Combined Disaster Events of Extensive and Persistent Low Temperatures, Rain/Snow, and Freezing in Southern China: Objective Identification and Key Features
-
摘要: 组合性灾害事件是指同时出现的若干个天气灾害的组合,它的发生会明显加重致灾程度。本文利用1961~2013年冬季我国南方区域206个台站的日平均温度、日降水量及雨凇资料,建立了冬季大范围持续性低温、雨雪和冰冻组合性灾害事件的客观识别方法,并揭示了三类组合性灾害事件的关键特征。首先,基于低温、雨雪、冰冻天气的强度和面积阈值以及持续天数建立了大范围持续性低温事件、雨雪事件以及冰冻事件各自的客观判识方法。在此基础上界定出了三类常见组合性灾害事件,即低温—雨雪灾害事件(C-RS)、低温—冰冻灾害事件(C-F)以及低温—雨雪—冰冻灾害事件(C-RS-F)。三类组合性灾害事件常见于1月上旬至2月中旬。尽管三类组合性灾害事件在低温和降水等方面有相似之处,但其形成条件却明显不同。充沛的水汽供应和大范围强烈的水汽辐合是低温—雨雪灾害事件和低温—雨雪—冰冻灾害事件发生的关键条件,而逆温层和冷垫则是低温—冰冻灾害事件和低温—雨雪—冰冻灾害事件发生的必要条件。亚洲中高纬大型斜脊系统是低温—冰冻灾害事件和低温—雨雪—冰冻灾害事件的关键环流特征,为强冷空气活动提供了有利环流条件。低温—雨雪灾害事件期间亚洲中高纬则盛行波状环流,有利于适度冷空气活动。在水汽供应和逆温层形成方面,三类组合性灾害事件受控于不同的副热带异常环流系统。孟加拉湾南支槽和南海上空异常反气旋分别是低温—雨雪灾害事件和低温—冰冻灾害事件形成的副热带关键环流系统,而孟加拉湾南支槽和西北太平洋异常反气旋相结合为低温—雨雪—冰冻灾害事件形成的副热带关键环流系统。
-
关键词:
- 大型斜脊 /
- 南支槽 /
- 西北太平洋异常反气旋 /
- 逆温层
Abstract: Combined disaster events refer to the combination of several simultaneously occurring weather disasters. In this paper, the daily mean temperature, precipitation, and glaze data of 206 stations over southern China in winter from 1961 to 2013 are integrated to establish an objective method for identifying combined disaster events of extensive and persistent low temperatures, rain/snow, and freezing weather in winter, and the key features of these kinds of combined disaster events are discussed. First, the identification methods for extensive and persistent low temperatures and rain/snow and freezing events are proposed according to the thresholds of their intensities and impact areas. The three most prominent combined disaster events, namely cold-rain/snow (C-RS), cold-freezing (C-F), and C-RS-freezing (C-RS-F) disaster events, are identified. These combined disaster events often occur from early January to mid-February. Although they have similar low temperatures and precipitation levels, their formation conditions are significantly different. Abundant water vapor supply and large-scale strong water vapor convergence are key conditions for the occurrence of C-RS and C-RS-F disaster events, while an inversion layer and cold pad are necessary conditions for the occurrence of C-F and C-RS-F disaster events. The large-scale tilted ridge in mid- and high-latitude Asia is the key circulation feature of C-F and C-RS-F disaster events. It provides favorable circulation conditions for strong cold air activities. During C-RS disaster events, wavy circulation prevails in mid- and high-latitude Asia, which is conducive to moderate cold air activities. The water vapor supply and inversion layer formation associated with the three kinds of combined disaster events are controlled by different subtropical anomalous circulation systems. The southern branch trough over the Bay of Bengal and the anomalous anticyclone over the South China Sea are key subtropical circulation systems for the formation of C-RS and C-F disaster events, respectively, while the combination of the southern branch trough over the Bay of Bengal and anomalous anticyclone over Northwestern Pacific is the key circulation system for the formation of C-RS-F disaster events. -
图 1 2008年1月1日至2月28日中国南方低温(蓝色柱)、雨雪(绿色柱)和冰冻(红色柱)影响面积(网格数)。图中蓝(绿、红)虚线分别为低温(雨雪、冰冻)影响面积阈值(网格数)
Figure 1. Impact area (grid numbers) of low temperature (blue bars), rain/snow (green bars), and freezing (red bars) from January 1 to February 28, 2008 in southern China. The blue, green, and red dashed lines correspond to the respective thresholds (grid numbers)
图 3 1961~2013年冬季我国南方大范围持续性低温灾害事件(蓝色柱),大范围持续性雨雪灾害事件(绿色柱)和大范围持续性冰冻灾害事件(红色柱)发生时段。柱的下(上)缘对应事件开始(结束)日期,柱的长度对应事件持续天数(单位:d)
Figure 3. Time of occurrence of extensive and persistent low temperature events (blue bars), rain/snow disaster events (green bars), and freezing disaster events (red bars) in winter from 1961 to 2013 in southern China. The bottom (top) edge of the bar corresponds to the start (end) date, and the length of the bar corresponds to the event duration (units: d)
图 4 1961~2013年不同灾害事件逐年累计频数(蓝色柱)和天数(红色柱,单位:d):(a)非组合性低温灾害事件(N-C);(b)低温—雨雪灾害事件(C-RS);(c)低温—冰冻灾害事件(C-F);(d)低温—雨雪—冰冻灾害事件(C-RS-F)。图中左、右纵坐标刻度分别对应累计频数值和累计天数值
Figure 4. Cumulative occurrences frequency (blue bars) and days (red bars, units: d) of different disaster events in winter from 1961 to 2013: (a) Non-combined cold disaster event (N-C); (b) cold-rain/snow disaster event (C-RS); (c) cold-freezing disaster event (C-F); (d) cold-rain/snow-freezing disaster event (C-RS-F). The scales of the left and right Y-axis correspond to the cumulative occurrences and days, respectively
图 5 1961~2013年冬季各旬出现灾害性事件累计频数:(a)非组合性低温灾害事件(N-C);(b)低温—雨雪灾害事件(C-RS);(c)低温—冰冻灾害事件(C-F);(d)低温—雨雪—冰冻灾害事件(C-RS-F)
Figure 5. Cumulative occurrences frequency for different disaster events in every dekad in winter from 1961 to 2013: (a) Non-combined cold disaster event (N-C); (b) cold-rain/snow disaster event (C-RS); (c) cold-freezing disaster event (C-F); (d) cold-rain/snow-freezing disaster event (C-RS-F)
图 6 我国南方地区台站达到灾害性天气标准的次数与灾害性事件总数的比率:(a)非组合性低温灾害事件(N-C);(b)低温—雨雪灾害事件(C-RS);(c)低温—冰冻灾害事件(C-F);(d)低温—雨雪—冰冻灾害事件(C-RS-F)。图中等值线间隔0.1,斜线阴影区为比率≥0.5的区域。
Figure 6. Ratio of the number of times each station meets the disastrous weather standard in southern China to the total number of disastrous events: (a) Non-combined cold disaster event (N-C); (b) cold-rain/snow disaster event (C-RS); (c) cold-freezing disaster event (C-F); (d) cold-rain/snow-freezing disaster event (C-RS-F). Diagonal shadings in Fig. 6 indicate regions with a ratio of ≥0.5。
图 7 三类组合性灾害性事件500 hPa位势高度及其距平(左列,等值线间隔:20 gpm)、海平面气压(SLP)距平(中间列,等值线间隔:200 hPa)和地面气温距平(右列,等值线间隔:1°C)合成分布:C-RS灾害事件(第一行);C-F灾害事件(第二行);C-RS-F灾害事件(第三行)。图中细红(蓝)等值线分别对应正(负)距平,距平零线略。(a,d,g)中粗黑等值线为位势高度,等值线间隔为80 gpm。(b,e,h)中粗实(虚)线为SLP1030 hPa等值线(冬季平均)。(c,f,i)中粗实(虚)等值线为0°C等温线(冬季平均)。图中浅灰色阴影区为距平超过95%置信水平的区域,深灰色区域为海拔高度≥1500 m的区域
Figure 7. Composite distributions of 500 hPa geopotential height and its anomalies (left column, contour intervals: 20 gpm), SLP (Sea Level Pressure) and its anomalies (middle column, contour intervals: 200 hPa), and temperature anomalies (right column, contour intervals: 1°C) of C-RS (top line), C-F (second line), and C-RS-F (bottom line) disastrous weather events. Thin red (blue) contours represent positive (negative) anomalies; the zero isoline is eliminated. Thick contours in (a, d, g), corresponding to geopotential height, are drawn for every 80 gpm; the thick solid (dash) lines in (b, e, h) and (c, f, i) represent 1030 hPa isobar and 0°C isotherm (for climatological winter mean), respectively. Light gray shadings indicate height (SLP, temperature) anomalies beyond the 95% significance level; dark gray shadings indicate regions with an altitude of ≥1500 m
图 9 低温—雨雪灾害事件(C-RS,第一行)、低温—冰冻灾害事件(C-F,第二行)和低温—雨雪—冰冻灾害事件(C-RS-F)三类组合性灾害性事件925 hPa(左列)、850 hPa(中间列)和700 hPa(右列)风场距平(矢量)合成分布。深灰色阴影区为海拔高度≥1500 m的区域,蓝实线为0°C等温线,红虚线为27°N位置,绿(紫)色阴影区对应850 hPa、700 hPa层温度与925 hPa层温度差值≥0°C(1°C)的区域,黑矢量箭头对应风场距平矢量分量超过95%置信水平
Figure 9. Composite distributions of wind anomalies (vectors, units: m s−1) at 925 hPa (left panel), 850 hPa (middle panel), and 700 hPa (right panel) levels for cold-rain/snow (C-RS, top line), cold-freezing (C-F, second line), and cold-rain/snow-freezing (C-RS-F, bottom line) combined disastrous weather events. Dark gray shadings indicate regions with an altitude of ≥1500 m, blue solid lines represent 0°C isotherm, red dashed lines represent the location of 27°N, green (purple) shadow areas represent the areas where the temperature difference between the 850 hPa, 700 hPa, and 925 hPa layers are greater than or equal to 0°C (1°C); black vector arrow indicates that the vector component of the corresponding wind anomalies exceeds the 95% significance level
图 8 三类组合性灾害性事件850 hPa(第一行)、700 hPa(第二行)水汽通量距平(矢量,单位:g s−1 cm−1 hPa−1)及水汽通量散度距平(等值线,单位:g s−1 cm−2 hPa−1)合成分布:(a、d)低温-雨雪灾害事件(C-RS);(b、e)低温—冰冻灾害事件(C-F);(c、f)低温—雨雪—冰冻灾害事件(C-RS-F)。浅灰色阴影区为水汽通量散度距平超过95%置信水平的区域,深灰色阴影区为海拔高度≥1500 m的区域
Figure 8. Composite distributions of mean water vapor flux anomalies (vectors, units: g s−1 cm−1 hPa−1) and water flux divergence anomalies (contours, units: g s−1 cm−2 hPa−1) at the 850 hPa (top line) and 700 hPa (bottom line) level during (a, d) cold-rain/snow (C-RS), (b, e) cold-freezing (C-F) and (c, f) cold-rain/snow-freezing (C-RS-F) disastrous weather events. Light gray shadings indicate water vapor flux divergence anomalies beyond the 95% significance level; dark gray shadings indicate regions with an altitude of ≥1500 m
表 1 三类组合性灾害事件起止日期及持续天数
Table 1. Starting and ending dates, durations of three kinds of combined-disastrous events
编号 低温—雨雪灾害事件 低温—冰冻灾害事件 低温—雨雪—冰冻灾害事件 起止日期 持续天数/d 起止日期 持续天数/d 起止日期 持续天数/d 1 1963年2月8~10日 3 1964年2月10~12日 3 1964年2月19~24日 6 2 1967年1月30日至2月2日 4 1966年12月26~29日 4 1968年2月4~6日 3 3 1968年1月22~24日 3 1967年1月9~11日 3 1969年1月29~31日 3 4 1971年1月27~29日 3 1969年1月1~4日 4 1969年2月18~20日 3 5 1974年1月24~26日 3 1970年1月5~7日 3 1972年2月3~8日 6 6 1985年2月25~27日 3 1980年2月1~3日 3 1974年1月29日至2月5日 8 7 1986年2月3~5日 3 1981年1月26~28日 3 1977年1月27~30日 4 8 1989年1月17~19日 3 1982年1月29~31日 3 1981年1月29~31日 3 9 1989年2月5~8日 4 1984年1月22~28日 7 1982年2月5~9日 5 10 1991年1月4~6日 3 1988年1月24~26日 3 1984年1月17~21日 5 11 1992年2月7~11日 5 1991年12月29~31日 3 1985年2月18~20日 3 12 1993年1月12~15日 4 1994年1月19~21日 3 1985年12月9~11日 3 13 1993年2月23~25日 3 1998年1月19~21日 3 1989年1月12~14日 3 14 1996年1月13~15日 3 2008年1月22~24日 3 1991年12月25~28日 4 15 1997年2月3~7日 5 2011年1月4~7日 4 1996年2月17~23日 7 16 1998年1月15~17日 3 2013年1月5~7日 3 2008年1月18~21日 4 17 2004年1月18~20日 3 - 2008年1月25日至2月2日 9 18 2004年12月23~28日 6 - - 19 2005年1月10~13日 4 - - 20 2005年2月10~13日 4 - - -
[1] 布和朝鲁, 纪立人, 施宁. 2008. 2008年初我国南方雨雪低温天气的中期过程分析 Ⅰ: 亚非副热带急流低频波 [J]. 气候与环境研究, 13(4): 419−433. doi: 10.3878/j.issn.1006-9585.2008.04.07Bueh Cholaw, Ji Liren, Shi Ning. 2008. On the medium-range process of the rainy, snowy and cold weather of South China in early 2008. Part Ⅰ: Low-frequency waves embedded in the Asian–African subtropical jet [J]. Climatic and Environmental Research (in Chinese), 13(4): 419−433. doi: 10.3878/j.issn.1006-9585.2008.04.07 [2] 布和朝鲁, 彭京备, 谢作威, 等. 2018. 冬季大范围持续性极端低温事件与欧亚大陆大型斜脊斜槽系统研究进展 [J]. 大气科学, 42(3): 656−676. doi: 10.3878/j.issn.1006-9895.1712.17249Bueh Cholaw, Peng Jingbei, Xie Zuowei, et al. 2018. Recent progresses on the studies of wintertime extensive and persistent extreme cold events in China and large-scale tilted ridges and troughs over the Eurasian Continent [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(3): 656−676. doi: 10.3878/j.issn.1006-9895.1712.17249 [3] Bueh C, Shi N, Xie Z W. 2011a. Large-scale circulation anomalies associated with persistent low temperature over southern China in January 2008 [J]. Atmos. Sci. Lett., 12(3): 273−280. doi: 10.1002/asl.333 [4] Bueh C, Fu X Y, Xie Z W. 2011b. Large-scale circulation features typical of wintertime extensive and persistent low temperature events in China [J]. Atmos. Oceanic Sci. Lett., 4(4): 235−241. doi: 10.1080/16742834.2011.11446935 [5] 陈伟, 杜小惠, 王德良, 等. 2008. 2008年初低温、雨雪、冰冻灾害的成因分析 [J]. 气象科学, 28(S1): 84−87. doi: 10.3969/j.issn.1009-0827.2008.z1.015Chen Wei, Du Xiaohui, Wang Deliang, et al. 2008. Analysis of the low temperature, ice–snow and freezing disasters in early 2008 [J]. Scientia Meteorologica Sinica (in Chinese), 28(S1): 84−87. doi: 10.3969/j.issn.1009-0827.2008.z1.015 [6] 丁一汇, 王遵娅, 宋亚芳, 等. 2008. 中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系 [J]. 气象学报, 66(5): 808−825. doi: 10.3321/j.issn:0577-6619.2008.05.014Ding Yihui, Wang Zunya, Song Yafang, et al. 2008. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming [J]. Acta Meteor. Sinica (in Chinese), 66(5): 808−825. doi: 10.3321/j.issn:0577-6619.2008.05.014 [7] 符仙月, 布和朝鲁. 2013. 中国大范围持续性低温事件与中国南方降水异常[J]. 大气科学, 37(6): 1247–1260Fu Xianyue, Bueh Cholaw. 2013. Wintertime extensive and persistent low-temperature events of China and anomalous precipitation over southern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(6): 1247–1260. doi:10.3878/j.issn.1006-9895.2012.12131 [8] 高辉, 陈丽娟, 贾小龙, 等. 2008. 2008年1月我国大范围低温雨雪冰冻灾害分析 Ⅱ. 成因分析 [J]. 气象, 34(4): 101−106. doi: 10.7519/j.issn.1000-0526.2008.04.013Gao Hui, Chen Lijuan, Jia Xiaolong, et al. 2008. Analysis of the severe cold surge, ice-snow and frozen disasters in South China during January 2009: Ⅱ. Possible climatic causes [J]. Meteorological Monthly (in Chinese), 34(4): 101−106. doi: 10.7519/j.issn.1000-0526.2008.04.013 [9] 顾雷, 魏科, 黄荣辉. 2008. 2008年1月我国严重低温雨雪冰冻灾害与东亚季风系统异常的关系 [J]. 气候与环境研究, 13(4): 405−418. doi: 10.3878/j.issn.1006-9585.2008.04.06Gu Lei, Wei Ke, Huang Ronghui. 2008. Severe disaster of blizzard, freezing rain and low temperature in January 2008 in China and its association with the anomalies of East Asian monsoon system [J]. Climatic and Environmental Research (in Chinese), 13(4): 405−418. doi: 10.3878/j.issn.1006-9585.2008.04.06 [10] 何玉龙, 黄建非, 吉廷艳. 2007. 贵阳降雪和凝冻天气的大气层结特征 [J]. 贵州气象, 31(4): 12−13.He Yulong, Huang Jianfei, Ji Tingyan. 2007. Atmospheric stratification characteritics of snow and freezing weather in Guiyang [J]. Journal of Guizhou Meteorology (in Chinese), 31(4): 12−13. [11] 纪立人, 布和朝鲁, 施宁, 等. 2008. 2008年初我国南方雨雪低温天气的中期过程分析 Ⅲ: 青藏高原—孟加拉湾气压槽 [J]. 气候与环境研究, 13(4): 446−458. doi: 10.3878/j.issn.1006-9585.2008.04.09Ji Liren, Bueh Cholaw, Shi Ning, et al. 2008. On the medium-range process of the rainy, snowy and cold weather of South China in early 2008 Part Ⅲ: Pressure trough over the Tibetan Plateau/Bay of Bengal [J]. Climatic and Environmental Research (in Chinese), 13(4): 446−458. doi: 10.3878/j.issn.1006-9585.2008.04.09 [12] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 [13] 李崇银, 杨辉, 顾薇. 2008. 中国南方雨雪冰冻异常天气原因的分析 [J]. 气候与环境研究, 13(2): 113−122. doi: 10.3878/j.issn.1006-9585.2008.02.01Li Chongyin, Yang Hui, Gu Wei. 2008. Cause of severe weather with cold air, freezing rain and snow over South China in January 2008 [J]. Climatic and Environmental Research (in Chinese), 13(2): 113−122. doi: 10.3878/j.issn.1006-9585.2008.02.01 [14] 李杰, 郭学良, 周晓宁, 等. 2015. 2011~2013年中国冻雨、冻毛毛雨和冻雾的特征分析 [J]. 大气科学, 39(5): 1038−1048. doi: 10.3878/j.issn.1006-9895.1501.14239Li Jie, Guo Xueliang, Zhou Xiaoning, et al. 2015. Characteristics of freezing rain, freezing drizzle, and freezing fog in China from 2011 to 2013 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(5): 1038−1048. doi: 10.3878/j.issn.1006-9895.1501.14239 [15] 马晓刚. 2009. 2008年1月我国南方罕见冰冻雨雪灾害性天气诊断分析 [J]. 气象与环境学报, 25(1): 23−26. doi: 10.3969/j.issn.1673-503X.2009.01.005Ma Xiaogang. 2009. Diagnosis of catastrophic freezing rain and sleet in January 2008 in the southern China [J]. Journal of Meteorology and Environment (in Chinese), 25(1): 23−26. doi: 10.3969/j.issn.1673-503X.2009.01.005 [16] Peng J B, Bueh C. 2011. The definition and classification of extensive and persistent extreme cold events in China [J]. Atmos. Oceanic Sci. Lett., 4(5): 281−286. doi: 10.1080/16742834.2011.11446943 [17] Peng Jingbei, Bueh Cholaw. 2012. Precursory Signals of Extensive and Persistent Extreme Cold Events in China [J]. Atmospheric and Oceanic Science Letters, 5(3): 252−257. doi: 10.1080/16742834.2012.11446999 [18] 彭京备, 孙淑清. 2019. 2018年1月南方雨雪天气的形成及其与冬季风异常的关系 [J]. 大气科学, 43(6): 1233−1244. doi: 10.3878/j.issn.1006-9895.1901.18188Peng Jingbei, Sun Shuqing. 2019. Formation of rainy and snowy weather in South China in January 2018 and its relationship with the abnormal East Asian winter monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1233−1244. doi: 10.3878/j.issn.1006-9895.1901.18188 [19] Peng J B, Bueh C, Xie Z W. 2021. Extensive cold-precipitation-freezing events in southern China and their circulation characteristics [J]. Adv. Atmos. Sci., 38(1): 81−97. doi: 10.1007/s00376-020-0117-4 [20] 钱维宏, 张宗婕. 2012. 南方持续低温冻雨事件预测的前期信号 [J]. 地球物理学报, 55(5): 1501−1512. doi: 10.6038/j.issn.0001-5733.2012.05.007Qian Weihong, Zhang Zongjie. 2012. Precursors to predict low-temperature freezing-rain events in southern China [J]. Chinese J. Geophys. (in Chinese), 55(5): 1501−1512. doi: 10.6038/j.issn.0001-5733.2012.05.007 [21] 施宁, 布和朝鲁, 纪立人, 等. 2008. 2008年初我国南方雨雪低温天气的中期过程分析Ⅱ: 西太平洋副热带高压的特征 [J]. 气候与环境研究, 13(4): 434−445. doi: 10.3878/j.issn.1006-9585.2008.04.08Shi Ning, Bueh Cholaw, Ji Liren, et al. 2008. On the medium-range process of the rainy, snowy and cold weather of South China in early 2008 Part Ⅱ: Characteristics of the western Pacific subtropical high [J]. Climatic and Environmental Research (in Chinese), 13(4): 434−445. doi: 10.3878/j.issn.1006-9585.2008.04.08 [22] 孙建华, 赵思雄. 2008. 2008年初南方雨雪冰冻灾害天气的大气层结和地面特征的数值模拟 [J]. 气候与环境研究, 13(4): 510−519. doi: 10.3878/j.issn.1006-9585.2008.04.15Sun Jianhua, Zhao Sixiong. 2008. Numerical simulation on stratification and surface features of freezing rain and snow storm over southern China in January 2008 [J]. Climatic and Environmental Research (in Chinese), 13(4): 510−519. doi: 10.3878/j.issn.1006-9585.2008.04.15 [23] 陶诗言, 卫捷. 2008. 2008年1月我国南方严重冰雪灾害过程分析 [J]. 气候与环境研究, 13(4): 337−350. doi: 10.3878/j.issn.1006-9585.2008.04.01Tao Shiyan, Wei Jie. 2008. Severe snow and freezing-rain in January 2008 in the southern China [J]. Climatic and Environmental Research (in Chinese), 13(4): 337−350. doi: 10.3878/j.issn.1006-9585.2008.04.01 [24] 陶玥, 史月琴, 刘卫国. 2012. 2008年1月南方一次冰冻天气中冻雨区的层结和云物理特征 [J]. 大气科学, 36(3): 507−522. doi: 10.3878/j.issn.1006-9895.2011.11082Tao Yue, Shi Yueqin, Liu Weiguo. 2012. Characteristics of stratification structure and cloud physics of the freezing rain over southern China in January 2008 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(3): 507−522. doi: 10.3878/j.issn.1006-9895.2011.11082 [25] 王遵娅. 2011. 中国冰冻日数的气候及变化特征分析 [J]. 大气科学, 35(3): 411−421. doi: 10.3878/j.issn.1006-9895.2011.03.03Wang Zunya. 2011. Climatic characters and changes of ice–freezing days in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(3): 411−421. doi: 10.3878/j.issn.1006-9895.2011.03.03 [26] 王凌, 高歌, 张强, 等. 2008. 2008年1月我国大范围低温雨雪冰冻灾害分析 I. 气候特征与影响评估 [J]. 气象, 34(4): 95−100. doi: 10.7519/j.issn.1000-0526.2008.04.012Wang Ling, Gao Ge, Zhang Qiang, et al. 2008. Analysis of the severe cold surge, ice-snow and frozen disasters in South China during January 2008: I. Climatic features and its impact [J]. Meteorological Monthly (in Chinese), 34(4): 95−100. doi: 10.7519/j.issn.1000-0526.2008.04.012 [27] 曾明剑, 陆维松, 梁信忠, 等. 2008. 2008年初中国南方持续性冰冻雨雪灾害形成的温度场结构分析 [J]. 气象学报, 66(6): 1043−1052. doi: 10.3321/j.issn:0577-6619.2008.06.017Zeng Mingjian, Lu Weisong, Liang Xinzhong, et al. 2008. Analysis of temperature structure for persistent disasterous freezing rain and snow over southern China in early 2008 [J]. Acta Meteor. Sinica (in Chinese), 66(6): 1043−1052. doi: 10.3321/j.issn:0577-6619.2008.06.017 [28] 赵思雄, 孙建华. 2008. 2008年初南方雨雪冰冻天气的环流场与多尺度特征 [J]. 气候与环境研究, 13(4): 351−367. doi: 10.3878/j.issn.1006-9585.2008.04.02Zhao Sixiong, Sun Jianhua. 2008. Multi–scale systems and conceptual model on freezing rain and snow storm over Southern China during January–February 2008 [J]. Climatic and Environmental Research (in Chinese), 13(4): 351−367. doi: 10.3878/j.issn.1006-9585.2008.04.02 [29] 赵珊珊, 高歌, 张强, 等. 2010. 中国冰冻天气的气候特征 [J]. 气象, 36(3): 34−38. doi: 10.7519/j.issn.1000-0526.2010.3.005Zhao Shanshan, Gao Ge, Zhang Qiang, et al. 2010. Climate characteristics of freezing weather in China [J]. Meteorological Monthly (in Chinese), 36(3): 34−38. doi: 10.7519/j.issn.1000-0526.2010.3.005 [30] 宗志平, 马杰, 张恒德, 等. 2013. 近几十年来冻雨时空分布特征分析 [J]. 气象, 39(7): 813−820. doi: 10.7519/j.issn.1000-0526.2013.07.002Zong Zhiping, Ma Jie, Zhang Hengde, et al. 2013. Analysis on the spatial-temporal characteristics of freezing rain in recent decades [J]. Meteorological Monthly (in Chinese), 39(7): 813−820. doi: 10.7519/j.issn.1000-0526.2013.07.002 [31] Zong H F, Bueh C, Ji L R. 2014. Wintertime extreme precipitation event over southern China and its typical circulation features [J]. Chinese Science Bulletin, 59(10): 1036−1044. doi: 10.1007/s11434-014-0124-x -