高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近60年来中国主要流域极端降水演变特征

江洁 周天军 张文霞

江洁, 周天军, 张文霞. 2022. 近60年来中国主要流域极端降水演变特征[J]. 大气科学, 46(3): 1−18 doi: 10.3878/j.issn.1006-9895.2111.21187
引用本文: 江洁, 周天军, 张文霞. 2022. 近60年来中国主要流域极端降水演变特征[J]. 大气科学, 46(3): 1−18 doi: 10.3878/j.issn.1006-9895.2111.21187
JIANG Jie, ZHOU Tianjun, ZHANG Wenxia. 2022. Temporal and Spatial Variations of Extreme Precipitation in the Main River Basins of China in the Past 60 Years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 1−18 doi: 10.3878/j.issn.1006-9895.2111.21187
Citation: JIANG Jie, ZHOU Tianjun, ZHANG Wenxia. 2022. Temporal and Spatial Variations of Extreme Precipitation in the Main River Basins of China in the Past 60 Years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 1−18 doi: 10.3878/j.issn.1006-9895.2111.21187

近60年来中国主要流域极端降水演变特征

doi: 10.3878/j.issn.1006-9895.2111.21187
基金项目: 国家重点研发计划项目2018YFC1507701
详细信息
    作者简介:

    江洁,女,1994年出生,博士后,主要从事区域气候变化研究。E-mail: jiangj@lasg.iap.ac.cn

    通讯作者:

    周天军,E-mail: zhoutj@lasg.iap.ac.cn

  • 中图分类号: P467

Temporal and Spatial Variations of Extreme Precipitation in the Main River Basins of China in the Past 60 Years

Funds: National Key Research and Development Program of China (Grant 2018YFC1507701)
  • 摘要: 在全球增暖背景下,中国极端降水事件及洪涝、干旱等次生灾害近年来频发,严重影响生态系统、人民的生产生活和社会经济发展。本文基于气候变化检测和指数专家组(ETCCDI)定义的10个降水指数,利用中国台站日降水资料,系统分析了1961~2017年中国及九大流域片降水变化情况,并利用空间场显著性检验考察不同降水指数的显著变化是否与外强迫作用有关。结果表明,各降水指数的变化具有区域性特征。整体而言,全国范围内平均降水、降水强度、极端强降水和连续性强降水呈增强趋势的台站数多于呈减弱趋势的台站数,呈显著增强趋势的台站占比不可能仅由气候系统内部变率引起,还受到外强迫的影响。此外,中国大部分站点连续干旱日数(CDD)减少,观测中CDD呈显著减弱趋势的台站占比也与外强迫作用有关。九大流域片中,内陆河片能够观测到平均降水、降水强度、极端强降水和连续性强降水的增多以及连续干旱日数的减少,有洪涝灾害增多的风险,且上述变化可归因为外强迫的作用。长江流域片、东南诸河片和珠海流域片平均降水、极端强降水和连续性强降水均增强,其中强降水的变化与外强迫作用有关。西南诸河片极端强降水增强,但大部分站点CDD呈增加趋势,有干旱增加的风险。黄河流域片、海河流域片、淮河流域片及松辽河流域片的大部分站点及区域平均结果中,降水指数多无显著变化趋势。增暖背景下,不同流域片呈现出不同的降水变化特征,将面临不同的气候灾害风险。
  • 图  1  九大流域片及624个台站分布,数字代表每一流域片的台站数

    Figure  1.  The distributions of nine river basins and 624 stations. The number of stations for each river basin is also shown

    图  2  1961~2017年(a、c)降水量(PRCPTOT)和(b、d)降水强度(SDII)指数(a、b)气候平均态和(c、d)变化趋势空间分布。(c、d)中蓝色(红色)圆点代表降水指数呈增加(减少)趋势,实心圆点代表趋势通过0.05显著性水平检验,左下角数字代表呈某一趋势的台站数占总台站数百分比

    Figure  2.  Spatial pattern of (a, b) climatology and (c, d) trend in (a, c) PRCPTOT (total wet-day precipitation) and (b, d) SDII (simple daily precipitation intensity) during 1961–2017. (c–d) The blue (red) dots indicate the increasing (decreasing) trends in precipitation indices; the solid dots indicate the trends are significant at the 95% level; the percentage of stations with different conditions are shown in the bottom left

    图  7  九大流域片降水指数呈现(a)增加和(b)减少趋势的台站百分比。(c, d)同(a, b),但为呈现变化趋势通过95%显著性检验的台站百分比

    Figure  7.  Percentage of stations with (a) increasing and (b) decreasing trends in precipitation indices for nine river basins. (c, d) as (a, b), but for stations with trends significant at the 95% level

    图  8  1961~2017年极端降水指数呈现显著增加(蓝色)和减少(红色)趋势的台站百分比。其中横坐标表示呈现显著增加或减少趋势的台站百分比,直方图代表1000个bootstrap样本中不同台站百分比对应的发生频率,红色和蓝色直线分别代表对应零假设分布尾部5%的范围,红色和蓝色圆点分别代表对应的台站观测结果。左边两列是内陆河片结果,右边两列是长江流域片、珠江流域片和东南诸河片结果

    Figure  8.  Percentage of stations with significant increasing (blue) and decreasing (red) trends in extreme precipitation indices. The x-axis represents the percentage of stations with significant increasing or decreasing trends, the histograms denote the distributions of results from 1000 bootstrap samples, the lines mark the upper 5% probability distribution, the dots denote the observed values. The left two columns are the results for continental rivers; the right two columns are the results for the Yangtze River basin, Pearl River basin, and southeastern rivers

    图  3  (a)1961~2017年(a、c)PRCPTOT、(b、d)SDII指数呈现(a、b)显著增加、(c、d)显著减少趋势的台站百分比,其中横坐标表示呈现显著增加/减少趋势的台站百分比,直方图代表1000个bootstrap样本中不同台站百分比对应的发生频率,灰色直线代表零假设分布尾部5%的范围,圆点代表台站观测结果

    Figure  3.  Percentage of stations with (a, b) significant increasing and (c, d) decreasing trends in (a, c) PRCPTOT and (b, d) SDII. The x-axis represents the percentage of stations with significant increasing/decreasing trends, the histograms denote the distributions of results from 1000 bootstrap samples, the gray line marks the upper 5% probability distribution, the dot denotes the observed value

    图  4  1961~2017年九大流域片极端降水指数(a、b)Rx5day、(c、d)Rx1day、(e、f)R95p和(g、h)R99p气候态(左列,单位:mm)和变化趋势[右列,单位:(10 a)−1]空间分布。右列中蓝色(红色)圆点代表降水指数呈增加(减少)趋势,实心圆点代表趋势通过95%显著性检验,左下角数字代表呈某一趋势的台站数占总台站数百分比

    Figure  4.  Spatial pattern of climatology (left column, units: mm) and trend [right column, units: (10 a)−1] in extreme precipitation indices over nine river basins during 1961–2017: (a, b) Rx5day; (c, d) Rx1day; (e, f) R95p; (g, h) R99p. The blue (red) dots in the right columns indicate the increasing (decreasing) trends in precipitation indices; the solid dots indicate the trends are significant at the 95% level, the percentage of stations with different conditions are shown in the bottom left

    图  5  1961~2017年极端降水指数(a)Rx5day、(b)Rx1day、(c)R95p、(d)R99p、(e)R10mm、(f)R20mm、(g)CWD和(h)CDD呈现显著增加(蓝色)和减少(红色)趋势的台站百分比。其中横坐标表示呈现显著增加或减少趋势的台站百分比,直方图代表1000个bootstrap样本中不同台站百分比对应的发生频率,红色和蓝色直线分别代表对应零假设分布尾部5%的范围,红色和蓝色圆点分别代表对应的台站观测结果

    Figure  5.  Percentage of stations with significant increasing (blue) and decreasing (red) trends in extreme precipitation indices: (a) Rx5day, (b) Rx1day, (c) R95p, (d) R99p, (e) R10mm, (f) R20mm, (g) CWD, and (h) CDD. The x-axis represents the percentage of stations with significant increasing or decreasing trends, the histograms denote the distributions of results from 1000 bootstrap samples, the lines mark the upper 5% probability distribution, the dots denote the observed values.

    图  6  1961~2017年九大流域片极端降水指数(a、b)R10mm、(c、d)R20mm、(e、f)CWD和(g、h)CDD气候态(左列,单位:d)和变化趋势[右列,单位:(10 a)−1]空间分布。右列中蓝色(红色)圆点代表降水指数呈增加(减少)趋势,其中实心圆点代表趋势通过0.05显著性水平检验,黑色圆点则代表无变化趋势,左下角数字代表呈某一趋势的台站数占总台站数百分比。

    Figure  6.  Spatial pattern of climatology (left column, units: mm) and trend [right column, units: (10 a)−1] in extreme precipitation indices over nine river basins during 1961–2017: (a, b) R10 mm, (c, d) R20mm, (e, f) CWD, and (g, h) CDD. The blue (red) dots in the right columns indicate the increasing (decreasing) trends in precipitation indices, with solid dots denoting the trends are significant at the 95% level; the black dots indicate no trends in precipitation indices, the percentage of stations with different conditions are shown in the bottom left

    图  9  九大流域片降水指数(a)PRCPTOT、(b)SDII、(c)Rx5day、(d)Rx1day、(e)R95p、(f)R99p、(g)R10mm、(h)R20mm、(i)CWD和(j)CDD区域平均变化趋势。绿色(黄色)代表该流域区域平均结果增加(减少),深绿色(棕色)代表该流域区域平均结果显著增加(显著减少);数值为区域平均结果相对于该流域气候态变化趋势,单位:% (10 a)−1

    Figure  9.  Trends in area-averaged extreme precipitation indices in nine river basins: (a) PRCPTOT, (b) SDII, (c) Rx5day, (d) Rx1day, (e) R95p, (f) R99p, (g) R10mm, (h) R20mm, (i) CWD, and (j) CDD. Green (yellow) shadings indicate increasing (decreasing) trends, dark green (brown) indicate significant increasing (significant decreasing) trends. The numbers denote the area‐averaged trends relative to related climatology, units: % (10 a)−1

    图  10  九大流域片降水指数变化概况。平均降水/降水强度为基于PRCPTOT和SDII的综合评估结果,极端强降水为基于Rx1day、R95p和R99p的综合评估结果,连续性强降水基于Rx5day得到,气象干旱基于CDD得到;图中结果为对应的降水指数区域平均变化趋势在0.05的水平下显著,若结果基于多个指数则不同指数变化趋势一致,至少有一个指数变化趋势在0.05的水平下显著。西南诸河片区域平均CDD在0.05的水平下不显著,但其大部分站点呈增加趋势,故标为气象干旱增加。图标来源:https://www.flaticon.com/authors/freepik [2021-01-26]

    Figure  10.  Changes in precipitation across nine river basins. The results of mean precipitation/precipitation intensity are based on PRCPTOP and SDII, the results of extremely heavy precipitation are based on Rx1day, R95p, and R99p, the results of continuous heavy precipitation are based on Rx5day, results of meteorological drought are based on CDD. The results shown in the figure are for the trends in area-averaged precipitation indices significant at the 95% level. If the results are based on more than one index, all indices increase or decrease, and the trends for at least one index are significant at the 95% level. The trend of area-averaged CDD for southwestern rivers is insignificant at the 95% level, but the CDD increases for most stations, which is marked as an increase of meteorological drought. Icon sources: https://www.flaticon.com/authors/freepik [2021-01-26]

    表  1  气候变化检测和指数专家组(ETCCDI)定义的10个降水指数

    Table  1.   Information for 10 precipitation indices defined by ETCCDI (Expert Team on Climate Change Detection and Indices)

    指数名称定义单位
    PRCPTOT年降水量一年内降水日(日降水量≥1mm)总降水量mm
    SDII降水强度年降水量与降水日数(日降水量≥1mm)之比mm d−1
    Rx1day最大日降水量一年内最大日降水量mm
    Rx5day最大连续5日累计降水量一年内连续5天最大累计降水量mm
    R95p强降水量一年内日降水量>研究时段所有日降水95%分位值的累计降水量mm
    R99p极端强降水量一年内日降水量>研究时段所有日降水99%分位值的累计降水量mm
    R10mm大雨日数一年内日降水量≥10mm的日数d
    R20mm极端大雨日数一年内日降水量≥20mm的日数d
    CWD最大连续湿润日数一年内日降水量≥1mm的最长连续日数d
    CDD最大连续干旱日数一年内日降水量<1mm的最长连续日数d
    注:详细信息见http://etccdi.pacificclimate.org/list_27_indices.shtml [2021-01-26]。
    下载: 导出CSV
  • [1] Burke C, Stott P, Ciavarella A, et al. 2016. Attribution of extreme rainfall in Southeast China during May 2015 [J]. Bull. Amer. Meteor. Soc., 97: S92−S96. doi: 10.1175/BAMS-D-16-0144.1
    [2] Cao F Q, Gao T, Dan L, et al. 2021. Contributions of natural climate variability on the trends of seasonal precipitation extremes over China [J]. Int. J. Climatol., 41: 5226−5242. doi: 10.1002/joc.7126
    [3] Chen H P, Sun J Q. 2017. Contribution of human influence to increased daily precipitation extremes over China [J]. Geophys. Res. Lett., 44: 2436−2444. doi: 10.1002/2016GL072439
    [4] 陈海山, 范苏丹, 张新华. 2009. 中国近50 a极端降水事件变化特征的季节性差异 [J]. 大气科学学报, 32: 744−751. doi: 10.3969/j.issn.1674-7097.2009.06.003

    Chen H S, Fan S D, Zhang X H. 2009. Seasonal differences of variation characteristics of extreme precipitation events over China in the last 50 years [J]. Transactions of Atmospheric Sciences (in Chinese), 32: 744−751. doi: 10.3969/j.issn.1674-7097.2009.06.003
    [5] 陈峪, 陈鲜艳, 任国玉. 2010. 中国主要河流流域极端降水变化特征 [J]. 气候变化研究进展, 6: 265−269. doi: 10.3969/j.issn.1673-1719.2010.04.006

    Chen Y, Chen X Y, Ren G Y. 2010. Variation of extreme precipitation over large river basins in China [J]. Advances in Climate Change Research (in Chinese), 6: 265−269. doi: 10.3969/j.issn.1673-1719.2010.04.006
    [6] Chen Y, Liao Z, Shi Y, et al. 2021a. Detectable increases in sequential flood–heatwave events across china during 1961–2018 [J]. Geophys. Res. Lett., 48: e2021GL092549. doi: 10.1029/2021GL092549
    [7] Chen Y, Li W, Jiang X L, et al. 2021b. Detectable intensification of hourly and daily scale precipitation extremes across eastern China [J]. J. Climate, 34: 1185−1201. doi: 10.1175/JCLI-D-20-0462.1
    [8] Chu J T, Xia J, Xu C Y, et al. 2010. Spatial and temporal variability of daily precipitation in Haihe River basin, 1958–2007 [J]. J. Geogr. Sci., 20: 248−260. doi: 10.1007/s11442-010-0248-0
    [9] 慈晖, 张强, 张江辉, 等. 2014. 1961-2010年新疆极端降水过程时空特征 [J]. 地理研究, 33: 1881−1891. doi: 10.11821/dlyj201410009

    Ci H, Zhang Q, Zhang J H, et al. 2014. Spatiotemporal variations of extreme precipitation events within Xinjiang during 1961–2010 [J]. Geographical Research (in Chinese), 33: 1881−1891. doi: 10.11821/dlyj201410009
    [10] Dong Q, Chen X, Chen T X. 2011. Characteristics and changes of extreme precipitation in the Yellow–Huaihe and Yangtze–Huaihe Rivers basins, China [J]. J. Climate, 24: 3781−3795. doi: 10.1175/2010JCLI3653.1
    [11] Fu G B, Yu J J, Yu X B, et al. 2013. Temporal variation of extreme rainfall events in China, 1961–2009 [J]. J. Hydrol., 487: 48−59. doi: 10.1016/j.jhydrol.2013.02.021
    [12] 付奔, 胡关东, 杨帆, 等. 2014. 云南干旱“常态化”的分析 [J]. 水文, 34(4): 82−85. doi: 10.3969/j.issn.1000-0852.2014.04.015

    Fu B, Hu G D, Yang F, et al. 2014. Analysis of drought normalization in Yunnan Province [J]. Journal of China Hydrology (in Chinese), 34(4): 82−85. doi: 10.3969/j.issn.1000-0852.2014.04.015
    [13] 甘璐, 郭文利, 邓长菊. 2017. 北京地区两次特大暴雨过程的对比分析 [J]. 干旱气象, 35: 239−249. doi: 10.11755/j.issn.1006-7639(2017)-02-0239

    Gan L, Guo W L, Deng C J. 2017. Comparative analysis of two torrential rain processes in Beijing [J]. Journal of Arid Meteorology (in Chinese), 35: 239−249. doi: 10.11755/j.issn.1006-7639(2017)-02-0239
    [14] 高涛, 谢立安. 2014. 近50年来中国极端降水趋势与物理成因研究综述 [J]. 地球科学进展, 29: 577−589. doi: 10.11867/j.issn.1001-8166.2014.05.0577

    Gao T, Xie L A. 2014. Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years [J]. Advances in Earth Science (in Chinese), 29: 577−589. doi: 10.11867/j.issn.1001-8166.2014.05.0577
    [15] 贺振, 贺俊平. 2014. 1960年至2012年黄河流域极端降水时空变化 [J]. 资源科学, 36: 490−501.

    He Z, He J P. 2014. Temporal and spatial variation of extreme precipitation in the Yellow River basin from 1960 to 2012 [J]. Resources Science (in Chinese), 36: 490−501.
    [16] 贺冰蕊, 翟盘茂. 2018. 中国1961~2016年夏季持续和非持续性极端降水的变化特征 [J]. 气候变化研究进展, 14: 437−444. doi: 10.12006/j.issn.1673-1719.2018.016

    He B R, Zhai P M. 2018. Characteristics of the persistent and non-persistent extreme precipitation in China from 1961 to 2016 [J]. Climate Change Research (in Chinese), 14: 437−444. doi: 10.12006/j.issn.1673-1719.2018.016
    [17] Hu Y R, Maskey S, Uhlenbrook S. 2012. Trends in temperature and rainfall extremes in the Yellow River source region, China [J]. Climatic Change, 110: 403−429. doi: 10.1007/s10584-011-0056-2
    [18] Hu Z Y, Zhou Q M, Chen X, et al. 2018. Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations [J]. International Journal of Climatology, 38: 3475−3493. doi: 10.1002/joc.5510
    [19] Hu W F, Yao J Q, He Q, et al. 2021. Changes in precipitation amounts and extremes across Xinjiang (Northwest China) and their connection to climate indices [J]. PeerJ, 9: e10792. doi: 10.7717/peerj.10792
    [20] Ivancic T J, Shaw S B. 2015. Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge [J]. Climatic Change, 133: 681−693. doi: 10.1007/s10584-015-1476-1
    [21] Jiang F Q, Hu R J, Wang S P, et al. 2013. Trends of precipitation extremes during 1960–2008 in Xinjiang, the Northwest China [J]. Theor. Appl. Climatol., 111: 133−148. doi: 10.1007/s00704-012-0657-3
    [22] Kendall M G. 1955. Rank Correlation Methods [M]. London: Charles Griffin Press.
    [23] Kiktev D, Sexton D M H, Alexander L, et al. 2003. Comparison of modeled and observed trends in indices of daily climate extremes [J]. J. Climate, 16: 3560−3571. doi:10.1175/1520-0442(2003)016<3560:COMAOT>2.0.CO;2
    [24] Kundzewicz Z, Su B, Wang Y, et al. 2019. Flood risk and its reduction in China [J]. Adv. Water Resour., 130: 37−45. doi: 10.1016/j.advwatres.2019.05.020
    [25] Li W, Chen Y. 2021. Detectability of the trend in precipitation characteristics over China from 1961 to 2017 [J]. Int. J. Climatol., 41: E1980−E1991. doi: 10.1002/joc.6826
    [26] Li H X, Chen H P, Wang H J. 2017. Effects of anthropogenic activity emerging as intensified extreme precipitation over China [J]. J. Geophys. Res., 122: 6899−6914. doi: 10.1002/2016JD026251
    [27] Li W, Jiang Z H, Zhang X B, et al. 2018. On the emergence of anthropogenic signal in extreme precipitation change over China [J]. Geophys. Res. Lett., 45: 9179−9185. doi: 10.1029/2018GL079133
    [28] 陆苗, 高超, 苏布达, 等. 2015. 淮河流域极端降水空间分布及概率特征 [J]. 自然灾害学报, 24(5): 160−168. doi: 10.13577/j.jnd.2015.0518

    Lu M, Gao C, Su B D, et al. 2015. Spatial distribution and probabilistic characteristics of extreme precipitation in the Huaihe River Basin [J]. Journal of Natural Disasters (in Chinese), 24(5): 160−168. doi: 10.13577/j.jnd.2015.0518
    [29] 陆静文, 周天军, 黄昕, 等. 2020. 表面气温内部变率估算方法的比较研究 [J]. 大气科学, 44: 105−121. doi: 10.3878/j.issn.1006-9895.1901.18235

    Lu J W, Zhou T J, Huang X, et al. 2020. A comparison of three methods for estimating internal variability of near-surface air temperature [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44: 105−121. doi: 10.3878/j.issn.1006-9895.1901.18235
    [30] Lu C H, Lott F C, Sun Y, et al. 2020. Detectable anthropogenic influence on changes in summer precipitation in China [J]. J. Climate, 33: 5357−5369. doi: 10.1175/JCLI-D-19-0285.1
    [31] Lu C H, Jiang J, Chen R D, et al. 2021. Anthropogenic influence on 2019 May–June extremely low precipitation in southwestern China [J]. Bull. Amer. Meteor. Soc., 102: S97−S102. doi: 10.1175/BAMS-D-20-0128.1
    [32] 马佳宁, 高艳红. 2019. 近50年黄河上游流域年均降水与极端降水变化分析 [J]. 高原气象, 38: 124−135. doi: 10.7522/j.issn.1000-0534.2018.00126

    Ma J N, Gao Y H. 2019. Analysis of annual precipitation and extreme precipitation change in the upper Yellow River Basin in recent 50 years [J]. Plateau Meteorology (in Chinese), 38: 124−135. doi: 10.7522/j.issn.1000-0534.2018.00126
    [33] Ma S M, Zhou T J, Dai A G, et al. 2015. Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013 [J]. J. Climate, 28: 6960−6978. doi: 10.1175/JCLI-D-15-0011.1
    [34] Ma S M, Zhou T J, Stone D A, et al. 2017a. Detectable anthropogenic shift toward heavy precipitation over eastern China [J]. J. Climate, 30: 1381−1396. doi: 10.1175/JCLI-D-16-0311.1
    [35] Ma S M, Zhou T J, Angélil O, et al. 2017b. Increased chances of drought in southeastern periphery of the Tibetan Plateau induced by anthropogenic warming [J]. J. Climate, 30: 6543−6560. doi: 10.1175/JCLI-D-16-0636.1
    [36] Myhre G, Shindell D, Bréon F M, et al. 2014. Anthropogenic and natural radiative forcing [M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T F, Qin D, Plattner G K, et al, Eds. Cambridge: Cambridge University Press, 659–740. doi: 10.1017/CBO9781107415324.018
    [37] Ohlson J A, Kim S. 2015. Linear valuation without OLS: The Theil-Sen estimation approach [J]. Review of Accounting Studies, 20: 395−435. doi: 10.1007/s11142-014-9300-0
    [38] 潘欣, 尹义星, 王小军. 2019. 1960~2014年淮河流域极端降水发生时间的时空特征 [J]. 高原气象, 38: 377−385. doi: 10.7522/j.issn.1000-0534.2018.00076

    Pan X, Yin Y X, Wang X J. 2019. Spatio–temporal characteristics of the occurrence timing of extreme precipitation in the Huai River Basin from 1960 to 2014 [J]. Plateau Meteorology (in Chinese), 38: 377−385. doi: 10.7522/j.issn.1000-0534.2018.00076
    [39] Seneviratne S I, Nicholls N, Easterling D, et al. 2012. Changes in climate extremes and their impacts on the natural physical environment [M]//Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Field C B, Barros V, Stocker T F, et al, Eds. Cambridge: Cambridge University Press, 109–230. doi: 10.1017/CBO9781139177245.006
    [40] Su B D, Jiang T, Jin W B. 2006. Recent trends in observed temperature and precipitation extremes in the Yangtze River Basin, China [J]. Theor. Appl. Climatol., 83: 139−151. doi: 10.1007/s00704-005-0139-y
    [41] Sun Q H, Miao C Y. 2018. Extreme rainfall (R20mm, RX5day) in Yangtze–Huai, China, in June–July 2016: The role of ENSO and anthropogenic climate change [J]. Bull. Amer. Meteor. Soc., 99: S102−S106. doi: 10.1175/BAMS-D-17-0091.1
    [42] 孙颖, 秦大河, 周波涛. 2015. 未来气候变化科学研究的主要方向和挑战 [J]. 气候变化研究进展, 11: 324−330. doi: 10.3969/j.issn.1673-1719.2015.05.005

    Sun Y, Qin D H, Zhou B T. 2015. Major directions and grand challenges of future climate change science [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 11: 324−330. doi: 10.3969/j.issn.1673-1719.2015.05.005
    [43] 孙惠惠, 章新平, 罗紫东, 等. 2018. 近53 a来长江流域极端降水指数特征 [J]. 长江流域资源与环境, 27: 1879−1890. doi: 10.11870/cjlyzyyhj201808024

    Sun H H, Zhang X P, Luo Z D, et al. 2018. Analyses on characteristics of extreme precipitation indices in the Yangtze River Basin in the past 53 years [J]. Resources and Environment in the Yangtze Basin (in Chinese), 27: 1879−1890. doi: 10.11870/cjlyzyyhj201808024
    [44] 孙跃, 肖辉, 杨慧玲, 等. 2021. 基于遥感数据光流场的2021年郑州“7·20”特大暴雨动力条件和水凝物输送特征分析 [J]. 大气科学, 45: 1384−1399. doi: 10.3878/j.issn.1006-9895.2109.21155

    Sun Y, Xiao H, Yang H L, et al. 2021. Analysis of dynamic conditions and hydrometeor transport of Zhengzhou superheavy rainfall event on 20 July 2021 based on optical flow field of remote sensing data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45: 1384−1399. doi: 10.3878/j.issn.1006-9895.2109.21155
    [45] 田付友, 杨舒楠, 郑永光, 等. 2021. 北京地区两次极端特大暴雨过程中短时强降水环境条件对比分析 [J]. 暴雨灾害, 40: 27−36. doi: 10.3969/j.issn.1004-9045.2021.01.004

    Tian F Y, Yang S N, Zheng Y G, et al. 2021. Comparison of short-duration heavy rainfall environmental conditions during two extreme torrential rainfall events over Beijing area [J]. Torrential Rain and Disasters (in Chinese), 40: 27−36. doi: 10.3969/j.issn.1004-9045.2021.01.004
    [46] von Storch H, Zwiers F W. 1999. Statistical Analysis in Climate Research [M]. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511612336
    [47] 王艳君, 高超, 王安乾, 等. 2014. 中国暴雨洪涝灾害的暴露度与脆弱性时空变化特征 [J]. 气候变化研究进展, 10: 391−398. doi: 10.3969/j.issn.1673-1719.2014.06.001

    Wang Y J, Gao C, Wang A Q, et al. 2014. Temporal and spatial variation of exposure and vulnerability of flood disaster in China [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 10: 391−398. doi: 10.3969/j.issn.1673-1719.2014.06.001
    [48] Wang Y J, Zhou B T, Qin D H, et al. 2017. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection [J]. Adv. Atmos. Sci., 34: 289−305. doi: 10.1007/s00376-016-6160-5
    [49] Wasko C, Nathan R. 2019. Influence of changes in rainfall and soil moisture on trends in flooding [J]. J. Hydrol., 575: 432−441. doi: 10.1016/j.jhydrol.2019.05.054
    [50] Westra S, Alexander L V, Zwiers F W. 2013. Global increasing trends in annual maximum daily precipitation [J]. J. Climate, 26: 3904−3918. doi: 10.1175/JCLI-D-12-00502.1
    [51] Wilks D S. 2006. Statistical Methods in the Atmospheric Sciences [M]. Boston: Academic Press.
    [52] 武文博, 游庆龙, 王岱. 2016. 基于均一化降水资料的中国极端降水特征分析 [J]. 自然资源学报, 31: 1015−1026. doi: 10.11849/zrzyxb.20150209

    Wu W B, You Q L, Wang D. 2016. Characteristics of extreme precipitation in China based on homogenized precipitation data [J]. Journal of Natural Resources (in Chinese), 31: 1015−1026. doi: 10.11849/zrzyxb.20150209
    [53] 袭祝香, 杨雪艳, 刘玉汐, 等. 2019. 松辽流域1961—2017年极端降水变化特征 [J]. 水土保持研究, 26(3): 199−203,212. doi: 10.13869/j.cnki.rswc.2019.03.029

    Xi Z X, Yang X Y, Liu Y X, et al. 2019. Characteristics of extreme precipitation change from 1961 to 2017 in Songliao Basin [J]. Research of Soil and Water Conservation (in Chinese), 26(3): 199−203,212. doi: 10.13869/j.cnki.rswc.2019.03.029
    [54] Xia J, She D X, Zhang Y Y, et al. 2012. Spatio-temporal trend and statistical distribution of extreme precipitation events in Huaihe River Basin during 1960-2009 [J]. J. Geogr. Sci., 22: 195−208. doi: 10.1007/s11442-012-0921-6
    [55] 谢培, 顾艳玲, 张玉虎, 等. 2017. 1961~2015年新疆降水及干旱特征分析 [J]. 干旱区地理, 40: 332−339. doi: 10.13826/j.cnki.cn65-1103/x.2017.02.011

    Xie P, Gu Y L, Zhang Y H, et al. 2017. Precipitation and drought characteristics in Xinjiang during 1961–2015 [J]. Arid Land Geography (in Chinese), 40: 332−339. doi: 10.13826/j.cnki.cn65-1103/x.2017.02.011
    [56] 谢泽明, 周玉淑, 杨莲梅. 2018. 新疆降水研究进展综述 [J]. 暴雨灾害, 37: 204−212. doi: 10.3969/j.issn.1004-9045.2018.03.002

    Xie Z M, Zhou Y S, Yang L M. 2018. Review of study on precipitation in Xinjiang [J]. Torrential Rain and Disasters (in Chinese), 37: 204−212. doi: 10.3969/j.issn.1004-9045.2018.03.002
    [57] 杨溯, 李庆祥. 2014. 中国降水量序列均一性分析方法及数据集更新完善 [J]. 气候变化研究进展, 10: 276−281. doi: 10.3969/j.issn.1673-1719.2014.04.008

    Yang S, Li Q X. 2014. Improvement in homogeneity analysis method and update of China precipitation data [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 10: 276−281. doi: 10.3969/j.issn.1673-1719.2014.04.008
    [58] Yang T, Shao Q X, Hao Z C, et al. 2010. Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China [J]. J. Hydrol., 380: 386−405. doi: 10.1016/j.jhydrol.2009.11.013
    [59] Yang J, Pei Y, Zhang Y W, et al. 2018. Risk assessment of precipitation extremes in northern Xinjiang, China [J]. Theor. Appl. Climatol., 132: 823−834. doi: 10.1007/s00704-017-2115-8
    [60] 尹红, 孙颖. 2019. 基于ETCCDI指数2017年中国极端温度和降水特征分析 [J]. 气候变化研究进展, 15: 363−373. doi: 10.12006/j.issn.1673-1719.2018.164

    Yin H, Sun Y. 2019. Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 15: 363−373. doi: 10.12006/j.issn.1673-1719.2018.164
    [61] Zhai P M, Zhang X B, Wan H, et al. 2005. Trends in total precipitation and frequency of daily precipitation extremes over China [J]. J. Climate, 18: 1096−1108. doi: 10.1175/JCLI-3318.1
    [62] Zhang X Y, Cong Z T. 2014. Trends of precipitation intensity and frequency in hydrological regions of China from 1956 to 2005 [J]. Glob. Planet. Change, 117: 40−51. doi: 10.1016/j.gloplacha.2014.03.002
    [63] Zhang W X, Zhou T J. 2019. Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions [J]. J. Climate, 32: 8465−8488. doi: 10.1175/JCLI-D-18-0662.1
    [64] Zhang Q, Singh V P, Li J F, et al. 2011a. Analysis of the periods of maximum consecutive wet days in China [J]. J. Geophys. Res., 116: D23106. doi: 10.1029/2011JD016088
    [65] Zhang X B, Alexander L, Hegerl G C, et al. 2011b. Indices for monitoring changes in extremes based on daily temperature and precipitation data [J]. WIREs Climate Chang, 2: 851−870. doi: 10.1002/wcc.147
    [66] Zhang Q, Singh V P, Peng J T, et al. 2012a. Spatial-temporal changes of precipitation structure across the Pearl River basin, China [J]. J. Hydrol. , 440–441: 113–122. doi: 10.1016/j.jhydrol.2012.03.037
    [67] Zhang Q, Li J F, Singh V P, et al. 2012b. Changing structure of the precipitation process during 1960–2005 in Xinjiang, China [J]. Theor. Appl. Climatol., 110: 229−244. doi: 10.1007/s00704-012-0611-4
    [68] Zhang Q, Singh V P, Li J F, et al. 2012c. Spatio-temporal variations of precipitation extremes in Xinjiang, China [J]. J. Hydrol. , 434–435: 7–18. doi: 10.1016/j.jhydrol.2012.02.038
    [69] 张万诚, 郑建萌, 任菊章. 2013. 云南极端气候干旱的特征分析 [J]. 灾害学, 28(1): 59−64. doi: 10.3969/j.issn.1000-811X.2013.01.013

    Zhang W C, Zheng J M, Ren J Z. 2013. Climate characteristics of extreme drought events in Yunnan [J]. Journal of Catastrophology (in Chinese), 28(1): 59−64. doi: 10.3969/j.issn.1000-811X.2013.01.013
    [70] 张兵, 韩静艳, 王中良, 等. 2014. 海河流域极端降水事件时空变化特征分析 [J]. 水电能源科学, 32(2): 15−18,34.

    Zhang B, Han J Y, Wang Z L, et al. 2014. Temporal and spatial variation characteristics of extreme precipitation events in Haihe Basin [J]. Water Resources and Power (in Chinese), 32(2): 15−18,34.
    [71] Zhang Q, Gu X H, Singh V P, et al. 2015. Spatiotemporal behavior of floods and droughts and their impacts on agriculture in China [J]. Glob. Planet. Change, 131: 63−72. doi: 10.1016/j.gloplacha.2015.05.007
    [72] Zhou B T, Xu Y, Wu J, et al. 2016. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset [J]. Int. J. Climatol., 36: 1051−1066. doi: 10.1002/joc.4400
    [73] Zheng J, Fan J, Zhang F. 2019. Spatiotemporal trends of temperature and precipitation extremes across contrasting climatic zones of China during 1956-2015 [J]. Theor. Appl. Climatol., 138: 1877−1897. doi: 10.1007/s00704-019-02942-5
    [74] Zhang L X, Zhou T J, Chen X L, et al. 2020a. The late spring drought of 2018 in South China [J]. Bull. Amer. Meteor. Soc., 101: S59−S64. doi: 10.1175/BAMS-D-19-0202.1
    [75] Zhang W X, Li W, Zhu L H, et al. 2020b. Anthropogenic influence on 2018 summer persistent heavy rainfall in central western China [J]. Bull. Amer. Meteor. Soc., 101: S65−S70. doi: 10.1175/BAMS-D-19-0147.1
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  9
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 录用日期:  2022-01-26
  • 网络出版日期:  2022-01-28

目录

    /

    返回文章
    返回