95~7306.09 128 19.08 −27.5~−22.5 4900.21~6700.33 943 118.77 −22.5~−17.5 4221.82~5180.07 1467 179.99 −17.5~−12.5 1794.89~5490.75 1277 148.83 −12.5~−7.5 1721.03~5051.61 471 56.17 −7.5~−2.5 2139.76~4170.20 329 42.97 表 2 飞机探测仪器名称、主要探测对象、探测范围、探测方法
Table 2. Summary of detection instruments, main measurement, measurement range, and measurement technique on the aircraft during the research flights
仪器名称 主要探测对象 探测范围 探测方法 云粒子探头CDP 霾、云滴 3~43 μm 前向散射 云粒子图像探头CPI 大云滴、冰雪晶 20~1500 μm 二维成像 FSSP-100探头 云滴、小冰晶 0.8~50 μm 前向散射 2D-C探头 大液滴、冰晶、霰 50~1500 μm 二维成像 2D-P探头 大液滴、雪、雹 100~6300 μm 二维成像 King探头 液态水含量 0.1~6.0 g m−3 热线式 多普勒云雷达WCR 反射率、垂直结构 >−30 dBZ W波段 表 3 HiCu项目在不同温度层和高度层的云内采样时长和云内采样路程
Table 3. Time and flight length in clouds sampled at different temperature and height ranges in HiCu project
温度范围/°C 高度范围/m 云内采样时长/s 云内采样路程/km −27.5~−22.5 7766.72~8531.04 497 55.16 −22.5~−17.5 7039.88~8475.77 2236 240.57 −17.5~−12.5 6117.56~7870.97 3387 349.74 −12.5~−7.5 5055.66~7200.13 5696 607.98 −7.5~−2.5 4622.10~6267.56 4765 503.89 −2.5~2.5 4130.20~5653.07 2193 227.22 -
[1] Boudala F S, Isaac G A, Cober S G, et al. 2004. Liquid fraction in stratiform mixed-phase clouds from in situ observations [J]. Quart. J. Roy. Meteor. Soc., 130(603): 2919−2931. doi: 10.1256/qj.03.153 [2] Brown P R A, Francis P N. 1995. Improved measurements of the ice water content in cirrus using a total-water probe [J]. J. Atmos. Ocean. Technol., 12(2): 410−414. doi: 10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2 [3] 蔡兆鑫. 2012. 层状云系降水结构特征及飞机人工增雨作业的综合观测分析 [D]. 南京信息工程大学硕士学位论文. Cai Zhaoxin. 2012. Characteristics of stratiform cloud precipitation structure and the comprehensive observation analysis of rainfall enhancement operation by aircraft [D]. M. S. thesis (in Chinese), Nanjing University of Information Science & Technology. [4] 蔡兆鑫, 蔡淼, 李培仁, 等. 2019. 大陆性积云不同发展阶段宏观和微观物理特性的飞机观测研究 [J]. 大气科学, 43(6): 1191−1203. doi: 10.3878/j.issn.1006-9895.1903.19113Cai Zaoxin, Cai Miao, Li Peiren, et al. 2019. Aircraft observation research on macro and microphysics characteristics of continental cumulus cloud at different development stages [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1191−1203. doi: 10.3878/j.issn.1006-9895.1903.19113 [5] Cantrell W, Heymsfield A. 2005. Production of ice in tropospheric clouds: A review [J]. Bull. Amer. Meteor. Soc., 86(6): 795−808. doi: 10.1175/BAMS-86-6-795 [6] 陈宝君, 李子华, 刘吉成, 等. 1998. 三类降水云雨滴谱分布模式 [J]. 气象学报, 56(4): 506−512. doi: 10.11676/qxxb1998.046Chen Baijun, Li Zihua, Liu Jicheng, et al. 1998. Model of raindrop size distribution in three types of precipitation [J]. Acta Meteor. Sinica (in Chinese), 56(4): 506−512. doi: 10.11676/qxxb1998.046 [7] Cooper W A. 1986. Ice initiation in natural clouds [J]. Meteor. Monogr., 21(43): 29−32. doi: 10.1175/0065-9401-21.43.29 [8] DeMott P J, Prenni A J, Liu X, et al. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate [J]. Proc. Natl. Acad. Sci. USA, 107(25): 11217−11222. doi: 10.1073/pnas.0910818107 [9] Field P R, Heymsfield A J, Bansemer A. 2006. Shattering and particle interarrival times measured by optical array probes in ice clouds [J]. J. Atmos. Oceanic Technol., 23(10): 1357−1371. doi: 10.1175/JTECH1922.1 [10] Field P R, Heymsfield A J, Shipway B J, et al. 2012. Ice in clouds experiment—Layer clouds. Part II: Testing characteristics of heterogeneous ice formation in lee wave clouds [J]. J. Atmos. Sci., 69(3): 1066−1079. doi: 10.1175/JAS-D-11-026.1 [11] 郭学良, 黄美元, 徐华英, 等. 1999. 层状云降水微物理过程的雨滴分档数值模拟 [J]. 大气科学, 23(6): 745−752. doi: 10.3878/j.issn.1006-9895.1999.06.11Guo Xueliang, Huang Meiyuan, Xu Huaying, et al. 1999. Rain category numerical simulations of microphysical processes of precipitation formation in stratiform clouds [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23(6): 745−752. doi: 10.3878/j.issn.1006-9895.1999.06.11 [12] Heymsfield A J, Parrish J L. 1978. A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer [J]. J. Appl. Meteor. Climatol., 17(10): 1566−1572. doi: 10.1175/1520-0450(1978)017<1566:ACTFIT>2.0.CO;2 [13] Heymsfield A, Willis P. 2014. Cloud conditions favoring secondary ice particle production in tropical maritime convection [J]. J. Atmos. Sci., 71(12): 4500−4526. doi: 10.1175/JAS-D-14-0093.1 [14] Heymsfield A J, Bansemer A, Twohy C H. 2007. Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence [J]. J. Atmos. Sci., 64(4): 1047−1067. doi: 10.1175/JAS3890.1 [15] Heymsfield A J, Field P R, Bailey M, et al. 2011. Ice in clouds experiment—Layer clouds. Part I: Ice growth rates derived from lenticular wave cloud penetrations [J]. J. Atmos. Sci., 68(11): 2628−2654. doi: 10.1175/JAS-D-11-025.1 [16] Hobbs P V, Rangno A L. 1985. Ice particle concentrations in clouds [J]. J. Atmos. Sci., 42(23): 2523−2549. doi: 10.1175/1520-0469(1985)042<2523:IPCIC>2.0.CO;2 [17] 胡朝霞, 雷恒池, 郭学良, 等. 2007. 降水性层状云系结构和降水过程的观测个例与模拟研究 [J]. 大气科学, 31(3): 425−439. doi: 10.3878/j.issn.1006-9895.2007.03.06Hu Zhaoxia, Lei Hengchi, Guo Xueliang, et al. 2007. Studies of the structure of a stratiform cloud and the physical processes of precipitation formation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(3): 425−439. doi: 10.3878/j.issn.1006-9895.2007.03.06 [18] Jing X Q, Geerts B, Wang Y G, et al. 2017. Evaluating seasonal orographic precipitation in the interior western United States using gauge data, gridded precipitation estimates, and a regional climate simulation [J]. J. Hydrometeorol., 18(9): 2541−2558. doi: 10.1175/JHM-D-17-0056.1 [19] Kanji Z A, Ladino L A, Wex H K, et al. 2017. Overview of ice nucleating particles [J]. Meteor. Monogr., 58(1): 1.1−1.33. doi: 10.1175/AMSMONOGRAPHS-D-16-0006.1 [20] Koenig L R. 1963. The glaciating behavior of small cumulonimbus clouds [J]. J. Atmos. Sci., 20(1): 29−47. doi: 10.1175/1520-0469(1963)020<0029:TGBOSC>2.0.CO;2 [21] Korolev A V. 1994. A study of bimodal droplet size distributions in stratiform clouds [J]. Atmos. Res., 32(1–4): 143–170. doi: 10.1016/0169-8095(94)90057-4 [22] Korolev A, Leisner T. 2020. Review of experimental studies of secondary ice production [J]. Atmos. Chem. Phys., 20(20): 11767−11797. doi: 10.5194/acp-20-11767-2020 [23] Korolev A V, Isaac G A, Cober S G, et al. 2003. Microphysical characterization of mixed-phase clouds [J]. Quart. J. Roy. Meteor. Soc., 129(587): 39−65. doi: 10.1256/qj.01.204 [24] 李淑日. 2006. 西北地区云和降水微物理特征个例分析 [J]. 气象, 32(8): 59−63. doi: 10.3969/j.issn.1000-0526.2006.08.010Li Shuri. 2006. Case study of cloud and precipitation micro-physics structure over Northwest China [J]. Meteor. Mon. (in Chinese), 32(8): 59−63. doi: 10.3969/j.issn.1000-0526.2006.08.010 [25] 李铁林, 雷恒池, 刘艳华, 等. 2010. 河南春季一次层状冷云的微物理结构特征分析 [J]. 气象, 36(9): 74−80. doi: 10.7519/j.issn.1000-0526.2010.9.012Li Tielin, Lei Hengchi, Liu Yanhua, et al. 2010. Microphysical characteristics of a precipitation process in Henan Province [J]. Meteor. Mon. (in Chinese), 36(9): 74−80. doi: 10.7519/j.issn.1000-0526.2010.9.012 [26] Locatelli J D, Hobbs P V. 1974. Fall speeds and masses of solid precipitation particles [J]. J. Geophys. Res., 79(15): 2185−2197. doi: 10.1029/JC079i015p02185 [27] Magono C, Lee C W. 1966. Meteorological classification of natural snow crystals [J]. Journal of the Faculty of Science, 2(4): 321−335. [28] Mazin I P. 2006. Cloud phase structure: Experimental data analysis and parameterization [J]. J. Atmos. Sci., 63(2): 667−681. doi: 10.1175/JAS3660.1 [29] Mossop S C. 1970. Concentrations of ice crystals in clouds [J]. Bull. Amer. Meteor. Soc., 51(6): 474−480. doi: 10.1175/1520-0477(1970)051<0474:COICIC>2.0.CO;2 [30] Mossop S C, Ono A. 1969. Measurements of ice crystal concentration in clouds [J]. J. Atmos. Sci., 26(1): 130−137. doi: 10.1175/1520-0469(1969)026<0130:MOICCI>2.0.CO;2 [31] Mossop S C, Hallett J. 1974. Ice crystal concentration in cumulus clouds: Influence of the drop spectrum [J]. Science, 186(4164): 632−634. doi: 10.1126/science.186.4164.632 [32] Rangno A L, Hobbs P V. 2001. Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations [J]. J. Geophys. Res. Atmos., 106(D14): 15065−15075. doi: 10.1029/2000JD900286 [33] Shupe M D, Matrosov S Y, Uttal T. 2006. Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA [J]. J. Atmos. Sci., 63(2): 697−711. doi: 10.1175/JAS3659.1 [34] Sun Z A, Shine K P. 1995. Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds [J]. J. Climate, 8(7): 1874−1888. doi: 10.1175/1520-0442(1995)008<1874:POICRP>2.0.CO;2 [35] Sun Z A, Shine K P. 2010. Studies of the radiative properties of ice and mixed-phase clouds [J]. Quart. J. Roy. Meteor. Soc., 120(515): 111−137. doi: 10.1002/qj.49712051508 [36] Takahashi T, Endoh T, Wakahama G, et al. 1991. Vapor diffusional growth of free-falling snow crystals between −3 and −23°C [J]. J. Meteor. Soc. Japan, 69(1): 15−30. doi: 10.2151/jmsj1965.69.1_15 [37] Wang Z E, Wechsler P, Kuestner W, et al. 2009. Wyoming cloud lidar: Instrument description and applications [J]. Opt. Exp., 17(16): 13576−13587. doi: 10.1364/OE.17.013576 [38] Wang J Y, Dong X Q, Xi B K. 2015. Investigation of ice cloud microphysical properties of DCSs using aircraft in situ measurements during MC3E over the ARM SGP site [J]. J. Geophys. Res. Atmos., 120(8): 3533−3552. doi: 10.1002/2014JD022795 [39] 杨文霞, 牛生杰, 魏俊国, 等. 2005. 河北省层状云降水系统微物理结构的飞机观测研究 [J]. 高原气象, 24(1): 84−90. doi: 10.3321/j.issn:1000-0534.2005.01.013Yang Wenxia, Niu Shengjie, Wei Junguo, et al. 2005. Airborne observation for microphysical structure of precipitation system of stratiform cloud in Hebei Province [J]. Plateau Meteor. (in Chinese), 24(1): 84−90. doi: 10.3321/j.issn:1000-0534.2005.01.013 [40] 杨军, 陈宝君, 银燕, 等. 2011. 云降水物理学[M]. 北京: 气象出版社, 160–161Yang Jun, Chen Baojun, Yin Yan, et al. 2011. Physics of Clouds and Precipitation (in Chinese) [M]. Beijing: China Meteorological Press, 160–161. [41] Yang J, Wang Z E, Heymsfield A J, et al. 2016a. Characteristics of vertical air motion in isolated convective clouds [J]. Atmos. Chem. Phys., 16(15): 10159−10173. doi: 10.5194/acp-16-10159-2016 [42] Yang J, Wang Z E, Heymsfield A, et al. 2016b. Liquid–Ice mass partition in tropical maritime convective clouds [J]. J. Atmos. Sci., 73(12): 4959−4978. doi: 10.1175/JAS-D-15-0145.1 [43] Yang J, Wang Z E, Heymsfield A. 2018. On the freezing time of supercooled drops in developing convective clouds over tropical ocean [J]. Atmos. Res., 211: 30−37. doi: 10.1016/j.atmosres.2018.04.023 [44] Yang J, Wang Z E, Heymsfield A J, et al. 2020. High ice concentration observed in tropical maritime stratiform mixed-phase clouds with top temperatures warmer than −8°C [J]. Atmos. Res., 233: 104719. doi: 10.1016/j.atmosres.2019.104719 [45] 杨洁帆, 胡向峰, 雷恒池, 等. 2021. 太行山东麓层状云微物理特征的飞机观测研究 [J]. 大气科学, 45(1): 88−106. doi: 10.3878/j.issn.1006-9895.2004.19202Yang Jiefan, Hu Xiangfeng, Lei Hengchi, et al. 2021. Airborne observations of microphysical characteristics of stratiform cloud over eastern side of Taihang mountains [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 88−106. doi: 10.3878/j.issn.1006-9895.2004.19202 [46] 张佃国, 郭学良, 龚佃利, 等. 2011. 山东省1989~2008年23架次飞机云微物理结构观测试验结果 [J]. 气象学报, 69(1): 195−207. doi: 10.11676/qxxb2011.017Zhang Dianguo, Guo Xueliang, Gong Dianli, et al. 2011. The observational results of the clouds microphysical structure based on the data obtained by 23 sorties between 1989 and 2008 in Shandong Province [J]. Acta Meteor. Sinica (in Chinese), 69(1): 195−207. doi: 10.11676/qxxb2011.017 [47] Zhao M. 2011. The arctic clouds from model simulations and long-term observations at barrow, Alaska [D]. Ph. D. dissertation, University of Wyoming, 178 pp. [48] 赵增亮, 毛节泰, 魏强, 等. 2010. 西北地区春季云系的垂直结构特征飞机观测统计分析 [J]. 气象, 36(5): 71−77. doi: 10.7519/j.issn.1000-0526.2010.05.010Zhao Zengliang, Mao Jietai, Wei Qiang, et al. 2010. A study of vertical structure of spring stratiform clouds in Northwest China [J]. Meteor. Mon. (in Chinese), 36(5): 71−77. doi: 10.7519/j.issn.1000-0526.2010.05.010 [49] 朱士超, 郭学良. 2014. 华北积层混合云中冰晶形状、分布与增长过程的飞机探测研究 [J]. 气象学报, 72(2): 366−389. doi: 10.11676/qxxb2014.013Zhu Shichao, Guo Xueliang. 2014. Ice crystal habits, distribution and growth process in stratiform clouds with embedded convection in North China: Aircraft measurements [J]. Acta Meteor. Sinica (in Chinese), 72(2): 366−389. doi: 10.11676/qxxb2014.013 -