[1]
|
Alcala C M, Dessler A E. 2002. Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar [J]. J. Geophys. Res.: Atmos., 107(D24): 4792. doi: 10.1029/2002JD002457
|
[2]
|
Bedka K M, Dworak R, Brunner J, et al. 2012. Validation of satellite-based objective overshooting cloud-top detection methods using CloudSat cloud profiling radar observations [J]. J. Appl. Meteor. Climatol., 51(10): 1811−1822. doi: 10.1175/jamc-d-11-0131.1
|
[3]
|
Bian J C. 2009. Features of ozone mini-hole events over the Tibetan Plateau [J]. Adv. Atmos. Sci., 26(2): 305−311. doi: 10.1007/s00376-009-0305-8
|
[4]
|
卞建春, 严仁嫦, 陈洪滨. 2011. 亚洲夏季风是低层污染物进入平流层的重要途径 [J]. 大气科学, 35(5): 897−902. doi: 10.3878/j.issn.1006-9895.2011.05.09Bian J C, Yan R C, Chen H B. 2011. Tropospheric pollutant transport to the stratosphere by Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(5): 897−902. doi: 10.3878/j.issn.1006-9895.2011.05.09
|
[5]
|
卞建春, 范秋君, 严仁嫦. 2013. 夏季青藏高原对流层—平流层交换过程及其气候效应的若干问题 [J]. 气象科技进展, 3(2): 22−28.Bian J C, Fan Q J, Yan R C. 2013. Summertime stratosphere–troposphere exchange over the Tibetan Plateau and its climatic impact [J]. Advances in Meteorological Science and Technology (in Chinese), 3(2): 22−28.
|
[6]
|
Bian J C, Li D, Bai Z X, et al. 2020. Transport of Asian surface pollutants to the global stratosphere from the Tibetan Plateau region during the Asian summer monsoon [J]. Natl. Sci. Rev., 7(3): 516−533. doi: 10.1093/nsr/nwaa005
|
[7]
|
Brewer A W. 1949. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere [J]. Quart. J. Roy. Meteor. Soc., 75(326): 351−363. doi: 10.1002/qj.49707532603
|
[8]
|
Cairo F, Pommereau J P, Law K S, et al. 2010. An introduction to the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West Africa, August 2006: Rationale and roadmap [J]. Atmos. Chem. Phys., 10(5): 2237−2256. doi: 10.5194/acp-10-2237-2010
|
[9]
|
Chaboureau J P, Cammas J P, Duron J, et al. 2007. A numerical study of tropical cross-tropopause transport by convective overshoots [J]. Atmos. Chem. Phys., 7(7): 1731−1740. doi: 10.5194/acp-7-1731-2007
|
[10]
|
Chemel C, Russo M R, Pyle J A, et al. 2009. Quantifying the imprint of a severe Hector thunderstorm during ACTIVE/SCOUT-O3 onto the water content in the upper troposphere/lower stratosphere [J]. Mon. Wea. Rev., 137(8): 2493−2514. doi: 10.1175/2008mwr2666.1
|
[11]
|
陈洪滨, 卞建春, 吕达仁. 2006. 上对流层—下平流层交换过程研究的进展与展望 [J]. 大气科学, 30(5): 813−820. doi: 10.3878/j.issn.1006-9895.2006.05.10Chen H B, Bian J C, Lü D R. 2006. Advances and prospects in the study of stratosphere–troposphere exchange [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 813−820. doi: 10.3878/j.issn.1006-9895.2006.05.10
|
[12]
|
Chen Q L, Gao G L, Li Y, et al. 2019. Main detrainment height of deep convection systems over the Tibetan Plateau and its southern slope [J]. Adv. Atmos. Sci., 36(10): 1078−1088. doi: 10.1007/s00376-019-9003-3
|
[13]
|
Chen Y L, Chen G C, Cui C G, et al. 2020a. Retrieval of the vertical evolution of the cloud effective radius from the Chinese FY-4 (Feng Yun 4) next-generation geostationary satellites [J]. Atmos. Chem. Phys., 20(2): 1131−1145. doi: 10.5194/acp-20-1131-2020
|
[14]
|
Chen Y L, Li W, Chen S M, et al. 2020b. Linkage between the vertical evolution of clouds and droplet growth modes as seen from FY-4A AGRI and GPM DPR [J]. Geophys. Res. Lett., 47(15): e2020GL088312. doi: 10.1029/2020GL088312
|
[15]
|
Chung E S, Sohn B J, Schmetz J. 2008. CloudSat shedding new light on high-reaching tropical deep convection observed with Meteosat [J]. Geophys. Res. Lett., 35(2): L02814. doi: 10.1029/2007GL032516
|
[16]
|
Corti T, Luo B P, de Reus M, et al. 2008. Unprecedented evidence for deep convection hydrating the tropical stratosphere [J]. Geophys. Res. Lett., 35(10): L10810. doi: 10.1029/2008GL033641
|
[17]
|
Danielsen E F. 1982. A dehydration mechanism for the stratosphere [J]. Geophys. Res. Lett., 9(6): 605−608. doi: 10.1029/GL009i006p00605
|
[18]
|
Danielsen E F. 1993. In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones [J]. J. Geophys. Res.: Atmos., 98(D5): 8665−8681. doi: 10.1029/92JD02954
|
[19]
|
de F. Forster P M, Shine K P 2002. Assessing the climate impact of trends in stratospheric water vapor [J]. Geophys. Res. Lett., 29(6): 1086. doi: 10.1029/2001GL013909
|
[20]
|
Dessler A E. 2002. The effect of deep, tropical convection on the tropical tropopause layer [J]. J. Geophys. Res.: Atmos., 107(D3): 4033. doi: 10.1029/2001JD000511
|
[21]
|
Dessler A E, Sherwood S C. 2004. Effect of convection on the summertime extratropical lower stratosphere [J]. J. Geophys. Res.: Atmos., 109(D23): D23301. doi: 10.1029/2004JD005209
|
[22]
|
Devasthale A, Fueglistaler S. 2010. A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments [J]. Atmos. Chem. Phys., 10(10): 4573−4582. doi: 10.5194/acp-10-4573-2010
|
[23]
|
Dobson G M B. 1956. Origin and distribution of the polyatomic molecules in the atmosphere [J]. Proc. Roy. Soc. A: Math. , Phys. Eng. Sci. , 236(1205): 187–193. doi: 10.1098/rspa.1956.0127
|
[24]
|
Dye J E, Ridley B A, Skamarock W, et al. 2000. An overview of the stratospheric–tropospheric experiment: Radiation, aerosols, and ozone (STERAO)-deep convection experiment with results for the July 10, 1996 storm [J]. J. Geophys. Res.: Atmos., 105(D8): 10023−10045. doi: 10.1029/1999JD901116
|
[25]
|
Etheridge D M, Steele L P, Francey R J, et al. 1998. Atmospheric methane between 1000 A. D. and present: Evidence of anthropogenic emissions and climatic variability [J]. J. Geophys. Res.: Atmos., 103(D13): 15979−15993. doi: 10.1029/98JD00923
|
[26]
|
Fischer H, de Reus M, Traub M, et al. 2003. Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes [J]. Atmos. Chem. Phys., 3(3): 739−745. doi: 10.5194/acp-3-739-2003
|
[27]
|
Folkins I, Martin R V. 2005. The vertical structure of tropical convection and its impact on the budgets of water vapor and ozone [J]. J. Atmos. Sci., 62(5): 1560−1573. doi: 10.1175/jas3407.1
|
[28]
|
Folkins I, Loewenstein M, Podolske J, et al. 1999. A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements [J]. J. Geophys. Res.: Atmos., 104(D18): 22095−22102. doi: 10.1029/1999JD900404
|
[29]
|
Fu R, Hu Y L, Wright J S, et al. 2006a. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau [J]. Proc. Natl. Acad. Sci. USA, 103(15): 5664−5669. doi: 10.1073/pnas.0601584103
|
[30]
|
Fu Y F, Liu G S. 2007. Possible misidentification of rain type by TRMM PR over Tibetan Plateau [J]. J. Appl. Meteor. Climatol., 46(5): 667−672. doi: 10.1175/jam2484.1
|
[31]
|
Fu Y F, Liu G S, Wu G X, et al. 2006b. Tower mast of precipitation over the central Tibetan Plateau summer [J]. Geophys. Res. Lett., 33(5): L05802. doi: 10.1029/2005GL024713
|
[32]
|
Fueglistaler S, Dessler A E, Dunkerton T J, et al. 2009. Tropical tropopause layer [J]. Rev. Geophys., 47(1): RG1004. doi: 10.1029/2008RG000267
|
[33]
|
Gao G, Chen Q L, Cai H K, et al. 2019. Comprehensive characteristics of summer deep convection over Tibetan Plateau and its south slope from the global precipitation measurement core observatory [J]. Atmosphere, 10(1): 9. doi: 10.3390/atmos10010009
|
[34]
|
Gettelman A, de F. Forster P M 2002. A climatology of the tropical tropopause layer [J]. J. Meteor. Soc. Japan, 80(4B): 911−924. doi: 10.2151/jmsj.80.911
|
[35]
|
Gettelman A, Salby M L, Sassi F. 2002. Distribution and influence of convection in the tropical tropopause region [J]. J. Geophys. Res.: Atmos., 107(D10): 4080. doi: 10.1029/2001JD001048
|
[36]
|
Gettelman A, Kinnison D E, Dunkerton T J, et al. 2004. Impact of monsoon circulations on the upper troposphere and lower stratosphere [J]. J. Geophys. Res.: Atmos., 109(D22): D22101. doi: 10.1029/2004JD004878
|
[37]
|
Giorgetta M A, Bengtsson L. 1999. Potential role of the quasi-biennial oscillation in the stratosphere–troposphere exchange as found in water vapor in general circulation model experiments [J]. J. Geophys. Res.: Atmos., 104(D6): 6003−6019. doi: 10.1029/1998JD200112
|
[38]
|
Grosvenor D P, Choularton T W, Coe H, et al. 2007. A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations [J]. Atmos. Chem. Phys., 7(18): 4977−5002. doi: 10.5194/acp-7-4977-2007
|
[39]
|
Hanisco T F, Moyer E J, Weinstock E M, et al. 2007. Observations of deep convective influence on stratospheric water vapor and its isotopic composition [J]. Geophys. Res. Lett., 34(4): L04814. doi: 10.1029/2006GL027899
|
[40]
|
Hassim M E E, Lane T P. 2010. A model study on the influence of overshooting convection on TTL water vapour [J]. Atmos. Chem. Phys., 10(20): 9833−9849. doi: 10.5194/acp-10-9833-2010
|
[41]
|
Highwood E J, Hoskins B J. 1998. The tropical tropopause [J]. Quart. J. Roy. Meteor. Soc., 124(549): 1579−1604. doi: 10.1002/qj.49712454911
|
[42]
|
Holton J R, Haynes P H, McIntyre M E, et al. 1995. Stratosphere–troposphere exchange [J]. Rev. Geophys., 33(4): 403−439. doi: 10.1029/95RG02097
|
[43]
|
Hong G, Heygster G, Miao J G, et al. 2005. Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements [J]. J. Geophys. Res.: Atmos., 110(D5): D05205. doi: 10.1029/2004JD004949
|
[44]
|
Hong G, Heygster G, Notholt J, et al. 2008. Interannual to diurnal variations in tropical and subtropical deep convective clouds and convective overshooting from seven years of AMSU-B measurements [J]. J. Climate, 21(17): 4168−4189. doi: 10.1175/2008jcli1911.1
|
[45]
|
Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps [J]. Quart. J. Roy. Meteor. Soc., 111(470): 877−946. doi: 10.1002/qj.49711147002
|
[46]
|
Hou A Y, Kakar R K, Neeck S, et al. 2014. The global precipitation measurement mission [J]. Bull. Amer. Meteor. Soc., 95(5): 701−722. doi: 10.1175/bams-d-13-00164.1
|
[47]
|
Houze R A Jr. 1989. Observed structure of mesoscale convective systems and implications for large-scale heating [J]. Quart. J. Roy. Meteor. Soc., 115(487): 425−461. doi: 10.1002/qj.49711548702
|
[48]
|
Houze R A Jr, Wilton D C, Smull B F. 2007. Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar [J]. Quart. J. Roy. Meteor. Soc., 133(627): 1389−1411. doi: 10.1002/qj.106
|
[49]
|
Iwasaki S, Shibata T, Nakamoto J, et al. 2010. Characteristics of deep convection measured by using the A-train constellation [J]. J. Geophys. Res.: Atmos., 115(D6): D06207. doi: 10.1029/2009JD013000
|
[50]
|
Iwasaki S, Shibata T, Okamoto H, et al. 2012. Mixtures of stratospheric and overshooting air measured using A-Train sensors [J]. J. Geophys. Res.: Atmos., 117(D12): D12207. doi: 10.1029/2011JD017402
|
[51]
|
James R, Bonazzola M, Legras B, et al. 2008. Water vapor transport and dehydration above convective outflow during Asian monsoon [J]. Geophys. Res. Lett., 35(20): L20810. doi: 10.1029/2008GL035441
|
[52]
|
Jensen E J, Ackerman A S, Smith J A. 2007. Can overshooting convection dehydrate the tropical tropopause layer? [J]. J. Geophys. Res.: Atmos., 112(D11): D11209. doi: 10.1029/2006JD007943
|
[53]
|
Kelly K K, Tuck A F, Heidt L E, et al. 1990. A comparison of ER-2 measurements of stratospheric water vapor between the 1987 Antarctic and 1989 Arctic airborne missions [J]. Geophys. Res. Lett., 17(4): 465−468. doi: 10.1029/GL017i004p00465
|
[54]
|
Kirk-Davidoff D B, Hintsa E J, Anderson J G, et al. 1999. The effect of climate change on ozone depletion through changes in stratospheric water vapour [J]. Nature, 402(6760): 399−401. doi: 10.1038/46521
|
[55]
|
Konopka P, Günther G, Müller R, et al. 2007. Contribution of mixing to upward transport across the tropical tropopause layer (TTL) [J]. Atmos. Chem. Phys., 7(12): 3285−3308. doi: 10.5194/acp-7-3285-2007
|
[56]
|
L’ Ecuyer T S, Jiang J H. 2010. Touring the atmosphere aboard the A-Train [J]. Phys. Today, 63(7): 36−41. doi: 10.1063/1.3463626
|
[57]
|
Li Q B, Jiang J H, Wu D L, et al. 2005. Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations [J]. Geophys. Res. Lett., 32(14): L14826. doi: 10.1029/2005GL022762
|
[58]
|
Liu C T, Zipser E J. 2005. Global distribution of convection penetrating the tropical tropopause [J]. J. Geophys. Res.: Atmos., 110(D23): D23104. doi: 10.1029/2005JD006063
|
[59]
|
Liu C T, Zipser E J, Nesbitt S W. 2007. Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data [J]. J. Climate, 20(3): 489−503. doi: 10.1175/jcli4023.1
|
[60]
|
Liu N N, Liu C T. 2016. Global distribution of deep convection reaching tropopause in 1 year GPM observations [J]. J. Geophys. Res.: Atmos., 121(8): 3824−3842. doi: 10.1002/2015JD024430
|
[61]
|
刘鹏, 王雨, 冯沙, 等. 2012. 冬、夏季热带及副热带穿透性对流气候特征分析 [J]. 大气科学, 36(3): 579−589. doi: 10.3878/j.issn.1006-9895.2011.11109Liu P, Wang Y, Feng S, et al. 2012. Climatological characteristics of overshooting convective precipitation in summer and winter over the tropical and subtropical regions [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(3): 579−589. doi: 10.3878/j.issn.1006-9895.2011.11109
|
[62]
|
Long Q C, Chen Q L, Gui K, et al. 2016. A case study of a heavy rain over the southeastern Tibetan Plateau [J]. Atmosphere, 7(9): 118. doi: 10.3390/atmos7090118
|
[63]
|
Luo Y L, Zhang R H, Qian W M, et al. 2011. Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data [J]. J. Climate, 24(8): 2164−2177. doi: 10.1175/2010jcli4032.1
|
[64]
|
Luo Z Z, Liu G Y, Stephens G L. 2008. CloudSat adding new insight into tropical penetrating convection [J]. Geophys. Res. Lett., 35(19): L19819. doi: 10.1029/2008GL035330
|
[65]
|
吕达仁, 陈泽宇, 卞建春, 等. 2008. 平流层—对流层相互作用的多尺度过程特征及其与天气气候关系——研究进展 [J]. 大气科学, 32(4): 782−793. doi: 10.3878/j.issn.1006-9895.2008.04.07Lü D R, Chen Z Y, Bian J C, et al. 2008. Advances in researches on the characteristics of multi-scale processes of interactions between the stratosphere and the troposphere and its relations with weather and climate [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 782−793. doi: 10.3878/j.issn.1006-9895.2008.04.07
|
[66]
|
Mote P W, Rosenlof K H, McIntyre M E, et al. 1996. An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor [J]. J. Geophys. Res.: Atmos., 101(D2): 3989−4006. doi: 10.1029/95JD03422
|
[67]
|
Nesbitt S W, Zipser E J, Cecil D J. 2000. A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations [J]. J. Climate, 13(23): 4087−4106. doi: 10.1175/1520-0442(2000)013<4087:Acopfi>2.0.Co;2
|
[68]
|
Oltmans S J, Hofmann D J. 1995. Increase in lower-stratospheric water vapour at a mid-latitude Northern Hemisphere site from 1981 to 1994 [J]. Nature, 374(6518): 146−149. doi: 10.1038/374146a0
|
[69]
|
Park M, Randel W J, Gettelman A, et al. 2007. Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers [J]. J. Geophys. Res.: Atmos., 112(D16): D16309. doi: 10.1029/2006JD008294
|
[70]
|
Park M, Randel W J, Emmons L K, et al. 2008. Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data [J]. Atmos. Chem. Phys., 8(3): 757−764. doi: 10.5194/acp-8-757-2008
|
[71]
|
Park M, Randel W J, Emmons L K, et al. 2009. Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART) [J]. J. Geophys. Res.: Atmos., 114(D8): D08303. doi: 10.1029/2008JD010621
|
[72]
|
Poulida O, Dickerson R R, Heymsfield A. 1996. Stratosphere–troposphere exchange in a midlatitude mesoscale convective complex: I. Observations [J]. J. Geophys. Res.: Atmos., 101(D3): 6823−6836. doi: 10.1029/95JD03523
|
[73]
|
Qie X S, Wu X K, Yuan T, et al. 2014. Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data [J]. J. Climate, 27(17): 6612−6626. doi: 10.1175/jcli-d-14-00076.1
|
[74]
|
Randel W J, Park M. 2006. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS) [J]. J. Geophys. Res.: Atmos., 111(D12): D12314. doi: 10.1029/2005JD006490
|
[75]
|
Randel W J, Park M, Emmons L, et al. 2010. Asian monsoon transport of pollution to the stratosphere [J]. Science, 328(5978): 611−613. doi: 10.1126/science.1182274
|
[76]
|
Randel W J, Zhang K, Fu R. 2015. What controls stratospheric water vapor in the NH summer monsoon regions? [J]. J. Geophys. Res.: Atmos., 120(15): 7988−8001. doi: 10.1002/2015JD023622
|
[77]
|
Romatschke U, Medina S, Houze R A Jr. 2010. Regional, seasonal, and diurnal variations of extreme convection in the South Asian region [J]. J. Climate, 23(2): 419−439. doi: 10.1175/2009jcli3140.1
|
[78]
|
Rossow W B, Pearl C. 2007. 22-Year survey of tropical convection penetrating into the lower stratosphere [J]. Geophys. Res. Lett., 34(4): L04803. doi: 10.1029/2006GL028635
|
[79]
|
Sang W J, Huang Q, Tian W S, et al. 2018. A large eddy model study on the effect of overshooting convection on lower stratospheric water vapor [J]. J. Geophys. Res.: Atmos., 123(18): 10023−10036. doi: 10.1029/2017JD028069
|
[80]
|
Sassen K, Wang Z E, Liu D. 2009. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat [J]. J. Geophys. Res. Atmos., 114(D4): D00H06. doi: 10.1029/2009JD011916
|
[81]
|
Savtchenko A, Kummerer R, Smith P, et al. 2008. A-Train data depot: Bringing atmospheric measurements together [J]. IEEE Trans. Geosci. Remote Sens., 46(10): 2788−2795. doi: 10.1109/TGRS.2008.917600
|
[82]
|
Setvák M, Lindsey D T, Rabin R M, et al. 2008. Indication of water vapor transport into the lower stratosphere above midlatitude convective storms: Meteosat Second Generation satellite observations and radiative transfer model simulations [J]. Atmos. Res., 89(1-2): 170−180. doi: 10.1016/j.atmosres.2007.11.031
|
[83]
|
Shepherd T G. 2002. Issues in stratosphere–troposphere coupling [J]. J. Meteor. Soc. Japan, 80(4B): 769−792. doi: 10.2151/jmsj.80.769
|
[84]
|
Sherwood S. 2002. A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture [J]. Science, 295(5558): 1272−1275. doi: 10.1126/science.1065080
|
[85]
|
Sherwood S C, Dessler A E. 2000. On the control of stratospheric humidity [J]. Geophys. Res. Lett., 27(16): 2513−2516. doi: 10.1029/2000GL011438
|
[86]
|
Sherwood S C, Dessler A E. 2003. Convective mixing near the tropical tropopause: Insights from seasonal variations [J]. J. Atmos. Sci., 60(21): 2674−2685. doi: 10.1175/1520-0469(2003)060<2674:Cmnttt>2.0.Co;2
|
[87]
|
Simpson J, Kummerow C, Tao W K, et al. 1996. On the Tropical Rainfall Measuring Mission (TRMM) [J]. Meteor. Atmos. Phys., 60(1): 19−36. doi: 10.1007/BF01029783
|
[88]
|
Solomon S, Rosenlof K H, Portmann R W, et al. 2010. Contributions of stratospheric water vapor to decadal changes in the rate of global warming [J]. Science, 327(5970): 1219−1223. doi: 10.1126/science.1182488
|
[89]
|
Solomon S, Daniel J S, Neely III R R, et al. 2011. The persistently variable “background” stratospheric aerosol layer and global climate change [J]. Science, 333(6044): 866−870. doi: 10.1126/science.1206027
|
[90]
|
Stephens G L, Vane D G, Boain R J, et al. 2002. The cloudsat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation [J]. Bull. Amer. Meteor. Soc., 83(12): 1771−1790. doi: 10.1175/bams-83-12-1771
|
[91]
|
Stephens G L, Vane D G, Tanelli S, et al. 2008. CloudSat mission: Performance and early science after the first year of operation [J]. J. Geophys. Res.: Atmos., 113(D8): D00A18. doi: 10.1029/2008JD009982
|
[92]
|
孙一, 陈权亮. 2017. 青藏高原地区一次强对流过程中UTLS大气成分分析 [J]. 气象科技, 45(6): 1083−1089. doi: 10.19517/j.1671-6345.20160636Sun Y, Chen Q L. 2017. Variation of atmospheric composition in UTLS during a strong convection process in Tibetan Plateau [J]. Meteorological Science and Technology (in Chinese), 45(6): 1083−1089. doi: 10.19517/j.1671-6345.20160636
|
[93]
|
Sun Y, Chen Q L, Gui K, et al. 2017. Characteristics of water vapor in the UTLS over the Tibetan Plateau based on AURA/MLS observations [J]. Adv. Meteorol., 2017: 3504254. doi: 10.1155/2017/3504254
|
[94]
|
Takahashi H, Luo Z Z. 2012. Where is the level of neutral buoyancy for deep convection? [J]. Geophys. Res. Lett., 39(15): L15809. doi: 10.1029/2012GL052638
|
[95]
|
Takahashi H, Luo Z J. 2014. Characterizing tropical overshooting deep convection from joint analysis of CloudSat and geostationary satellite observations [J]. J. Geophys. Res.: Atmos., 119(1): 112−121. doi: 10.1002/2013JD020972
|
[96]
|
Tian W S, Chipperfield M, Huang Q. 2008. Effects of the Tibetan Plateau on total column ozone distribution [J]. Tellus B, 60(4): 622−635. doi: 10.1111/j.1600-0889.2008.00338.x
|
[97]
|
Vaughan G, Schiller C, MacKenzie A R, et al. 2008. SCOUT-O3/ACTIVE: High-altitude aircraft measurements around deep tropical convection [J]. Bull. Amer. Meteor. Soc., 89(5): 647−662. doi: 10.1175/bams-89-5-647
|
[98]
|
Vernier J P, Thomason L W, Kar J. 2011. CALIPSO detection of an Asian tropopause aerosol layer [J]. Geophys. Res. Lett., 38(7): L07804. doi: 10.1029/2010GL046614
|
[99]
|
Vernier J P, Fairlie T D, Natarajan M, et al. 2015. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution [J]. J. Geophys. Res.: Atmos., 120(4): 1608−1619. doi: 10.1002/2014JD022372
|
[100]
|
Wang P K. 2003. Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes [J]. J. Geophys. Res.: Atmos., 108(D6): 4194. doi: 10.1029/2002JD002581
|
[101]
|
Wang P K, Setvák M, Lyons W, et al. 2009. Further evidences of deep convective vertical transport of water vapor through the tropopause [J]. Atmos. Res., 94(3): 400−408. doi: 10.1016/j.atmosres.2009.06.018
|
[102]
|
Wirth V. 1995. Diabatic heating in an axisymmetric cut-off cyclone and related stratosphere–troposphere exchange [J]. Quart. J. Roy. Meteor. Soc., 121(521): 127−147. doi: 10.1002/qj.49712152107
|
[103]
|
夏静雯, 傅云飞. 2016. 东亚与南亚雨季对流和层云降水云内的温湿结构特征分析 [J]. 大气科学, 40(3): 563−580. doi: 10.3878/j.issn.1006-9895.1507.15123Xia J W, Fu Y F. 2016. The vertical characteristics of temperature and humidity inside convective and stratiform precipitating clouds in the East Asian summer monsoon region and indian summer monsoon region [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(3): 563−580. doi: 10.3878/j.issn.1006-9895.1507.15123
|
[104]
|
Xu W X. 2013. Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM [J]. Mon. Wea. Rev., 141(5): 1577−1592. doi: 10.1175/mwr-d-12-00177.1
|
[105]
|
杨健, 吕达仁. 2003. 平流层—对流层交换研究进展 [J]. 地球科学进展, 18(3): 380−385. doi: 10.3321/j.issn:1001-8166.2003.03.009Yang J, Lv D R. 2003. Progresses in the study of stratosphere–troposphere exchange [J]. Advance in Earth Sciences (in Chinese), 18(3): 380−385. doi: 10.3321/j.issn:1001-8166.2003.03.009
|
[106]
|
Yu P F, Rosenlof K H, Liu S, et al. 2017. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone [J]. Proc. Natl. Acad. Sci. USA, 114(27): 6972−6977. doi: 10.1073/pnas.1701170114
|
[107]
|
Yuan T L, Li Z Q. 2010. General macro- and micro-physical properties of deep convective clouds as observed by MODIS [J]. J. Climate, 23(13): 3457−3473. doi: 10.1175/2009jcli3136.1
|
[108]
|
Zhao P, Xu X D, Chen F, et al. 2018. The third atmospheric scientific experiment for understanding the earth–atmosphere coupled system over the Tibetan Plateau and its effects [J]. Bull. Amer. Meteor. Soc., 99(4): 757−776. doi: 10.1175/bams-d-16-0050.1
|
[109]
|
周秀骥. 1995. 中国地区臭氧总量变化与青藏高原低值中心 [J]. 科学通报, 40(15): 1396−1398. doi: 10.1360/csb1995-40-15-1396Zhou X J. 1995. Changes in total ozone in China and low-value centers on the Qinghai–Tibet Plateau [J]. Chinese Science Bulletin (in Chinese), 40(15): 1396−1398. doi: 10.1360/csb1995-40-15-1396
|
[110]
|
Zipser E J, Cecil D J, Liu C T, et al. 2006. Where are the most intense thunderstorms on earth? [J]. Bull. Amer. Meteor. Soc., 87(8): 1057−1072. doi: 10.1175/bams-87-8-1057
|