Analysis of the Effect of an Anomalous Convective Longitude Position Difference on Regional Climate Caused by El Niño
-
摘要: 利用1979~2019年NOAA(美国国家海洋和大气局)月平均OLR资料,1960~2019年NCEP/NCAR(美国气象环境预报中心和美国国家大气研究中心)和ECMWF(欧洲中期天气预报中心)ERA5月平均再分析资料,以及英国东安格利亚(East Anglia)大学CRU地表气温观测资料,采用合成分析方法,探讨了热带太平洋异常对流纬向位置不同的El Niño事件对区域气候的影响。结果表明:基于热带太平洋异常对流活动纬向位置,研究El Niño事件对大气环流和区域气候异常的影响,可避免SST异常反映大气对流活动异常存在局限性的缺陷。超强El Niño事件中,热带太平洋异常对流位置偏东,位于140°W附近。热带东西太平洋异常下沉区偏东,导致澳大利亚东北部和巴西东北部从9月到次年2月严重高温干旱,而秘鲁和厄瓜多尔沿岸降水偏多。9~11月PNA(太平洋—北美)遥相关波列位置偏东,北美大槽显著减弱,使冬季北美大陆气温明显偏高。格陵兰岛到欧洲西北部位势高度偏低,亚欧北部显著偏暖。一般东部型El Niño事件中,异常对流位于赤道160°W附近。热带东西太平洋异常下沉区较超强事件偏西,导致澳大利亚西北部和南美西北部从9月到次年5月持续干旱,澳大利亚东部降水正常偏多。PNA波列较超强事件偏西,北美大槽加深,秋冬季北美东部出现严寒。而El Niño Modoki事件中,异常对流位于180°附近,秘鲁和厄瓜多尔沿岸处于对流抑制区,降水偏少,受异常反气旋持续控制,澳大利亚大部分地区从9月到次年5月持续干旱。PNA波列更加偏西,冬季北美东南部偏冷。一般东部型事件和El Niño Modoki事件冬季,大西洋表现为NAO(北大西洋涛动)负位相,亚欧中纬度地区气温偏低。Abstract: Based on NOAA (National Oceanic and Atmospheric Administration) monthly OLR (Outgoing Longwave Radiation) data from 1979 to 2019, NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis), ECMWF (European Centre for Medium-Range Weather Forecasts) ERA5 monthly reanalysis datasets, and East Anglia Climatic Research Unit surface temperature data from 1960 to 2019, the effects of El Niño events with anomalous convection at a different zonal position on regional climate are discussed. The findings show that studying the effects of El Niño events on atmospheric circulation and regional climate anomalies based on the zonal positions of anomalous convection in the tropical Pacific can overcome the limitation that SST anomalies do not fully reflect the atmospheric convection anomalies. In super El Niño events, the anomalous convection is located near 140°W. During the boreal autumn and winter, anomalous subsidence over the tropical western and eastern Pacific moves eastward, resulting in higher temperatures and drought in northeastern Australia and northeastern Brazil, as well as more rainfall along the coasts of Peru and Ecuador. The PNA (Pacific–North American) wave train is located eastward, which significantly weakens the North American trough and brings warmer weather to North America. From Greenland to northwest Europe, the geopotential height is low, making northern Eurasia significantly warmer. The anomalous convection in eastern El Niño is located near 160°W. As a result, from boreal autumn to spring, anomalous subsidence is westward, resulting in dry northwestern Australia, northwestern South America, and wet eastern Australia. The PNA wave train originates in the south of the Aleutian Islands and deepens the North American trough, causing severe cold winters in eastern North America. The anomalous convection is located near 180° in El Niño Modoki. Contrary to super El Niño, the coasts of Peru and Ecuador are dry due to abnormal subsidence, and most of Australia experiences drought from boreal autumn to spring under the control of anomalous anticyclones. The PNA wave train is located westward, resulting in severe cold winters in southeastern America. The Atlantic exhibits a negative North Atlantic Oscillation pattern during the winter of eastern and El Niño Modoki events, and temperatures in the middle latitudes of Eurasia are low.
-
图 1 1979~2019年(a)春季(MAM)、(b)夏季(JJA)、(c)秋季(SON)、(d)冬季(DJF)NOAA提供的OLR(Outgoing Longwave Radiation)数据与ERA5资料(蓝色实线)、NCEP/NCAR资料(黑色虚线)500 hPa垂直速度相关系数(通过99%置信水平的显著性检验)的空间分布
Figure 1. Spatial distributions of correlation coefficients (the significance test above 99% confidence level) between OLR (Outgoing Longwave Radiation, obtained from NOAA) and 500-hPa vertical velocity data obtained from ERA5 data (blue solid line), from NCEP/NCAR data (black dashed line) in (a) spring (MAM), (b) summer (JJA), (c) autumn (SON), (d) winter (DJF) during 1979–2019
图 2 1960~2019年14次El Niño事件发生当年5月到次年5月2°S~2°N平均的SST距平(单位:℃)的时间—经度剖面。黑色虚线表示150°W经线
Figure 2. Time–longitude cross sections of SST anomalies (units: ℃) in Equatorial Pacific (2°S–2°N average) for 14 El Niño events occurred from May of the year to May of the following year during 1960–2019. The black dashed line indicates 150°W longitude
图 3 1960~2019年14次El Niño事件发生当年3月到次年5月2.5°S~2.5°N平均的500 hPa垂直速度距平(单位:−10−2 Pa s−1)的时间—经度剖面
Figure 3. Time–longitude cross sections of 500-hPa vertical velocity anomalies (units: −10−2 Pa s−1) in the Equatorial Pacific (2.5°S–2.5°N average) for 14 El Niño events occurred from March of the year to May of the following year during 1960–2019
图 4 1960~2019年14次El Niño事件发生当年3月到次年5月2.5°S~2.5°N平均的925 hPa的纬向风距平(单位:m s−1)的时间—经度剖面
Figure 4. Time–longitude cross sections of 925-hPa zonal wind anomalies (units: m s−1) in Equatorial Pacific (2.5°S–2.5°N average) for 14 El Niño events occurred from March of the year to May of the following year during 1960–2019
图 5 1960~2019年(a–c、j–l)超强El Niño、(d–f、m–o)一般东部型El Niño和(g–i、p–r)El Niño Modoki事件当年秋季(左)、冬季(中)、次年春季(右)(a–i)气温异常(单位:℃,打点区域通过95%置信水平的显著性检验),(j–r)降水异常(阴影,单位:mm d−1,打点区域通过95%置信水平的显著性检验)、850 hPa风场异常(箭头,单位:m s−1)
Figure 5. (a–i) Temperature anomalies (units: ℃, the dotted regions denote the significance test above 95% confidence level), (j–r) precipitation anomalies (shadings, units: mm d−1, the dotted regions denote the significance test above 95% confidence level) and 850-hPa wind anomalies (arrows, units: m s−1) for (a–c, j–l) super El Niño, (d–f, m–o) general eastern El Niño, and (g–i, p–r) El Niño Modoki events in autumn (left), winter (middle), and spring (right) during 1960–2019
图 6 1960~2019年(a)超强El Niño、(b)一般东部型El Niño、(c)El Niño Modoki事件发生年冬季赤道地区(2.5°S~2.5°N平均)垂直纬向环流异常(箭头,纬向风异常单位:m s−1,垂直风异常单位:−10−2 Pa s−1)。填色表示p坐标下垂直速度异常(单位:−10−2 Pa s−1)
Figure 6. Vertical zonal circulation anomalies (2.5°S–2.5°N average, arrows, units of zonal wind: m s−1, units of vertical wind: −10−2 Pa s−1) for (a) super El Niño, (b) general eastern El Niño, and (c) El Niño Modoki events in the winter during 1960–2019. Shaded areas indicate the vertical velocity anomalies (units: −10−2 Pa s−1) in p coordinate
图 7 1960~2019年(a–d)超强El Niño、(e–h)一般东部型El Niño和(i–l)El Niño Modoki事件500 hPa垂直速度异常(填色,单位:−10−2 Pa s−1)和200 hPa散度风异常(箭头,单位:m s−1)异常。三类事件矩形区域分别为:(150°W~120°W,2.5°S~2.5°N);(170°W~140°W,2.5°S~2.5°N);(170°E~160°W,2.5°S~2.5°N)。打点区域通过95%置信水平的显著性检验
Figure 7. 500-hPa vertical velocity anomalies (shadings, units: −10−2 Pa s−1) and 200-hPa divergence wind (arrows, units: m s−1) anomalies for (a–d) super El Niño, (e–h) general eastern El Niño, and (i–l) El Niño Modoki events during 1960–2019. Rectangular regions in three types of events: (150°W–120°W, 2.5°S–2.5°N); (170°W–140°W, 2.5°S–2.5°N); (170°E–160°W, 2.5°S–2.5°N). The dotted regions denote the significance test above 95% confidence level
图 8 1960~2019年(a–d)超强El Niño、(e–h)一般东部型El Niño和(i–l)El Niño Modoki事件500 hPa位势高度异常(单位:gpm)。灰色阴影区通过90%置信水平的显著性检验
Figure 8. 500-hPa geopotential height anomalies (units: gpm) of for (a–d) super El Niño, (e–h) general eastern El Niño, and (i–l) El Niño Modoki events during 1960–2019. The gray shadings denote the significance test above 95% confidence level
图 9 1960~2019年(a、d)超强El Niño、(b、e)一般东部型El Niño、(c、f)El Niño Modoki事件秋季(左)、冬季(右)北半球200 hPa Rossby涡度源异常(阴影,单位:10−11 s−2)和波活动通量异常(箭头,单位:m2 s−2)
Figure 9. Rossby wave source anomalies (shadings, units: 10−11 s−2) and wave activity flux anomalies (arrows, units: m2 s−2) at 200 hPa for (a, d) super El Niño, (b, e) general eastern El Niño, and (c, f) El Niño Modoki events in Northern Hemisphere in autumn (left) and winter (right) during 1960–2019
图 11 1960~2019年(a、b)超强El Niño、(c、d)一般东部型El Niño和(e、f)El Niño Modoki事件秋季(左)和冬季(右)300 hPa纬向风(填色,单位:m s−1)和300~850 hPa垂直纬向风切变(等值线,单位:m s−1)
Figure 11. 300-hPa zonal wind (shadings, units: m s−1) and 300–850-hPa vertical wind shear (contours, units: m s−1) for (a, b) Super El Niño, (c, d) general Eastern El Niño, and (e, f) El Niño Modoki events in in autumn (left) and winter (right) during 1960–2019
表 1 1960~2019年14次El Niño事件热带地区异常强对流中心经度位置
Table 1. Longitude position of the anomalous convection center in the tropical area of 14 El Niño events during 1960–2019
类型 年份 异常对流区域 东部型El Niño 1982/1983年、1997/1998年、2015/2016年、
1965/1966年、1972/1973年、1976/1977年、
1986/1987年、1991/1992年150°W~120°W 170°W~140°W El Niño Modoki 1969/1970年、1994/1995年、2002/2003年
2004/2005年、2009/2010年、2018/2019年170°E~160°W -
[1] Anderson W, Seager R, Baethgen W, et al. 2017. Crop production variability in North and South America forced by life-cycles of the El Niño Southern Oscillation [J]. Agric. For. Meteor., 239: 151−165. doi: 10.1016/j.agrformet.2017.03.008 [2] Anyamba A, Chretien J P, Britch S C, et al. 2019. Global disease outbreaks associated with the 2015–2016 El Niño event [J]. Sci. Rep., 9(1): 1930. doi: 10.1038/s41598-018-38034-z [3] Brönnimann S. 2007. Impact of El Niño–Southern Oscillation on European climate [J]. Rev. Geophys., 45(3): RG3003. doi: 10.1029/2006RG000199 [4] Buchan J, Hirschi J J M, Blaker A T, et al. 2014. North Atlantic SST anomalies and the cold North European weather events of winter 2009/10 and December 2010 [J]. Mon. Wea. Rev., 142(2): 922−932. doi: 10.1175/MWR-D-13-00104.1 [5] 陈幸荣, 王彰贵. 2003. 西风爆发、次表层暖水东移与厄尔尼诺现象 [J]. 海洋学报, 25(1): 19−27. doi: 10.3321/j.issn:0253-4193.2003.01.003Chen Xingrong, Wang Zhanggui. 2003. Westerly anomaly, eastward propagation of the subsurface temperature anomaly and El Niño event [J]. Acta Oceanol. Sinica (in Chinese), 25(1): 19−27. doi: 10.3321/j.issn:0253-4193.2003.01.003 [6] Chiodi A M, Harrison D E. 2010. Characterizing warm-ENSO variability in the equatorial Pacific: An OLR perspective [J]. J. Climate, 23(9): 2428−2439. doi: 10.1175/2009JCLI3030.1 [7] Chiodi A M, Harrison D E. 2013. El Niño impacts on seasonal U. S. atmospheric circulation, temperature, and precipitation anomalies: The OLR-event perspective [J]. J. Climate, 26(3): 822−837. doi: 10.1175/JCLI-D-12-00097.1 [8] 范蕙君, 李修芳. 1985. 西北太平洋热带辐合带三维结构分析 [J]. 海洋预报服务, 2(2): 19−25.Fan Huijun, Li Xiufang. 1985. An analysis of the three-dimensional structure of ITCZ over NW Pacific [J]. Marine Forecast Service (in Chinese), 2(2): 19−25. [9] Feng J, Chen W, Li Y J. 2017. Asymmetry of the winter extra-tropical teleconnections in the Northern Hemisphere associated with two types of ENSO [J]. Climate Dyn., 48(7–8): 2135–2151. doi:10.1007/s00382-016-3196-2 [10] 傅云飞, 黄荣辉. 1996. 热带太平洋西风异常对ENSO事件发生的作用 [J]. 大气科学, 20(6): 641−654. doi: 10.3878/j.issn.1006-9895.1996.06.01Fu Yunfei, Huang Ronghui. 1996. The effect of the westerly anomalies over the tropical Pacific on the occurrence of ENSO events [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 20(6): 641−654. doi: 10.3878/j.issn.1006-9895.1996.06.01 [11] Fu Z B, Fletcher J. 1985. Two patterns of equatorial warming associated with El Niño [J]. Sci. Bull., 30(10): 1360−1364. [12] Gadgil S, Joseph P, Joshi N. 1984. Ocean–atmosphere coupling over monsoon regions [J]. Nature, 312(5990): 141−143. doi: 10.1038/312141a0 [13] Garreaud R D, Wallace J M. 1997. The diurnal march of convective cloudiness over the Americas [J]. Mon. Wea. Rev., 125(12): 3157−3171. doi: 10.1175/1520-0493(1997)125<3157:TDMOCC>2.0.CO;2 [14] Garreaud R D, Wallace J M. 1998. Summertime incursions of midlatitude air into subtropical and tropical South America [J]. Mon. Wea. Rev., 126(10): 2713−2733. doi: 10.1175/1520-0493(1998)126<2713:SIOMAI>2.0.CO;2 [15] Graf H F, Zanchettin D. 2012. Central Pacific El Niño, the “subtropical bridge”, and Eurasian climate [J]. J. Geophys. Res. Atmos., 117(D1): D01102. doi: 10.1029/2011JD016493 [16] Graham N E, Barnett T P. 1987. Sea surface temperature, surface wind divergence, and convection over tropical oceans [J]. Science, 238(4827): 657−659. doi: 10.1126/science.238.4827.657 [17] Greatbatch R J, Lu J, Peterson K A. 2004. Nonstationary impact of ENSO on Euro-Atlantic winter climate [J]. Geophys. Res. Lett., 31(2): L02208. doi: 10.1029/2003GL018542 [18] Iizumi T, Luo J J, Challinor A J, et al. 2014. Impacts of El Niño Southern Oscillation on the global yields of major crops [J]. Nat. Commun., 5: 3712. doi: 10.1038/ncomms4712 [19] Infanti J M, Kirtman B P. 2016. North American rainfall and temperature prediction response to the diversity of ENSO [J]. Climate Dyn., 46(9): 3007−3023. doi: 10.1007/s00382-015-2749-0 [20] 蒋尚城. 1994a. 第五讲OLR反演热带散度风及垂直环流 [J]. 气象, 20(3): 50−56.Jiang Shangcheng. 1994a. Lecture 5 retrieval of tropical divergence wind and vertical circulation by OLR [J]. Meteor. Mon. (in Chinese), 20(3): 50−56. [21] 蒋尚城. 1994b. 我国OLR应用研究的进展 [J]. 气象科技(1): 1−9. doi: 10.19517/j.1671-6345.1994.01.001Jiang Shangcheng. 1994b. Progress of OLR application research in China [J]. Meteor. Sci. Technol. (in Chinese)(1): 1−9. doi: 10.19517/j.1671-6345.1994.01.001 [22] Kao H Y, Yu J Y. 2009. Contrasting eastern Pacific and central Pacific types of ENSO [J]. J. Climate, 22(3): 615−632. doi: 10.1175/2008JCLI2309.1 [23] Kug J S, Jin F F, An S I. 2009. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño [J]. J. Climate, 22(6): 1499−1515. doi: 10.1175/2008JCLI2624.1 [24] Lau K M, Wu H T, Bony S. 1997. The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature [J]. J. Climate, 10(3): 381−392. doi: 10.1175/1520-0442(1997)010<0381:TROLSA>2.0.CO;2 [25] Leblanc M J, Tregoning P, Ramillien G, et al. 2009. Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia [J]. Water Resour. Res., 45(4): W04408. doi: 10.1029/2008WR007333 [26] Lee S K, Wang C Z, Mapes B E. 2009. A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies [J]. J. Climate, 22(2): 272−284. doi: 10.1175/2008JCLI2303.1 [27] 李海燕, 张文君, 何金海, 等. 2016. SST年循环对El Niño事件局地海气过程的影响 [J]. 海洋学报, 38(1): 56−68. doi: 10.3969/j.issn.0253-4193.2016.01.006Li Haiyan, Zhang Wenjun, He Jinhai, et al. 2016. Influence of SST annual cycle on local air–sea processes during El Niño events [J]. Haiyang Xuebao (in Chinese), 38(1): 56−68. doi: 10.3969/j.issn.0253-4193.2016.01.006 [28] 李海燕, 孙家仁, 谌志刚, 等. 2019. 两类El Niño事件对华南前汛期降水异常的影响 [J]. 热带气象学报, 35(4): 491−503. doi: 10.16032/j.issn.1004-4965.2019.045Li Haiyan, Sun Jiaren, Chen Zhigang, et al. 2019. Influences of two types of El Niño events on precipitation anomalies in the April–June rainy season over South China [J]. J. Trop. Meteor. (in Chinese), 35(4): 491−503. doi: 10.16032/j.issn.1004-4965.2019.045 [29] Paek H, Yu J Y, Qian C C. 2017. Why were the 2015/2016 and 1997/1998 extreme El Niños different? [J]. Geophys. Res. Lett., 44(4): 1848−1856. doi: 10.1002/2016GL071515 [30] Philander S G H. 1983. Meteorology: Anomalous El Niño of 1982–83 [J]. Nature, 305(5929): 16. doi: 10.1038/305016a0 [31] Potgieter A B, Hammer G L, Meinke H, et al. 2005. Three putative types of El Niño revealed by spatial variability in impact on Australian wheat yield [J]. J. Climate, 18(10): 1566−1574. doi: 10.1175/JCLI3349.1 [32] 钱代丽, 管兆勇. 2018. 超强与普通厄尔尼诺海—气特征差异及对西太平洋副热带高压的不同影响 [J]. 气象学报, 76(3): 394−407. doi: 10.11676/qxxb2018.011Qian Daili, Guan Zhaoyong. 2018. Different features of super and regular El Niño events and their impacts on the variation of the West Pacific subtropical high [J]. Acta Meteor. Sinica (in Chinese), 76(3): 394−407. doi: 10.11676/qxxb2018.011 [33] 秦坚肇, 王亚非. 2014. 构建描述两种ENSO类型的新指数 [J]. 气象学报, 72(3): 526−541. doi: 10.11676/qxxb2014.023Qin Jianzhao, Wang Yafei. 2014. Construction of new indices for the two types of ENSO events [J]. Acta Meteor. Sinica (in Chinese), 72(3): 526−541. doi: 10.11676/qxxb2014.023 [34] Sardeshmukh P D, Hoskins B J. 1988. The generation of global rotational flow by steady idealized tropical divergence [J]. J. Atmos. Sci., 45(7): 1228−1251. doi: 10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2 [35] 隋晓霞, 王启. 2011. 北太平洋热带辐合带区上升运动的季节和年际变化特征 [J]. 中国海洋大学学报(自然科学版), 41(4): 19−27. doi: 10.16441/j.cnki.hdxb.2011.04.004Sui Xiaoxia, Wang Qi. 2011. The seasonal and interannual features of ascending motion intensity and position in the intertropical convergence zone in the North Pacific [J]. Period. Ocean Univ. China (in Chinese), 41(4): 19−27. doi: 10.16441/j.cnki.hdxb.2011.04.004 [36] Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow [J]. J. Atmos. Sci., 58(6): 608−627. doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2 [37] Taschetto A S, England M H. 2009. El Niño Modoki impacts on Australian rainfall [J]. J. Climate, 22(11): 3167−3174. doi: 10.1175/2008JCLI2589.1 [38] van Dijk A I J M, Beck H E, Crosbie R S, et al. 2013. The millennium drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society [J]. Water Resour. Res., 49(2): 1040−1057. doi: 10.1002/wrcr.20123 [39] Waliser D E, Graham N E. 1993. Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation [J]. J. Geophys. Res., 98(D7): 12881−12893. doi: 10.1029/93JD00872 [40] Wang G M, Hendon H H. 2007. Sensitivity of Australian rainfall to inter-El Niño variations [J]. J. Climate, 20(16): 4211−4226. doi: 10.1175/JCLI4228.1 [41] 王彰贵, 蔡怡, 张丽. 1998. 1997/98年厄尔尼诺特征及97年气候异常 [J]. 海洋预报, 15(3): 124−131. doi: 10.11737/j.issn.1003-0239.1998.03.022Wang Zhanggui, Cai Yi, Zhang Li. 1998. Characteristics of El Niño in 1997/98 and climatic anomalies in 1997 [J]. Marine Forecasts (in Chinese), 15(3): 124−131. doi: 10.11737/j.issn.1003-0239.1998.03.022 [42] Weng H Y, Ashok K, Behera S K, et al. 2007. Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer [J]. Climate Dyn. , 29(2–3): 113–129. doi: 10.1007/s00382-007-0234-0 [43] Weng H Y, Behera S K, Yamagata T. 2009. Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events [J]. Climate Dyn., 32(5): 663−674. doi: 10.1007/s00382-008-0394-6 [44] 武炳义, 黄荣辉. 1999. 冬季北大西洋涛动极端异常变化与东亚冬季风 [J]. 大气科学, 23(6): 641−651. doi: 10.3878/j.issn.1006-9895.1999.06.01Wu Bingyi, Huang Ronghui. 1999. Effects of the extremes in the North Atlantic oscillation on East Asia winter monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23(6): 641−651. doi: 10.3878/j.issn.1006-9895.1999.06.01 [45] Xie R, Mu M, and Fang X. 2020. New indices for better understanding ENSO by incorporating convection sensitivity to sea surface temperature [J]. J. Climate, 33(16): 7045−7061. doi: 10.1175/JCLI-D-19-0239.1 [46] Yu J Y, Zou Y H, Kim S T, et al. 2012. The changing impact of El Niño on US winter temperatures [J]. Geophys. Res. Lett., 39(15): L15702. doi: 10.1029/2012GL052483 [47] 袁良, 何金海. 2013. 两类ENSO对我国华南地区冬季降水的不同影响 [J]. 干旱气象, 31(1): 24−31. doi: 10.11755/j.issn.1006-7639(2013)-01-0024Yuan Liang, He Jinhai. 2013. Different impacts of two types of ENSO on winter rainfall over South China [J]. Journal of Arid Meteorology (in Chinese), 31(1): 24−31. doi: 10.11755/j.issn.1006-7639(2013)-01-0024 [48] 袁媛, 杨辉, 李崇银. 2012. 不同分布型厄尔尼诺事件及对中国次年夏季降水的可能影响 [J]. 气象学报, 70(3): 467−478. doi: 10.11676/qxxb2012.039Yuan Yuan, Yang Hui, Li Chongyin. 2012. Study of El Niño events of different types and their potential impact on the following-summer precipitation in China [J]. Acta Meteor. Sinica (in Chinese), 70(3): 467−478. doi: 10.11676/qxxb2012.039 [49] 袁媛, 高辉, 贾小龙, 等. 2016. 2014~2016年超强厄尔尼诺事件的气候影响 [J]. 气象, 42(5): 532−539. doi: 10.7519/j.issn.1000-0526.2016.05.002Yuan Yuan, Gao Hui, Jia Xiaolong, et al. 2016. Influences of the 2014–2016 super El Niño event on climate [J]. Meteor. Mon. (in Chinese), 42(5): 532−539. doi: 10.7519/j.issn.1000-0526.2016.05.002 [50] 翟盘茂, 余荣, 郭艳君, 等. 2016. 2015/2016年强厄尔尼诺过程及其对全球和中国气候的主要影响 [J]. 气象学报, 74(3): 309−321. doi: 10.11676/qxxb2016.049Zhai Panmao, Yu Rong, Guo Yanjun, et al. 2016. The strong El Niño in 2015/2016 and its dominant impacts on global and China’s climate [J]. Acta Meteor. Sinica (in Chinese), 74(3): 309−321. doi: 10.11676/qxxb2016.049 [51] 郑冬晓, 杨晓光. 2014. ENSO对全球及中国农业气象灾害和粮食产量影响研究进展 [J]. 气象与环境科学, 37(4): 90−101. doi: 10.16765/j.cnki.1673-7148.2014.04.015Zheng Dongxiao, Yang Xiaoguang. 2014. Advances on effect of ENSO on agro-meteorological disasters and crop yields of the world and China [J]. Meteor. Environ. Sci. (in Chinese), 37(4): 90−101. doi: 10.16765/j.cnki.1673-7148.2014.04.015 -