高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冬奥崇礼赛区一次冷湖过程形成及消散的数值模拟研究

王雨斐 李国平 王宗敏 平凡

王雨斐, 李国平, 王宗敏, 等. 2021. 冬奥崇礼赛区一次冷湖过程形成及消散的数值模拟研究[J]. 大气科学, 45(X): 1−19 doi: 10.3878/j.issn.1006-9895.2109.21070
引用本文: 王雨斐, 李国平, 王宗敏, 等. 2021. 冬奥崇礼赛区一次冷湖过程形成及消散的数值模拟研究[J]. 大气科学, 45(X): 1−19 doi: 10.3878/j.issn.1006-9895.2109.21070
WANG Yufei, LI Guoping, WANG Zongmin, et al. 2021. Numerical Simulation of the Formation and Dissipation of a Cold Air Pool in the Chongli Winter Olympic Games Area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(X): 1−19 doi: 10.3878/j.issn.1006-9895.2109.21070
Citation: WANG Yufei, LI Guoping, WANG Zongmin, et al. 2021. Numerical Simulation of the Formation and Dissipation of a Cold Air Pool in the Chongli Winter Olympic Games Area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(X): 1−19 doi: 10.3878/j.issn.1006-9895.2109.21070

冬奥崇礼赛区一次冷湖过程形成及消散的数值模拟研究

doi: 10.3878/j.issn.1006-9895.2109.21070
基金项目: 国家重点研究开发项目2018YFC1506801、2018YFF0300102、2018YFF0300101
详细信息
    作者简介:

    王雨斐,女,1996年出生,硕士研究生,主要从事数值模式及资料同化研究。E-mail: 836686089@qq.com

    通讯作者:

    平凡,E-mail: pingf@mail.iap.ac.cn

  • 中图分类号: P458

Numerical Simulation of the Formation and Dissipation of a Cold Air Pool in the Chongli Winter Olympic Games Area

Funds: The National Key Research and Development Program of China (Grant No. 2018YFC1506801, 2018YFF0300102, 2018YFF0300101)
  • 摘要: 本文利用中尺度数值预报模式(WRF)并采用谱逼近方法,对2021年冬奥测试赛期间的一次冷湖过程进行模拟研究,探究了冷湖发展前后风温场的垂直变化规律,揭示了冷湖形成及消亡的具体原因。研究结果表明,静稳的天气形势是冷湖过程维持及发展的大背景条件。冷湖发展期间,逆温层由上至下迅速建立,谷底出现偏东—东南向的冷径流。受重力下坡风的影响,冷空气不断向谷底堆积,冷湖深度增加。日出后,越山的系统风重新建立,逆温层从底部消蚀,冷湖结构破坏。夜间的强辐射冷却作用是冷湖形成的主要原因之一。辐射冷却强度的差异会引起冷湖降温幅度的差异,后半夜辐射冷却作用的突然加强为冷湖中后期的维持及发展创造有利条件。通过分析冷湖发生前后位温廓线、摩擦速度及边界层高度随时间的演变,均可印证湍流活动的发展是逆温消散、冷湖结构破坏的重要影响因素。
  • 图  1  张家口市崇礼赛区站点分布

    Figure  1.  Geographical distribution and automated stations in the competition area (Chongli, Zhangjiakou)

    图  2  2021年2月23日20:00(北京时,下同)(a)700 hPa、(b)850 hPa位势高度场(蓝色等值线,单位:dagpm)、风场(风羽,单位:m s−1)、温度场(红色等值线,单位:°C)及急流区(绿色阴影,单位:m s−1)分布。红色五角星为崇礼赛区,下同

    Figure  2.  Distribution of geopotential height (blue contours, units: dagpm), wind (vectors, units: m s−1), temperature (red contours, units: °C), and jet speed (green shaded area, units: m s−1) at (a) 700 hPa and (b) 850 hPa at 2000 BJT (Beijing time) February 23, 2021. Competition area in Chongli is marked by the red star, the same below

    图  3  2021年2月23日20:00(a)500 hPa位势高度场(蓝色等值线,单位:dagpm)、风场(风羽,单位:m s−1)、FY-2F卫星TBB(填色,单位:K)分布以及(b)海平面气压场(蓝色等值线,单位:hPa)、地面风场(风羽,单位:m s−1)分布

    Figure  3.  Distribution of (a) geopotential height (blue contours, units: dagpm), wind (vectors, units: m s−1), and FY-2E TBB (color shadow, units: K) at 500 hPa, and distribution of (b) sea level pressure field (blue contours, units: hPa), wind (vectors, units: m s−1) at 2000 BJT February 23, 2021

    图  4  模拟区域设置

    Figure  4.  Model domain for numerical simulation

    图  5  2021年2月23日08:00至24日18:00崇礼赛区8个测站的2 m温度观测值(红色实线)与模拟值(黑色带圈实线)的比较

    Figure  5.  Comparison of 2-m temperature observations (red solid lines) and simulated values (black solid lines with circles) at 8 stations in the Chongli competition area from 0800 BJT (Beijing time) 23 to 1800 BJT 24 February 2021

    图  6  2021年2月(a)23日18:00、(b)24日01:00、(c)24日08:00及(d)24日15:00沿冬两1号测站东西剖面上的风温场。图中棕色区域为地形;黑色箭头为矢量风,单位:m s−1;填色及等值线为位温,单位:K;红色三角为站点所在位置(下同)

    Figure  6.  Wind temperature field on the east–west section of Dongliang No.1 station at (a) 1800 BJT 23, (b) 0100 BJT 24, (c) 0800 BJT 24, and (d) 1500 BJT February 2021. The brown area is the terrain; the black arrows are the vector wind, units: m s−1; the color and the contour are the potential temperature, units: K. The red triangle is the location of the station (the same below)

    图  8  冬两1号站点各不同时刻温度随高度的变化

    Figure  8.  Changes in temperature with altitude at different times at Dongliang No. 1 station

    图  7  同图6,但为南北剖面

    Figure  7.  Same as Fig. 6, but for north–south section

    图  9  2021年2月24日01:00(a)冬两1号站及(b)越野2号站沿各测站东西剖面上的风温场。棕色区域为地形;黑色箭头为矢量风,单位:m s−1;填色及等值线为位温,单位:K。红色三角代表各站所在位置,下同

    Figure  9.  Wind temperature field along the east–west section of Dongliang No.1 station and Yueye No.2 Station at 0100 BJT on February 24, 2021. The brown area is the terrain; the black arrow is the vector wind, units: m s−1; the color and the contour are the potential temperature, units: K. The red triangle is the location of the station, the same as below

    图  10  同图9,但为南北剖面

    Figure  10.  Same as Fig 9,but for north-south section

    图  11  2021年2月24日01:00冬两赛区内10 m风场平面图。黑色箭头为矢量风,填色代表风速大小,单位:m s−1;红色圆点代表冬两1号站,黄色圆点代表越野2号站

    Figure  11.  10-m wind vectors in Dongliang area at 0100 UTC on February 24, 2021. The black arrow is the vector wind, the color is the wind speed, units: m s−1(The red point represents the location of Dongliang No.1 station, and the yellow point represents the location of Yueye No.2 Station)

    图  12  冬两赛区及越野赛区近地面三维流场示意图

    Figure  12.  Three-dimensional flow field diagram of Dongliang area and Yueye area

    图  13  2021年2月(a)23日18:00、24日(b)01:00和(c)04:00崇礼赛区瞬时地表净辐射通量(单位:W m−2)分布。图中红色圆点代表云顶站区、蓝色圆点代表冬两1号站、紫色圆点为越野站区、绿色圆点为跳台站区(下同)

    Figure  13.  Distribution of instantaneous net radiation flux (units: W m−2) in Chongli competition area at (a) 1800 BJT 23, (b) 0100 BJT 24, and (c) 0400 BJT 24 February 2021. The red dots in the picture represent the Yunding station area, the blue dot represents the Dongliang No. 1 station, the purple dots are the Yueye station area, and the green dots are the Tiaotai station area, the same as below

    图  14  2021年2月24日(a)08:00、(b)15:00崇礼赛区瞬时地表净辐射通量(单位:W m−2)分布

    Figure  14.  Distribution of instantaneous net radiation flux (units: W m−2) in Chongli competition area at (a) 0800 BJT and (b) 1500 BJT on February 24, 2021

    图  15  (a)地面接收的短波辐射(DSR)、(b)地面反射的短波辐射(USR)、(c)大气逆辐射(DLR)、(d)地面长波辐射(ULR)及(e)净辐射(Rn)通量在越野2号站(B1649)、冬两1号站(B1638)及其非冷湖时段(2021年2月24日08:00至25日09:00)的日变化情况

    Figure  15.  Diurnal variation in (a) DSR (downward shortwave radiation), (b) USR (upward shortwave radiation), (c) DLR (downward longwave radiation), (d) ULR (upward longwave radiation), and (e) Rn (net radiation) at Yueye No.2 Station (B1649), Dongliang No. 1 Station (B1638) and other non-CAP (cold air pool) periods (from 0800 BJT 24 to 0900 BJT 25 February 2021)

    图  16  2021年2月24日01:00、04:00、08:00、11:00、14:00(a)冬两1号站(B1638)及(b)越野2号站(B1649)位温的垂直廓线

    Figure  16.  Potential temperature profiles at different times over (a) Dongliang No. 1 Station (B1638) and (b) Yueye No.2 Station (B1649)

    图  17  冬两1号站(B1638)及越野2号站(B1649)边界层距地面高度(单位:m)的变化特征

    Figure  17.  The change characteristics in the planetary boundary layer (PBL) height (units: m) of Dongliang No. 1 Station (B1638) and Yueye No. 2 Station (B1649)

    图  18  冬两1号站(B1638)及越野2号站(B1649)摩擦速度(单位:m s−1)随时间演变的曲线

    Figure  18.  The change characteristics in friction speed (units: m s−1) evolving with time at Dongliang No. 1 Station (B1638) and Yueye No. 2 Station (B1649)

    图  19  冷湖(a)形成及(b)消散的概念模型图

    Figure  19.  Conceptual model of CAP (a) formation and (b) dissipation

    表  1  WRF模式参数化方案配置

    Table  1.   Mode parameterization scheme setting

    WRF模式参数配置
    微物理过程Morrison 2-moment方案
    长波辐射RRTMG 长波方案
    短波辐射RRTMG 短波方案
    陆面过程热交换方案
    近地面层MM5 相似理论近地面层方案
    边界层参数化方案YSU方案
    下载: 导出CSV

    表  2  8个测站2 m温度的模拟效果分析

    Table  2.   Analysis of Simulation Effect of 2-m Temperature at 8 automatic stations

    站号B1620B1627B1628B1629B1630B1637B1638B1649
    相关系数   0.960.970.930.930.900.970.890.94
    均方根误差/°C1.581.381.191.042.311.123.832.23
    下载: 导出CSV
  • [1] Chachere C N, Pu Z X. 2016. Connections between cold air pools and mountain valley fog events in Salt Lake City [J]. Pure Appl. Geophys., 173(9): 3187−3196. doi: 10.1007/s00024-016-1316-x
    [2] Chemel C, Burns P. 2015. Pollutant dispersion in a developing valley cold-air pool [J]. Bound. -Layer Meteor., 154(3): 391−408. doi: 10.1007/s10546-014-9984-5
    [3] 陈明, 傅抱璞. 1995. 盆地环流型及冷湖的形成和消散的数值研究 [J]. 气象科学(2): 28−37.

    Chen Ming, Fu Baopu. 1995. Numerical study of circulation in basin with formation and dissapation of cold air lake [J]. Scientia Meteorologica Sinica(2): 28−37.
    [4] 傅抱璞. 1983. 山地气候[M]. 北京: 科学出版社, 105–112

    Fu Baopu. 1983. Mountain Climate (in Chinese) [M]. Beijing: Science Press, 105–112.
    [5] Heffter J L. 1980. Transport layer depth calculations [C]//Proceedings of the 2nd Joint Conference on Applications of Air Pollution Modelling. Boston: American Meteorological Society, 787–791.
    [6] 贾春晖, 窦晶晶, 苗世光, 等. 2019. 延庆—张家口地区复杂地形冬季山谷风特征分析 [J]. 气象学报, 77(3): 475−488. doi: 10.11676/qxxb2019.033

    Jia Chunhui, Dou Jingjing, Miao Shiguang, et al. 2019. Analysis of characteristics of mountain-valley winds in the complex terrain area over Yanqing–Zhangjiakou in the winter [J]. Acta Meteor. Sinica, 77(3): 475−488. doi: 10.11676/qxxb2019.033
    [7] Lareau N P, Crosman E, Whiteman C D, et al. 2013. The persistent cold-air pool study [J]. Bull. Amer. Meteor. Soc., 94(1): 51−63. doi: 10.1175/BAMS-D-11-00255.1
    [8] 李玉海. 1977. 地面净辐射 [J]. 气象, 3(1): 31−32. doi: 10.7519/j.issn.1000-0526.1977.01.026

    Li Yuhai. 1977. Surface net radiation [J]. Meteorological Monthly, 3(1): 31−32. doi: 10.7519/j.issn.1000-0526.1977.01.026
    [9] 李国平. 2016. 近25年来中国山地气象研究进展 [J]. 气象科技进展, 6(3): 115−122. doi: 10.3969/j.issn.2095-1973.2016.03.016

    Li Guoping. 2016. Progress and prospects in research of mountain meteorology in China during the past 25 years [J]. Advances in Meteorological Science and Technology, 6(3): 115−122. doi: 10.3969/j.issn.2095-1973.2016.03.016
    [10] 刘昊野, 段宇辉, 李彤彤, 等. 2020. 北京2022年冬奥会冬季两项场地冷湖结构观测分析 [J]. 干旱气象, 38(6): 929−936. doi: 10.11755/j.issn.1006-7639(2020)-06-0929

    Liu Haoye, Duan Yuhui, Li Tongtong, et al. 2020. Observation analysis on cold air lake structure in the biathlon venue for Beijing 2022 Winter Olympic Games [J]. Journal of Arid Meteorology, 38(6): 929−936. doi: 10.11755/j.issn.1006-7639(2020)-06-0929
    [11] Lu W, Zhong S Y. 2014. A numerical study of a persistent cold air pool episode in the Salt Lake Valley, Utah [J]. J. Geophys. Res. Atmos., 119(4): 1733−1752. doi: 10.1002/2013JD020410
    [12] 罗然, 郑永光, 陈敏. 2020. 北京一次罕见夜间突发性强增温事件成因分析 [J]. 气象, 46(4): 478−489. doi: 10.7519/j.issn.1000-0526.2020.04.003

    Luo Ran, Zheng Yongguang, Chen Min. 2020. Mechanism of a rare night sudden intense warming event in Beijing and surrounding area [J]. Meteorological Monthly, 46(4): 478−489. doi: 10.7519/j.issn.1000-0526.2020.04.003
    [13] Mahrt L, Vickers D, Nakamura R, et al. 2001. Shallow drainage flows [J]. Bound. -Layer Meteor., 101(2): 243−260. doi: 10.1023/A:1019273314378
    [14] Marsik F J, Fischer K W, McDonald T D, et al. 1995. Comparison of methods for estimating mixing height used during the 1992 Atlanta field intensive [J]. J. Appl. Meteor. Climatol., 34(8): 1802−1814. doi:10.1175/1520-0450(1995)034<1802:COMFEM>2.0.CO;2
    [15] Price J D, Vosper S, Brown A, et al. 2011. COLPEX: Field and numerical studies over a region of small hills [J]. Bull. Amer. Meteor. Soc., 92(12): 1636−1650. doi: 10.1175/2011BAMS3032.1
    [16] Smith S A, Brown A R, Vosper S B, et al. 2010. Observations and simulations of cold air pooling in valleys [J]. Bound. -Layer Meteor., 134(1): 85−108. doi: 10.1007/s10546-009-9436-9
    [17] 王瑾, 张镭, 王腾蛟, 等. 2012. 兰州附近山谷典型日环流特征对比分析 [J]. 干旱气象, 30(2): 169−177. doi: 10.3969/j.issn.1006-7639.2012.02.003

    Wang Jin, Zhang Lei, Wang Tengjiao, et al. 2012. Comparative analysis of mountain–valley wind circulation characteristics over semi-arid areas nearby Lanzhou [J]. Journal of Arid Meteorology, 30(2): 169−177. doi: 10.3969/j.issn.1006-7639.2012.02.003
    [18] 王淑莉, 徐祥德, 康红文, 等. 2016. 应用谱逼近方法模拟2008年初南方持续性降水过程及其水汽通道周期特征分析 [J]. 大气科学, 40(3): 476–488 Wang Shuli, Xu Xiangde, Kang Hongwen, et al. 2016. Simulation of continuous rainfall over South China in early 2008 with the spectral nudging method and the periodicity characteristics of the water vapor channel [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(3): 476–488. doi: 10.3878/j.issn.1006-9895.1507.14332
    [19] Wei L B, Pu Z X, Wang S G. 2013. Numerical simulation of the life cycle of a persistent wintertime inversion over Salt Lake City [J]. Bound. -Layer Meteor., 148(2): 399−418. doi: 10.1007/s10546-013-9821-2
    [20] Whiteman C D, Hoch S W, Horel J D, et al. 2014. Relationship between particulate air pollution and meteorological variables in Utah's Salt Lake Valley [J]. Atmos. Environ., 94: 742−753. doi: 10.1016/j.atmosenv.2014.06.012
    [21] 吴琼, 徐卫民. 2019. 湖陆山地复杂地形下近地层风速预报研究 [J]. 干旱气象, 37(3): 384−391. doi: 10.11755/j.issn.1006-7639(2019)-03-0384

    Wu Qiong, Xu Weimin. 2019. Near ground wind speed prediction under complex topography with lake, plain and mountains [J]. Journal of Arid Meteorology, 37(3): 384−391. doi: 10.11755/j.issn.1006-7639(2019)-03-0384
    [22] 席世平, 寿绍文, 郑世林, 等. 2007. 复杂地形下山谷风的数值模拟 [J]. 气象与环境科学, 30(3): 41−44. doi: 10.3969/j.issn.1673-7148.2007.03.009

    Xi Shiping, Shou Shaowen, Zheng Shilin, et al. 2007. Numerical simulation of mountain-valley wind in the complex terrain [J]. Meteorological and Environmental Sciences, 30(3): 41−44. doi: 10.3969/j.issn.1673-7148.2007.03.009
    [23] Zängl G. 2003. The impact of upstream blocking, drainage flow and the geostrophic pressure gradient on the persistence of cold-air pools [J]. Quart. J. Roy. Meteor. Soc., 129(587): 117−137. doi: 10.1256/qj.02.99
    [24] Zängl G. 2005a. Wintertime cold-air pools in the Bavarian Danube valley basin: Data analysis and idealized numerical simulations [J]. J. Appl. Meteor. Climatol., 44(12): 1950−1971. doi: 10.1175/JAM2321.1
    [25] Zängl G. 2005b. Dynamical aspects of wintertime cold-air pools in an Alpine valley system [J]. Mon. Wea. Rev., 133(9): 2721−2740. doi: 10.1175/MWR2996.1
    [26] 张耀存. 1995. 植被对山谷风环流形成与演变过程影响的数值试验 [J]. 气象科学, 15(3): 245−253.

    Zhang Yaocun. 1995. Numerical experiments of the effects of vegetation of mountain–valley wind circulation [J]. Scientia Meteorologica Sinica, 15(3): 245−253.
    [27] Zhong S Y, Bian X D, Whiteman C D. 2003. Time scale for cold-air pool breakup by turbulent erosion [J]. Meteor. Z., 12(4): 229−233. doi: 10.1127/0941-2948/2003/0012-0231
    [28] Morrison, H. , Thompson, G. , & Tatarskii, V. (2009). Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes, Monthly Weather Review, 137(3), 991-1007. Retrieved Nov 7, 2021
    [29] Iacono M J, Delamere J S, Mlawer E J, et al. Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D13).
    [30] Hong S Y, Noh Y, Dudhia J. 2006, A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly weather review, 134(9): 2318-2341.
    [31] Jiménez P A, Dudhia J, González-Rouco J F, et al. 2012, A revised scheme for the WRF surface layer formulation[J]. Monthly Weather Review, 140(3): 898-918.
    [32] Dudhia, J. (1996, July). A multi-layer soil temperature model for MM5. In Preprints, The Sixth PSU/NCAR mesoscale model users’ workshop (pp. 22-24).
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  3
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 录用日期:  2021-10-08
  • 网络出版日期:  2021-10-08

目录

    /

    返回文章
    返回