高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原深对流及其在对流层—平流层物质输送中作用的研究进展

陈权亮 高国路 李扬

陈权亮, 高国路, 李扬. 2022. 青藏高原深对流及其在对流层—平流层物质输送中作用的研究进展[J]. 大气科学, 46(X): 1−11 doi: 10.3878/j.issn.1006-9895.2201.21118
引用本文: 陈权亮, 高国路, 李扬. 2022. 青藏高原深对流及其在对流层—平流层物质输送中作用的研究进展[J]. 大气科学, 46(X): 1−11 doi: 10.3878/j.issn.1006-9895.2201.21118
CHEN Quanliang, GAO Guolu, LI Yang. 2022. Advances in Studies of Deep Convection over the Tibetan Plateau and Its Effect on Stratospheric–Tropospheric Material Transport [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(X): 1−11 doi: 10.3878/j.issn.1006-9895.2201.21118
Citation: CHEN Quanliang, GAO Guolu, LI Yang. 2022. Advances in Studies of Deep Convection over the Tibetan Plateau and Its Effect on Stratospheric–Tropospheric Material Transport [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(X): 1−11 doi: 10.3878/j.issn.1006-9895.2201.21118

青藏高原深对流及其在对流层—平流层物质输送中作用的研究进展

doi: 10.3878/j.issn.1006-9895.2201.21118
基金项目: 国家自然科学基金项目U20A2097、41875108
详细信息
    作者简介:

    陈权亮,男,1979年出生,教授、博士,主要从事对流层—平流层相互作用、气候变化等研究。E-mail: chenql@cuit.edu.cn

  • 中图分类号: P466

Advances in Studies of Deep Convection over the Tibetan Plateau and Its Effect on Stratospheric–Tropospheric Material Transport

Funds: National Natural Science Foundation of China (Grants U20A2097, 41875108)
  • 摘要: 深对流能够向上对流层—下平流层(UTLS)输送大量水汽和污染物,对对流层顶的辐射平衡、平流层的臭氧恢复以及全球气候变化都有着重要的影响。近年来,一系列重要的观测事实发现,青藏高原和亚洲季风区是对流层向平流层物质输送(TST)的重要窗口。本文介绍了近年来取得的一些主要进展和成果,包括:(1)通过卫星观测在青藏高原—亚洲季风区上空发现水汽、气溶胶的极大值区和臭氧的极小值区;(2)深对流活动的主要观测途径和通过卫星观测识别深对流的方法;(3)青藏高原深对流向平流层物质输送的物理过程;(4)青藏高原深对流与亚洲季风区、热带海洋地区深对流的结构差异以及不同环境场对深对流物质输送过程的影响。
  • [1] Alcala C M, Dessler A E. 2002. Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar [J]. J. Geophys. Res.: Atmos., 107(D24): 4792. doi: 10.1029/2002JD002457
    [2] Bedka K M, Dworak R, Brunner J, et al. 2012. Validation of satellite-based objective overshooting cloud-top detection methods using CloudSat cloud profiling radar observations [J]. J. Appl. Meteor. Climatol., 51(10): 1811−1822. doi: 10.1175/jamc-d-11-0131.1
    [3] Bian J C. 2009. Features of ozone mini-hole events over the Tibetan Plateau [J]. Adv. Atmos. Sci., 26(2): 305−311. doi: 10.1007/s00376-009-0305-8
    [4] 卞建春, 严仁嫦, 陈洪滨. 2011. 亚洲夏季风是低层污染物进入平流层的重要途径 [J]. 大气科学, 35(5): 897−902. doi: 10.3878/j.issn.1006-9895.2011.05.09

    Bian J C, Yan R C, Chen H B. 2011. Tropospheric pollutant transport to the stratosphere by Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(5): 897−902. doi: 10.3878/j.issn.1006-9895.2011.05.09
    [5] 卞建春, 范秋君, 严仁嫦. 2013. 夏季青藏高原对流层—平流层交换过程及其气候效应的若干问题 [J]. 气象科技进展, 3(2): 22−28.

    Bian J C, Fan Q J, Yan R C. 2013. Summertime stratosphere–troposphere exchange over the Tibetan Plateau and its climatic impact [J]. Advances in Meteorological Science and Technology (in Chinese), 3(2): 22−28.
    [6] Bian J C, Li D, Bai Z X, et al. 2020. Transport of Asian surface pollutants to the global stratosphere from the Tibetan Plateau region during the Asian summer monsoon [J]. Natl. Sci. Rev., 7(3): 516−533. doi: 10.1093/nsr/nwaa005
    [7] Brewer A W. 1949. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere [J]. Quart. J. Roy. Meteor. Soc., 75(326): 351−363. doi: 10.1002/qj.49707532603
    [8] Cairo F, Pommereau J P, Law K S, et al. 2010. An introduction to the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West Africa, August 2006: Rationale and roadmap [J]. Atmos. Chem. Phys., 10(5): 2237−2256. doi: 10.5194/acp-10-2237-2010
    [9] Carrico C M, Bergin M H, Shrestha A B, et al. 2003. The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya [J]. Atmos. Environ., 37(20): 2811−2824. doi: 10.1016/S1352-2310(03)00197-3
    [10] Chaboureau J P, Cammas J P, Duron J, et al. 2007. A numerical study of tropical cross-tropopause transport by convective overshoots [J]. Atmos. Chem. Phys., 7(7): 1731−1740. doi: 10.5194/acp-7-1731-2007
    [11] Chemel C, Russo M R, Pyle J A, et al. 2009. Quantifying the imprint of a severe Hector thunderstorm during ACTIVE/SCOUT-O3 onto the water content in the upper troposphere/lower stratosphere [J]. Mon. Wea. Rev., 137(8): 2493−2514. doi: 10.1175/2008mwr2666.1
    [12] 陈洪滨, 卞建春, 吕达仁. 2006. 上对流层—下平流层交换过程研究的进展与展望 [J]. 大气科学, 30(5): 813−820. doi: 10.3878/j.issn.1006-9895.2006.05.10

    Chen H B, Bian J C, Lü D R. 2006. Advances and prospects in the study of stratosphere–troposphere exchange [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 813−820. doi: 10.3878/j.issn.1006-9895.2006.05.10
    [13] Chen Q L, Gao G L, Li Y, et al. 2019. Main detrainment height of deep convection systems over the Tibetan Plateau and its southern slope [J]. Adv. Atmos. Sci., 36(10): 1078−1088. doi: 10.1007/s00376-019-9003-3
    [14] Chen Y L, Chen G C, Cui C G, et al. 2020a. Retrieval of the vertical evolution of the cloud effective radius from the Chinese FY-4 (Feng Yun 4) next-generation geostationary satellites [J]. Atmos. Chem. Phys., 20(2): 1131−1145. doi: 10.5194/acp-20-1131-2020
    [15] Chen Y L, Li W, Chen S M, et al. 2020b. Linkage between the vertical evolution of clouds and droplet growth modes as seen from FY-4A AGRI and GPM DPR [J]. Geophys. Res. Lett., 47(15): e2020GL088312. doi: 10.1029/2020GL088312
    [16] Chung E S, Sohn B J, Schmetz J. 2008. CloudSat shedding new light on high-reaching tropical deep convection observed with Meteosat [J]. Geophys. Res. Lett., 35(2): L02814. doi: 10.1029/2007GL032516
    [17] Corti T, Luo B P, de Reus M, et al. 2008. Unprecedented evidence for deep convection hydrating the tropical stratosphere [J]. Geophys. Res. Lett., 35(10): L10810. doi: 10.1029/2008GL033641
    [18] Danielsen E F. 1982. A dehydration mechanism for the stratosphere [J]. Geophys. Res. Lett., 9(6): 605−608. doi: 10.1029/GL009i006p00605
    [19] Danielsen E F. 1993. In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones [J]. J. Geophys. Res. :Atmos., 98(D5): 8665−8681. doi: 10.1029/92JD02954
    [20] de F. Forster P M, Shine K P 2002. Assessing the climate impact of trends in stratospheric water vapor [J]. Geophys. Res. Lett., 29(6): 1086. doi: 10.1029/2001GL013909
    [21] Dessler A E. 2002. The effect of deep, tropical convection on the tropical tropopause layer [J]. J. Geophys. Res. :Atmos., 107(D3): 4033. doi: 10.1029/2001JD000511
    [22] Dessler A E, Sherwood S C. 2004. Effect of convection on the summertime extratropical lower stratosphere [J]. J. Geophys. Res.: Atmos., 109(D23): D23301. doi: 10.1029/2004JD005209
    [23] Devasthale A, Fueglistaler S. 2010. A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments [J]. Atmos. Chem. Phys., 10(10): 4573−4582. doi: 10.5194/acp-10-4573-2010
    [24] Dobson G M B. 1956. Origin and distribution of the polyatomic molecules in the atmosphere [J]. Proc. Roy. Soc. A: Math. , Phys. Eng. Sci. , 236(1205): 187–193. doi: 10.1098/rspa.1956.0127
    [25] Dye J E, Ridley B A, Skamarock W, et al. 2000. An overview of the stratospheric–tropospheric experiment: Radiation, aerosols, and ozone (STERAO)-deep convection experiment with results for the July 10, 1996 storm [J]. J. Geophys. Res. :Atmos., 105(D8): 10023−10045. doi: 10.1029/1999JD901116
    [26] Etheridge D M, Steele L P, Francey R J, et al. 1998. Atmospheric methane between 1000 A. D. and present: Evidence of anthropogenic emissions and climatic variability [J]. J. Geophys. Res. :Atmos., 103(D13): 15979−15993. doi: 10.1029/98JD00923
    [27] Fischer H, de Reus M, Traub M, et al. 2003. Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes [J]. Atmos. Chem. Phys., 3(3): 739−745. doi: 10.5194/acp-3-739-2003
    [28] Folkins I, Martin R V. 2005. The vertical structure of tropical convection and its impact on the budgets of water vapor and ozone [J]. J. Atmos. Sci., 62(5): 1560−1573. doi: 10.1175/jas3407.1
    [29] Folkins I, Loewenstein M, Podolske J, et al. 1999. A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements [J]. J. Geophys. Res. :Atmos., 104(D18): 22095−22102. doi: 10.1029/1999JD900404
    [30] Fu R, Hu Y L, Wright J S, et al. 2006a. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau [J]. Proc. Natl. Acad. Sci. USA, 103(15): 5664−5669. doi: 10.1073/pnas.0601584103
    [31] Fu Y F, Liu G S. 2007. Possible misidentification of rain type by TRMM PR over Tibetan Plateau [J]. J. Appl. Meteor. Climatol., 46(5): 667−672. doi: 10.1175/jam2484.1
    [32] Fu Y F, Liu G S, Wu G X, et al. 2006b. Tower mast of precipitation over the central Tibetan Plateau summer [J]. Geophys. Res. Lett., 33(5): L05802. doi: 10.1029/2005GL024713
    [33] Fueglistaler S, Dessler A E, Dunkerton T J, et al. 2009. Tropical tropopause layer [J]. Rev. Geophys., 47(1): RG1004. doi: 10.1029/2008RG000267
    [34] Gao G, Chen Q L, Cai H K, et al. 2019. Comprehensive characteristics of summer deep convection over Tibetan Plateau and its south slope from the global precipitation measurement core observatory [J]. Atmosphere, 10(1): 9. doi: 10.3390/atmos10010009
    [35] Gettelman A, de F. Forster P M 2002. A climatology of the tropical tropopause layer [J]. J. Meteor. Soc. Japan, 80(4B): 911−924. doi: 10.2151/jmsj.80.911
    [36] Gettelman A, Salby M L, Sassi F. 2002. Distribution and influence of convection in the tropical tropopause region [J]. J. Geophys. Res.: Atmos., 107(D10): 4080. doi: 10.1029/2001JD001048
    [37] Gettelman A, Kinnison D E, Dunkerton T J, et al. 2004. Impact of monsoon circulations on the upper troposphere and lower stratosphere [J]. J. Geophys. Res.: Atmos., 109(D22): D22101. doi: 10.1029/2004JD004878
    [38] Giorgetta M A, Bengtsson L. 1999. Potential role of the quasi-biennial oscillation in the stratosphere–troposphere exchange as found in water vapor in general circulation model experiments [J]. J. Geophys. Res. :Atmos., 104(D6): 6003−6019. doi: 10.1029/1998JD200112
    [39] Grosvenor D P, Choularton T W, Coe H, et al. 2007. A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations [J]. Atmos. Chem. Phys., 7(18): 4977−5002. doi: 10.5194/acp-7-4977-2007
    [40] Hanisco T F, Moyer E J, Weinstock E M, et al. 2007. Observations of deep convective influence on stratospheric water vapor and its isotopic composition [J]. Geophys. Res. Lett., 34(4): L04814. doi: 10.1029/2006GL027899
    [41] Hassim M E E, Lane T P. 2010. A model study on the influence of overshooting convection on TTL water vapour [J]. Atmos. Chem. Phys., 10(20): 9833−9849. doi: 10.5194/acp-10-9833-2010
    [42] Highwood E J, Hoskins B J. 1998. The tropical tropopause [J]. Quart. J. Roy. Meteor. Soc., 124(549): 1579−1604. doi: 10.1002/qj.49712454911
    [43] Holton J R, Haynes P H, McIntyre M E, et al. 1995. Stratosphere–troposphere exchange [J]. Rev. Geophys., 33(4): 403−439. doi: 10.1029/95RG02097
    [44] Hong G, Heygster G, Miao J G, et al. 2005. Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements [J]. J. Geophys. Res.: Atmos., 110(D5): D05205. doi: 10.1029/2004JD004949
    [45] Hong G, Heygster G, Notholt J, et al. 2008. Interannual to diurnal variations in tropical and subtropical deep convective clouds and convective overshooting from seven years of AMSU-B measurements [J]. J. Climate, 21(17): 4168−4189. doi: 10.1175/2008jcli1911.1
    [46] Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps [J]. Quart. J. Roy. Meteor. Soc., 111(470): 877−946. doi: 10.1002/qj.49711147002
    [47] Hou A Y, Kakar R K, Neeck S, et al. 2014. The global precipitation measurement mission [J]. Bull. Amer. Meteor. Soc., 95(5): 701−722. doi: 10.1175/bams-d-13-00164.1
    [48] Houze R A Jr. 1989. Observed structure of mesoscale convective systems and implications for large-scale heating [J]. Quart. J. Roy. Meteor. Soc., 115(487): 425−461. doi: 10.1002/qj.49711548702
    [49] Houze R A Jr, Wilton D C, Smull B F. 2007. Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar [J]. Quart. J. Roy. Meteor. Soc., 133(627): 1389−1411. doi: 10.1002/qj.106
    [50] Iwasaki S, Shibata T, Nakamoto J, et al. 2010. Characteristics of deep convection measured by using the A-train constellation [J]. J. Geophys. Res.: Atmos., 115(D6): D06207. doi: 10.1029/2009JD013000
    [51] Iwasaki S, Shibata T, Okamoto H, et al. 2012. Mixtures of stratospheric and overshooting air measured using A-Train sensors [J]. J. Geophys. Res. :Atmos., 117(D12): D12207. doi: 10.1029/2011JD017402
    [52] James R, Bonazzola M, Legras B, et al. 2008. Water vapor transport and dehydration above convective outflow during Asian monsoon [J]. Geophys. Res. Lett., 35(20): L20810. doi: 10.1029/2008GL035441
    [53] Jensen E J, Ackerman A S, Smith J A. 2007. Can overshooting convection dehydrate the tropical tropopause layer? [J]. J. Geophys. Res. :Atmos., 112(D11): D11209. doi: 10.1029/2006JD007943
    [54] Kelly K K, Tuck A F, Heidt L E, et al. 1990. A comparison of ER-2 measurements of stratospheric water vapor between the 1987 Antarctic and 1989 Arctic airborne missions [J]. Geophys. Res. Lett., 17(4): 465−468. doi: 10.1029/GL017i004p00465
    [55] Kirk-Davidoff D B, Hintsa E J, Anderson J G, et al. 1999. The effect of climate change on ozone depletion through changes in stratospheric water vapour [J]. Nature, 402(6760): 399−401. doi: 10.1038/46521
    [56] Konopka P, Günther G, Müller R, et al. 2007. Contribution of mixing to upward transport across the tropical tropopause layer (TTL) [J]. Atmos. Chem. Phys., 7(12): 3285−3308. doi: 10.5194/acp-7-3285-2007
    [57] L’Ecuyer T S, Jiang J H. 2010. Touring the atmosphere aboard the A-Train [J]. Phys. Today, 63(7): 36−41. doi: 10.1063/1.3463626
    [58] Li Q B, Jiang J H, Wu D L, et al. 2005. Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations [J]. Geophys. Res. Lett., 32(14): L14826. doi: 10.1029/2005GL022762
    [59] Liu C T, Zipser E J. 2005. Global distribution of convection penetrating the tropical tropopause [J]. J. Geophys. Res.: Atmos., 110(D23): D23104. doi: 10.1029/2005JD006063
    [60] Liu C T, Zipser E J, Nesbitt S W. 2007. Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data [J]. J. Climate, 20(3): 489−503. doi: 10.1175/jcli4023.1
    [61] Liu N N, Liu C T. 2016. Global distribution of deep convection reaching tropopause in 1 year GPM observations [J]. J. Geophys. Res. :Atmos., 121(8): 3824−3842. doi: 10.1002/2015JD024430
    [62] 刘鹏, 王雨, 冯沙, 等. 2012. 冬、夏季热带及副热带穿透性对流气候特征分析 [J]. 大气科学, 36(3): 579−589. doi: 10.3878/j.issn.1006-9895.2011.11109

    Liu P, Wang Y, Feng S, et al. 2012. Climatological characteristics of overshooting convective precipitation in summer and winter over the tropical and subtropical regions [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(3): 579−589. doi: 10.3878/j.issn.1006-9895.2011.11109
    [63] Long Q C, Chen Q L, Gui K, et al. 2016. A case study of a heavy rain over the southeastern Tibetan Plateau [J]. Atmosphere, 7(9): 118. doi: 10.3390/atmos7090118
    [64] Luo Y L, Zhang R H, Qian W M, et al. 2011. Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data [J]. J. Climate, 24(8): 2164−2177. doi: 10.1175/2010jcli4032.1
    [65] Luo Z Z, Liu G Y, Stephens G L. 2008. CloudSat adding new insight into tropical penetrating convection [J]. Geophys. Res. Lett., 35(19): L19819. doi: 10.1029/2008GL035330
    [66] 吕达仁, 陈泽宇, 卞建春, 等. 2008. 平流层—对流层相互作用的多尺度过程特征及其与天气气候关系——研究进展 [J]. 大气科学, 32(4): 782−793. doi: 10.3878/j.issn.1006-9895.2008.04.07

    Lü D R, Chen Z Y, Bian J C, et al. 2008. Advances in researches on the characteristics of multi-scale processes of interactions between the stratosphere and the troposphere and its relations with weather and climate [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 782−793. doi: 10.3878/j.issn.1006-9895.2008.04.07
    [67] Mote P W, Rosenlof K H, McIntyre M E, et al. 1996. An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor [J]. J. Geophys. Res. :Atmos., 101(D2): 3989−4006. doi: 10.1029/95JD03422
    [68] Nesbitt S W, Zipser E J, Cecil D J. 2000. A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations [J]. J. Climate, 13(23): 4087−4106. doi: 10.1175/1520-0442(2000)013<4087:Acopfi>2.0.Co;2
    [69] Oltmans S J, Hofmann D J. 1995. Increase in lower-stratospheric water vapour at a mid-latitude Northern Hemisphere site from 1981 to 1994 [J]. Nature, 374(6518): 146−149. doi: 10.1038/374146a0
    [70] Park M, Randel W J, Gettelman A, et al. 2007. Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers [J]. J. Geophys. Res.: Atmos., 112(D16): D16309. doi: 10.1029/2006JD008294
    [71] Park M, Randel W J, Emmons L K, et al. 2008. Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data [J]. Atmos. Chem. Phys., 8(3): 757−764. doi: 10.5194/acp-8-757-2008
    [72] Park M, Randel W J, Emmons L K, et al. 2009. Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART) [J]. J. Geophys. Res. :Atmos., 114(D8): D08303. doi: 10.1029/2008JD010621
    [73] Poulida O, Dickerson R R, Heymsfield A. 1996. Stratosphere–troposphere exchange in a midlatitude mesoscale convective complex: I. Observations [J]. J. Geophys. Res.: Atmos., 101(D3): 6823−6836. doi: 10.1029/95JD03523
    [74] Qie X S, Wu X K, Yuan T, et al. 2014. Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data [J]. J. Climate, 27(17): 6612−6626. doi: 10.1175/jcli-d-14-00076.1
    [75] Randel W J, Park M. 2006. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS) [J]. J. Geophys. Res. :Atmos., 111(D12): D12314. doi: 10.1029/2005JD006490
    [76] Randel W J, Park M, Emmons L, et al. 2010. Asian monsoon transport of pollution to the stratosphere [J]. Science, 328(5978): 611−613. doi: 10.1126/science.1182274
    [77] Randel W J, Zhang K, Fu R. 2015. What controls stratospheric water vapor in the NH summer monsoon regions? [J]. J. Geophys. Res.: Atmos., 120(15): 7988−8001. doi: 10.1002/2015JD023622
    [78] Romatschke U, Medina S, Houze R A Jr. 2010. Regional, seasonal, and diurnal variations of extreme convection in the South Asian region [J]. J. Climate, 23(2): 419−439. doi: 10.1175/2009jcli3140.1
    [79] Rossow W B, Pearl C. 2007. 22-Year survey of tropical convection penetrating into the lower stratosphere [J]. Geophys. Res. Lett., 34(4): L04803. doi: 10.1029/2006GL028635
    [80] Sang W J, Huang Q, Tian W S, et al. 2018. A large eddy model study on the effect of overshooting convection on lower stratospheric water vapor [J]. J. Geophys. Res.: Atmos., 123(18): 10023−10036. doi: 10.1029/2017JD028069
    [81] Sassen K, Wang Z E, Liu D. 2009. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat [J]. J. Geophys. Res. Atmos., 114(D4): D00H06. doi: 10.1029/2009JD011916
    [82] Savtchenko A, Kummerer R, Smith P, et al. 2008. A-Train data depot: Bringing atmospheric measurements together [J]. IEEE Trans. Geosci. Remote Sens., 46(10): 2788−2795. doi: 10.1109/TGRS.2008.917600
    [83] Setvák M, Lindsey D T, Rabin R M, et al. 2008. Indication of water vapor transport into the lower stratosphere above midlatitude convective storms: Meteosat Second Generation satellite observations and radiative transfer model simulations [J]. Atmos. Res., 89(1-2): 170−180. doi: 10.1016/j.atmosres.2007.11.031
    [84] Shepherd T G. 2002. Issues in stratosphere–troposphere coupling [J]. J. Meteor. Soc. Japan, 80(4B): 769−792. doi: 10.2151/jmsj.80.769
    [85] Sherwood S. 2002. A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture [J]. Science, 295(5558): 1272−1275. doi: 10.1126/science.1065080
    [86] Sherwood S C, Dessler A E. 2000. On the control of stratospheric humidity [J]. Geophys. Res. Lett., 27(16): 2513−2516. doi: 10.1029/2000GL011438
    [87] Sherwood S C, Dessler A E. 2003. Convective mixing near the tropical tropopause: Insights from seasonal variations [J]. J. Atmos. Sci., 60(21): 2674−2685. doi: 10.1175/1520-0469(2003)060<2674:Cmnttt>2.0.Co;2
    [88] Simpson J, Kummerow C, Tao W K, et al. 1996. On the Tropical Rainfall Measuring Mission (TRMM) [J]. Meteor. Atmos. Phys., 60(1): 19−36. doi: 10.1007/BF01029783
    [89] Solomon S, Rosenlof K H, Portmann R W, et al. 2010. Contributions of stratospheric water vapor to decadal changes in the rate of global warming [J]. Science, 327(5970): 1219−1223. doi: 10.1126/science.1182488
    [90] Solomon S, Daniel J S, Neely III R R, et al. 2011. The persistently variable “background” stratospheric aerosol layer and global climate change [J]. Science, 333(6044): 866−870. doi: 10.1126/science.1206027
    [91] Stephens G L, Vane D G, Boain R J, et al. 2002. The cloudsat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation [J]. Bull. Amer. Meteor. Soc., 83(12): 1771−1790. doi: 10.1175/bams-83-12-1771
    [92] Stephens G L, Vane D G, Tanelli S, et al. 2008. CloudSat mission: Performance and early science after the first year of operation [J]. J. Geophys. Res.: Atmos., 113(D8): D00A18. doi: 10.1029/2008JD009982
    [93] 孙一, 陈权亮. 2017. 青藏高原地区一次强对流过程中UTLS大气成分分析 [J]. 气象科技, 45(6): 1083−1089. doi: 10.19517/j.1671-6345.20160636

    Sun Y, Chen Q L. 2017. Variation of atmospheric composition in UTLS during a strong convection process in Tibetan Plateau [J]. Meteorological Science and Technology (in Chinese), 45(6): 1083−1089. doi: 10.19517/j.1671-6345.20160636
    [94] Sun Y, Chen Q L, Gui K, et al. 2017. Characteristics of water vapor in the UTLS over the Tibetan Plateau based on AURA/MLS observations [J]. Adv. Meteorol., 2017: 3504254. doi: 10.1155/2017/3504254
    [95] Takahashi H, Luo Z Z. 2012. Where is the level of neutral buoyancy for deep convection? [J]. Geophys. Res. Lett., 39(15): L15809. doi: 10.1029/2012GL052638
    [96] Takahashi H, Luo Z J. 2014. Characterizing tropical overshooting deep convection from joint analysis of CloudSat and geostationary satellite observations [J]. J. Geophys. Res. :Atmos., 119(1): 112−121. doi: 10.1002/2013JD020972
    [97] Tian W S, Chipperfield M, Huang Q. 2008. Effects of the Tibetan Plateau on total column ozone distribution [J]. Tellus B, 60(4): 622−635. doi: 10.1111/j.1600-0889.2008.00338.x
    [98] Vaughan G, Schiller C, MacKenzie A R, et al. 2008. SCOUT-O3/ACTIVE: High-altitude aircraft measurements around deep tropical convection [J]. Bull. Amer. Meteor. Soc., 89(5): 647−662. doi: 10.1175/bams-89-5-647
    [99] Vernier J P, Thomason L W, Kar J. 2011. CALIPSO detection of an Asian tropopause aerosol layer [J]. Geophys. Res. Lett., 38(7): L07804. doi: 10.1029/2010GL046614
    [100] Vernier J P, Fairlie T D, Natarajan M, et al. 2015. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution [J]. J. Geophys. Res.: Atmos., 120(4): 1608−1619. doi: 10.1002/2014JD022372
    [101] Wang P K. 2003. Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes [J]. J. Geophys. Res.: Atmos., 108(D6): 4194. doi: 10.1029/2002JD002581
    [102] Wang P K, Setvák M, Lyons W, et al. 2009. Further evidences of deep convective vertical transport of water vapor through the tropopause [J]. Atmos. Res., 94(3): 400−408. doi: 10.1016/j.atmosres.2009.06.018
    [103] Wirth V. 1995. Diabatic heating in an axisymmetric cut-off cyclone and related stratosphere–troposphere exchange [J]. Quart. J. Roy. Meteor. Soc., 121(521): 127−147. doi: 10.1002/qj.49712152107
    [104] 夏静雯, 傅云飞. 2016. 东亚与南亚雨季对流和层云降水云内的温湿结构特征分析 [J]. 大气科学, 40(3): 563−580. doi: 10.3878/j.issn.1006-9895.1507.15123

    Xia J W, Fu Y F. 2016. The vertical characteristics of temperature and humidity inside convective and stratiform precipitating clouds in the East Asian summer monsoon region and indian summer monsoon region [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(3): 563−580. doi: 10.3878/j.issn.1006-9895.1507.15123
    [105] Xu W X. 2013. Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM [J]. Mon. Wea. Rev., 141(5): 1577−1592. doi: 10.1175/mwr-d-12-00177.1
    [106] 杨健, 吕达仁. 2003. 平流层—对流层交换研究进展 [J]. 地球科学进展, 18(3): 380−385. doi: 10.3321/j.issn:1001-8166.2003.03.009

    Yang J, Lv D R. 2003. Progresses in the study of stratosphere–troposphere exchange [J]. Advance in Earth Sciences (in Chinese), 18(3): 380−385. doi: 10.3321/j.issn:1001-8166.2003.03.009
    [107] Yu P F, Rosenlof K H, Liu S, et al. 2017. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone [J]. Proc. Natl. Acad. Sci. USA, 114(27): 6972−6977. doi: 10.1073/pnas.1701170114
    [108] Yuan T L, Li Z Q. 2010. General macro- and micro-physical properties of deep convective clouds as observed by MODIS [J]. J. Climate, 23(13): 3457−3473. doi: 10.1175/2009jcli3136.1
    [109] Zhao P, Xu X D, Chen F, et al. 2018. The third atmospheric scientific experiment for understanding the earth–atmosphere coupled system over the Tibetan Plateau and its effects [J]. Bull. Amer. Meteor. Soc., 99(4): 757−776. doi: 10.1175/bams-d-16-0050.1
    [110] 周秀骥. 1995. 中国地区臭氧总量变化与青藏高原低值中心 [J]. 科学通报, 40(15): 1396−1398. doi: 10.1360/csb1995-40-15-1396

    Zhou X J. 1995. Changes in total ozone in China and low-value centers on the Qinghai–Tibet Plateau [J]. Chinese Science Bulletin (in Chinese), 40(15): 1396−1398. doi: 10.1360/csb1995-40-15-1396
    [111] Zipser E J, Cecil D J, Liu C T, et al. 2006. Where are the most intense thunderstorms on earth? [J]. Bull. Amer. Meteor. Soc., 87(8): 1057−1072. doi: 10.1175/bams-87-8-1057
  • 加载中
计量
  • 文章访问数:  102
  • HTML全文浏览量:  5
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 录用日期:  2022-03-03
  • 网络出版日期:  2022-02-01

目录

    /

    返回文章
    返回