Mechanism and Seasonal Prediction of Interannual Variability of the Surface Air Temperature in May and September over Northwest China
-
摘要: 本文基于1961~2016年中国西北地区逐日地表气温观测资料以及全球大气再分析资料,通过统计诊断和数值模拟的方法,揭示了西北地区5月和9月地表气温年际变率规律及其机理,并在此基础上分别构建了季节预测模型。结果表明:(1)西北5月和9月地表气温年际变率经验正交函数分解第一模态均为全区一致型空间分布,但具有不同的变率特征。(2)西北5月地表气温正异常与拉尼娜衰减型海表温度异常所对应的热带纬向三极型对流(降水)异常强迫有关,对流异常激发的热带外遥相关波列导致西北地区上空受反气旋(高压)异常控制,造成局地向下太阳短波辐射增多,从而使得西北地表气温增加;而西北9月地表气温正异常与拉尼娜发展型海表温度异常所对应的热带纬向偶极型对流(降水)异常强迫有关,偶极型对流强迫能够在西北地区东西两侧激发反气旋(高压)异常,导致西北地表气温正异常。(3)基于物理机制,分别利用拉尼娜衰减和发展型的相关海表温度异常预测因子,建立针对西北地区5月和9月地表气温年际变率的季节预测模型,独立预报期间(2007~2016年)预测技巧相关系数分别可达0.74和0.62,可为西北地表气温短期气候预测提供参考。Abstract: Based on the daily surface air temperature (SAT) gauge data and global reanalysis datasets from 1961 to 2016, this study revealed the interannual variability of the SAT over Northwest China (NWC) in May and September via observational diagnosis and numerical simulations, and constructed their corresponding seasonal prediction models. The results are as follows: (1) The first modes of the SAT over NWC during May and September are characterized by a similar homogenous spatial pattern but with different interannual variations. (2) The positive anomaly of the SAT over NWC in May is related to the tropical zonal tripole anomalous convection (precipitation), corresponding to the tropical sea surface temperature anomaly (SSTA) during the decaying phase of La Niña. The extratropical teleconnection wave train excited by tropical convection anomalies leads to a barotropic anticyclonic (high pressure) anomaly over NWC, which increases the downward solar shortwave radiation and causes an increased local SAT. In September, the tropical zonal dipole convection (precipitation) anomaly associated with the tropical SSTA during the developing phase of La Niña can trigger the barotropic anticyclonic (high pressure) anomaly on the east and west sides of NWC, leading to a positive SAT anomaly over NWC. (3) Based on the SSTA predictors associated with the decaying and developing phase of La Niña, the seasonal prediction model for the SAT over NWC in May and September was established. The prediction skill in terms of the correlation coefficient during the independent prediction period (2006–2016) can reach 0.74 (0.62) in May (September), providing a reference for seasonal prediction of the SAT over NWC.
-
图 1 1961~2006年(a)西北地区区域平均的地表气温气候态逐月演变(单位:°C)以及(b)5月和(c)9月平均的西北地区地表气温气候态空间分布(单位:°C)
Figure 1. (a) Monthly evolution of the climatological surface air temperature (units: °C) averaged over Northwest China, and the spatial pattern of the surface air temperature (units: °C) over Northwest China in (b) May and (c) September during period of 1961–2006
图 3 1961~2006年5月(a)850 hPa高度场(等值线,间隔:4 gpm,虚线为负值)、风场(矢量,单位:m s−1)和海表/地表气温(填色,单位:°C),以及(b)200 hPa 高度场(等值线,间隔:10 gpm,虚线为负值)、风场(矢量,单位:m s−1)和降水场(填色,单位:mm d−1)回归至5月西北地表气温EOF主成分(PC)。(c)、(d)同(a)、(b),但为9月。打点为海表温度以及降水场回归系数通过90%显著性检验的区域,紫色虚线框为热带降水强迫关键区,黑色实线内为西北地区
Figure 3. Regressed (a) 850 hPa geopotential height field (contour, interval: 4 gpm, dashed lines represent negative value), wind field (vector, units: m s−1), and sea surface/surface air temperature (shading, units: °C), (b) 200 hPa geopotential height field (contour, interval: 10 gpm, dashed lines represent negative value), wind field (vector, units: m s−1), and precipitation (shading, units: mm d−1) onto the EOF principal component (PC) of the surface air temperature of Northwest China in May during the period of 1961–2006. (c), (d) same as (a), (b), but for September. The dotted areas represent regression coefficients of the sea surface temperature (SST) and precipitation passing the test at 90% confidence level. The purple boxes represent the key regions of tropical diabatic forcing, and the solid black line outlines Northwest China
图 4 (a)5月T1、T2、T3区域和(b)9月D1、D2区域上空与西北地区地表气温年际变率相关的大气非绝热加热垂直廓线(彩色实线,单位:K d−1),彩色虚线为数值模式中对应区域上空给定的大气非绝热加热垂直廓线(单位:10 K d−1)
Figure 4. Observed vertical profile of diabatic heating related to the interannual variability of the surface air temperature in Northwest China of (a) T1, T2, and T3 regions in May and (b) D1 and D2 regions in September (colored solid line, units: K d−1). The color-dotted lines represent the prescribed vertical profile of diabatic heating in the model of the key region of precipitation (units: 10 K d−1)
图 5 模式中5月200 hPa位势高度(等值线,间隔:10 gpm,虚线为负值)和风场(矢量;单位:m s−1)对(a)T1、T2、T3区域上空大气加热或冷却共同作用的响应,以及分别对(b)T1上空冷却、(c)T2上空加热和(d)T3上空冷却作用的响应。红色(蓝色)阴影分别为模式中理想化大气加热(冷却)率的水平分布,中心加热强度为10 K d−1,黑色实线内为西北地区。Day0-5、Day10-15、Day20-25、Day30-35分别表示第0至5天、10至15天、20至25天、30至35天平均的大气环流响应
Figure 5. 200 hPa geopotential height (contours, interval is 10 gpm; dashed lines represent negative value) and wind (vectors; units: m s−1) response to (a) the combined effect of atmospheric heating and cooling over T1, T2, and T3, (b) cooling over T1, (c) heating over T2, and (d) cooling over T3 in May. The red (blue) shading is the horizontal pattern of the idealized heating (cooling) with their maximum amplitude of 10 K d−1, and the solid black line outlines Northwest China. Day0-5、Day10-15、Day20-25、Day30-35 represent the average mean of the response during the period of day 0 to day 5, day 10 to day 15, day 20 to day 25, and day 30 to day 35, respectively
图 7 1961~2006年10°S~10°N平均的(a)海表温度(单位:°C)和(b)降水量(单位:mm d−1)对5月西北地表气温主成分(PC)的超前滞后回归。打点区域为海表温度和降水回归系数通过90%的显著性检验。(c)、(d)同(a)、(b),但为9月。 红色和蓝色虚线分别代表5月和9月
Figure 7. 10°S–10°N averaged lead-lag regression of (a) the sea surface temperature (units: °C) and (b) precipitation (units: mm d−1) onto the principal component of the surface air temperature over Northwest China in May during the period of 1961–2006. The dotted areas represent the regression coefficients of the sea surface temperature and precipitation passing the 90% confidence level. (c), (d) same as (a), (b), but for September. The red and blue dashed lines represent May and September, respectively
图 8 1961~2006年5月和9月西北地表气温主成分(PC)与前期海表温度相关系数空间分布。(a)3~4月平均、(b)4月减3月以及(c)3~4月平均减12~1月平均的海表温度场与5月PC的相关分布;(d)7~8月平均、(e)8月减7月以及(f)7~8月平均减4~5月平均的海表温度场与9月PC的相关分布。打点区域表示通过了95%的置信水平,方框中为潜在预报因子区域
Figure 8. Spatial distribution of the correlation coefficient between the principal component of surface air temperature in May and September in Northwest China and the previous sea surface temperature during the period of 1961–2006. (a), (b), and (c) represent the correlation distributions between the sea surface temperature field of March and April average, April minus March, March and April average minus December and January average, and PC in May. (d), (e), and (f) are the correlation distributions between the sea surface temperature field of July and August average, August minus July, and July and August average minus April and May average, and PC in September. The dotted area indicates the passing of the statistical significance at a 95% confidence level, and the boxes are the key area of predictors
图 9 1961~2006年10°S~10°N平均的(a)、(b)海表温度(单位:°C)对5月预测因子(a)IOBM和(b)IOWT的超前滞后回归,打点区域为海表温度回归系数通过90%的显著性检验;(c)、(d)同(a)、(b)但为对9月预测因子NAW和PDT。 红色和蓝色虚线分别代表5月和9月
Figure 9. 10ºS–10ºN averaged lead–lag regression of sea surface temperature (units: °C) onto the predictors (a) IOBM (Indian Ocean Basin Mode Cooling) and (b) IOWT (Indian Ocean Warming Tendency) in May during the period of 1961–2006. Dotted areas are regression coefficients of the SST passing the test at 90% confidence level. (c), (d) same as (a), (b), but onto the predictors NAW (North Atlantic Warming) and PDT (Pacific Dipole SST Tendency) in September. The red and blue dashed lines represent May and September, respectively
图 10 (a)5月和(b)9月西北地表气温主成分(PC)的逐年变化。黑线为观测,蓝线为1961~2006年回报结果,红线为2007~2016年独立预报结果
Figure 10. Principal component of the surface air temperature in Northwest China in (a) May and (b) September. The black line corresponds to the observation, the blue line represents the hindcast from 1961 to 2006, and the red line indicates the independent forecast from 2007 to 2016
图 11 1961~2016年间(a)5月和(b)9月西北地表气温主成分与各自潜在预测因子的11年滑动相关。虚线为95%的显著性检验的相关系数阈值
Figure 11. Eleven-year sliding correlation coefficient between principal components of the surface air temperature in Northwest China in (a) May and (b) September and their potential predictors during the period of 1961–2016. The dotted line is the threshold of the correlation coefficient at the 95% confidence level
-
[1] Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific [J]. Mon. Wea. Rev., 97(3): 163−172. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 [2] 陈冬冬, 戴永久. 2009. 近五十年中国西北地区夏季降水场变化特征及影响因素分析 [J]. 大气科学, 33(6): 1247−1258. doi: 10.3878/j.issn.1006-9895.2009.06.11Chen Dongdong, Dai Yongjiu. 2009. Characteristics and analysis of typical anomalous summer rainfall patterns in Northwest China over the last 50 years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(6): 1247−1258. doi: 10.3878/j.issn.1006-9895.2009.06.11 [3] Chen M Y, Xie P P, Janowiak J E, et al. 2002. Global land precipitation: A 50-yr monthly analysis based on gauge observations [J]. J. Hydrometeorol., 3(3): 249−266. doi: 10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2 [4] 陈少勇, 王劲松, 邢晓宾, 等. 2011. 青藏高原OLR异常与中国西北干旱区气温的关系 [J]. 干旱气象, 29(3): 276−282. doi: 10.3969/j.issn.1006-7639.2011.03.002Chen Shaoyong, Wang Jinsong, Xing Xiaobin, et al. 2011. Relationship between abnormal OLR over Qinghai–Tibet Plateau and air temperature in arid region of Northwest China [J]. J. Arid Meteor. (in Chinese), 29(3): 276−282. doi: 10.3969/j.issn.1006-7639.2011.03.002 [5] 陈少勇, 王劲松, 郭俊庭, 等. 2012. 中国西北地区1961~2009年极端高温事件的演变特征 [J]. 自然资源学报, 27(5): 832−844. doi: 10.11849/zrzyxb.2012.05.012Chen Shaoyong, Wang Jinsong, Guo Junting, et al. 2012. Evolution characteristics of the extreme high temperature event in Northwest China from 1961 to 2009 [J]. J. Nat. Resour. (in Chinese), 27(5): 832−844. doi: 10.11849/zrzyxb.2012.05.012 [6] Chen Y N, Deng H J, Li B F, et al. 2014. Abrupt change of temperature and precipitation extremes in the arid region of Northwest China [J]. Quat. Int., 336: 35−43. doi: 10.1016/j.quaint.2013.12.057 [7] Chen Z S, Chen Y N, Bai L, et al. 2017. Multiscale evolution of surface air temperature in the arid region of Northwest China and its linkages to ocean oscillations [J]. Theor. Appl. Climatol., 128(3): 945−958. doi: 10.1007/s00704-016-1752-7 [8] 丁一汇, 王守荣. 2001. 中国西北地区气候与生态环境概论 [M]. 北京: 气象出版社. Ding Yihui, Wang Shourong. 2001. Introduction to Climate, Ecology and Environment in Northwest China (in Chinese) [M]. Beijing: China Meteorological Press. [9] Ham Y G, Kug J S, Park J Y, et al. 2013. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events [J]. Nat. Geosci., 6(2): 112−116. doi: 10.1038/ngeo1686 [10] Held I M, Suarez M J. 1994. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models [J]. Bull. Amer. Meteor. Soc., 75(10): 1825−1830. doi: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2 [11] Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Quart. J. Roy. Meteor. Soc., 146: 1999−2049. doi: 10.1002/qj.3803 [12] Horel J D, Wallace J M. 1981. Planetary-scale atmospheric phenomena associated with the Southern Oscillation [J]. Mon. Wea. Rev., 109(4): 813−829. doi: 10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2 [13] Huang B Y, Thorne P W, Banzon V F, et al. 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons [J]. J. Climate, 30(20): 8179−8205. doi: 10.1175/JCLI-D-16-0836.1 [14] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 [15] Klein S A, Soden B J, Lau N C. 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge [J]. J. Climate, 12(4): 917−932. doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2 [16] Li T. 2006. Origin of the summertime synoptic-scale wave train in the western North Pacific [J]. J. Atmos. Sci., 63(3): 1093−1102. doi: 10.1175/JAS3676.1 [17] 李耀辉, 李栋梁. 2004. ENSO循环对西北地区夏季气候异常的影响 [J]. 高原气象, 23(6): 930−935. doi: 10.3321/j.issn:1000-0534.2004.06.028Li Yaohui, Li Dongliang. 2004. Effects of ENSO cycle on the summer climate anomaly over Northwest China [J]. Plateau Meteor. (in Chinese), 23(6): 930−935. doi: 10.3321/j.issn:1000-0534.2004.06.028 [18] Li J, Wang B. 2016. How predictable is the anomaly pattern of the Indian summer rainfall? [J]. Climate Dyn., 46(9–10): 2847–2861. doi:10.1007/s00382-015-2735-6 [19] Li J, Wang B. 2018. Predictability of summer extreme precipitation days over eastern China [J]. Climate Dyn., 51(11–12): 4543–4554. doi:10.1007/s00382-017-3848-x [20] 李栋梁, 谢金南, 赵仲莲, 等. 1997. 中国西北夏季气温变化及其对青藏高原地面感热异常响应的诊断与数值试验 [J]. 气候与环境研究, 2(4): 377−386. doi: 10.3878/j.issn.1006-9585.1997.04.08Li Dongliang, Xie Jinnan, Zhao Zhonglian, et al. 1997. A diagnosis and numerical experiment of responses about summer temperature change in Northwest China on surface sensible heat anomaly in the Qinghai–Xizang Plateau [J]. Climatic Environ. Res. (in Chinese), 2(4): 377−386. doi: 10.3878/j.issn.1006-9585.1997.04.08 [21] 李栋梁, 魏丽, 蔡英, 等. 2003. 中国西北现代气候变化事实与未来趋势展望 [J]. 冰川冻土, 25(2): 135−142. doi: 10.3969/j.issn.1000-0240.2003.02.004Li Dongliang, Wei Li, Cai Ying, et al. 2003. The present facts and the future tendency of the climate change in Northwest China [J]. J. Glaciol. Geocryol. (in Chinese), 25(2): 135−142. doi: 10.3969/j.issn.1000-0240.2003.02.004 [22] Li B F, Chen Y N, Shi X. 2012. Why does the temperature rise faster in the arid region of Northwest China? [J]. J. Geophys. Res., 117(D16): D16115. doi: 10.1029/2012JD017953 [23] Li B F, Chen Y N, Chen Z S, et al. 2016. Why does precipitation in Northwest China show a significant increasing trend from 1960 to 2010? [J]. Atmos. Res., 167: 275−284. doi: 10.1016/j.atmosres.2015.08.017 [24] 林纾, 惠志红, 郭俊琴, 等. 2013. 150天韵律方法月内过程预测系统简介及应用检验 [J]. 气象科技进展, 3(5): 48−51. doi: 10.3969/j.issn.2095-1973.2013.05.008Lin Shu, Hui Zhihong, Guo Junqin, et al. 2013. Introduction and application test of the 150 days’ cycle method in the prediction system for precipitation processes within a month [J]. Adv. Meteor. Sci. Technol. (in Chinese), 3(5): 48−51. doi: 10.3969/j.issn.2095-1973.2013.05.008 [25] Lindzen R S, Nigam S. 1987. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics [J]. J. Atmos. Sci., 44(17): 2418−2436. doi: 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2 [26] Lorenz E N. 1956. Statistical forecasting program: Empirical orthogonal functions and statistical weather prediction [J]. Sci. Rep., 409(2): 997−999. [27] 马鹏里, 王若升, 王宝灵, 等. 2002. 我国西北地区地面最高和最低气温变化及分布的特征 [J]. 高原气象, 21(5): 509−513. doi: 10.3321/j.issn:1000-0534.2002.05.011Ma Pengli, Wang Ruosheng, Wang Baoling, et al. 2002. The characteristics of maximum and minimum temperature change and distribution in Northwest China [J]. Plateau Meteor. (in Chinese), 21(5): 509−513. doi: 10.3321/j.issn:1000-0534.2002.05.011 [28] Nitta T. 1987. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation [J]. J. Meteor. Soc. Japan, 65(3): 373−390. doi: 10.1175/1520-0469(1987)044<1554:TAOPVT>2.0.CO;2 [29] North G R, Bell T L, Cahalan R F, et al. 1982. Sampling errors in the estimation of empirical orthogonal functions [J]. Mon. Wea. Rev., 110(7): 699−706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 [30] Polo I, Martin-Rey M, Rodriguez-Fonseca B, et al. 2015. Processes in the Pacific La Niña onset triggered by the Atlantic Niño [J]. Climate Dyn., 44(1): 115−131. doi: 10.1007/s00382-014-2354-7 [31] 秦大河, 丁一汇, 王绍武, 等. 2002. 中国西部生态环境变化与对策建议 [J]. 地球科学进展, 17(3): 314−319. doi: 10.3321/j.issn:1001-8166.2002.03.003Qin Dahe, Din Yihui, Wang Shaowu, et al. 2002. Ecological and environmental change in West China and its response strategy [J]. Adv. Earth Sci. (in Chinese), 17(3): 314−319. doi: 10.3321/j.issn:1001-8166.2002.03.003 [32] 沈学顺, 木本昌秀. 2007. 春季欧亚大陆地表气温变化特征的气候意义 [J]. 大气科学, 31(1): 19−27. doi: 10.3878/j.issn.1006-9895.2007.01.02Shen Xueshun, Kimoto M. 2007. Studies of the interannual variability of springtime Eurasian surface air temperature [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(1): 19−27. doi: 10.3878/j.issn.1006-9895.2007.01.02 [33] 施雅风, 沈永平, 胡汝骥. 2002. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨 [J]. 冰川冻土, 24(3): 219−226. doi: 10.3969/j.issn.1000-0240.2002.03.001Shi Yafeng, Shen Yongping, Hu Ruji. 2002. Signal, impact and foreground of climatic shift from warm–dry to warm–humid in Northwest China [J]. J. Glaciol. Geocryol. (in Chinese), 24(3): 219−226. doi: 10.3969/j.issn.1000-0240.2002.03.001 [34] 施雅风, 沈永平, 李栋梁, 等. 2003. 中国西北气候由暖干向暖湿转型的特征和趋势探讨 [J]. 第四纪研究, 23(2): 152−164. doi: 10.3321/j.issn:1001-7410.2003.02.005Shi Yafeng, Shen Yongping, Li Dongliang, et al. 2003. Discussion on the present climate change from warm–dry to warm–wet in Northwest China [J]. Quat. Sci. (in Chinese), 23(2): 152−164. doi: 10.3321/j.issn:1001-7410.2003.02.005 [35] 孙建奇, 王会军, 袁薇. 2011. 我国极端高温事件的年代际变化及其与大气环流的联系 [J]. 气候与环境研究, 16(2): 199−208. doi: 10.3878/j.issn.1006-9585.2011.02.09Sun Jianqi, Wang Huijun, Yuan Wei. 2011. Decadal variability of the extreme hot event in China and its association with atmospheric circulations [J]. Climatic Environ. Res. (in Chinese), 16(2): 199−208. doi: 10.3878/j.issn.1006-9585.2011.02.09 [36] 王兰宁, 田武文, 黄祖英, 等. 2000. 西北地区东部夏季温度特征及与热带SSTA的相关分析 [J]. 气象科学, 20(1): 23−29. doi: 10.3969/j.issn.1009-0827.2000.01.004Wang Lanning, Tian Wuwen, Huang Zuying, et al. 2000. A diagnosis for characteristic on summer temperature in the eastern part of Northwest China and its relation with SSTA over tropical Pacific [J]. Sci. Meteor. Sinica (in Chinese), 20(1): 23−29. doi: 10.3969/j.issn.1009-0827.2000.01.004 [37] Wang Y J, Zhou B T, Qin D H, et al. 2017. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection [J]. Adv. Atmos. Sci., 34(3): 289−305. doi: 10.1007/s00376-016-6160-5 [38] Wei K, Wang L. 2013. Reexamination of the aridity conditions in arid northwestern China for the last decade [J]. J. Climate, 26(23): 9594−9602. doi: 10.1175/JCLI-D-12-00605.1 [39] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg20130406Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese J. Geophys. (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg20130406 [40] 翟盘茂, 潘晓华. 2003. 中国北方近50年温度和降水极端事件变化 [J]. 地理学报, 58(S1): 1−10. doi: 10.3321/j.issn:0375-5444.2003.z1.001Zhai Panmao, Pan Xiaohua. 2003. Change in extreme temperature and precipitation over northern China during the second half of the 20th century [J]. Acta Geograp. Sinica (in Chinese), 58(S1): 1−10. doi: 10.3321/j.issn:0375-5444.2003.z1.001 [41] 张强, 胡隐樵, 曹晓彦, 等. 2000. 论西北干旱气候的若干问题 [J]. 中国沙漠, 20(4): 357−362. doi: 10.3321/j.issn:1000-694X.2000.04.003Zhang Qiang, Hu Yinqiao, Cao Xiaoyan, et al. 2000. On some problems of arid climate system of Northwest China [J]. J. Desert Res. (in Chinese), 20(4): 357−362. doi: 10.3321/j.issn:1000-694X.2000.04.003 [42] 张存杰, 谢金南, 李栋梁, 等. 2002. 东亚季风对西北地区干旱气候的影响 [J]. 高原气象, 21(2): 193−198. doi: 10.3321/j.issn:1000-0534.2002.02.012Zhang Cunjie, Xie Jinnan, Li Dongliang, et al. 2002. Effect of East-Asian monsoon on drought climate of Northwest China [J]. Plateau Meteor. (in Chinese), 21(2): 193−198. doi: 10.3321/j.issn:1000-0534.2002.02.012 [43] 张强, 张存杰, 白虎志, 等. 2010. 西北地区气候变化新动态及对干旱环境的影响——总体暖干化, 局部出现暖湿迹象 [J]. 干旱气象, 28(1): 1−7. doi: 10.3969/j.issn.1006-7639.2010.01.001Zhang Qiang, Zhang Cunjie, Bai Huzhi, et al. 2010. New development of climate change in Northwest China and its impact on arid environment [J]. J. Arid Meteor. (in Chinese), 28(1): 1−7. doi: 10.3969/j.issn.1006-7639.2010.01.001 [44] Zhang M, Yu H P, Huang J P, et al. 2019. Comparison of extreme temperature response to 0.5°C additional warming between dry and humid regions over East−Central Asia [J]. Int. J. Climatol., 39(7): 3348−3364. doi: 10.1002/joc.6025 [45] Zhu Z W, Li T. 2017. Empirical prediction of the onset dates of South China Sea summer monsoon [J]. Climate Dyn., 48(5): 1633−1645. doi: 10.1007/s00382-016-3164-x -