Dynamic and Thermal Structure and Topographic Impact of the Night Torrential Rainfall in Lushan, Sichuan on August 10, 2020
-
摘要: 由特殊喇叭口地形促成的四川雅安暴雨久已有名,研究颇多,而这一地区的暖区暴雨、夜发性暴雨的研究在业务预报和防灾减灾迫切需求的推动下也应加强。利用ERA5再分析资料,结合地面加密观测资料及中国气象局信息中心提供的三源融合近实时降水资料,对造成2020年8月10日四川雅安芦山的特大暴雨过程的动热力结构演变、触发机制和地形影响进行了诊断分析,揭示了弱天气尺度强迫及特殊地形影响背景下暖区暴雨的水汽、动热力结构演变及触发机制。研究得出:(1)此例暴雨属于500 hPa无明显影响系统、低层无急流背景下的东南风型暖区暴雨。在雅安“迎风坡”、“喇叭口”地形和芦山西南向“˄”型峡谷地形的影响下,配合西太副高西进、东南暖湿气流加强和850 hPa弱低涡辐合气流的共同作用而诱发产生,此次降水时间短,强度大。(2)降水开始到强盛期间,始终有边界层地形作用产生的抬升速度、气旋式涡度和水平辐合与系统性垂直上升运动、涡度和散度叠加,增强了低层辐合,加剧了垂直上升运动,促使降水加强。(3)差动θse平流使得暴雨区对流不稳定度增强。对流抑制能量为零的高能高湿环境中,500 hPa θse弱冷平流也是暖区暴雨触发的因素之一;傍晚地形冷平流触发了初始对流并沿海拔高度1500米地形线分布;暴雨区上游强降水造成雷暴冷池出流叠加山风在“˄”型峡谷西侧形成γ中尺度辐合线,并移至“˄”型谷地内维持;冷性气流在快速下山后亦以冷池形式维持在“˄”型峡谷东侧山脉附近,形成强温度梯度,这些因素触发并维持了芦山夜间特大暴雨。Abstract: Many studies have been conducted on the Ya’an rainstorm in Sichuan Province, which is caused by the unique bell mouth terrain. Research on the warm-area and nocturnal rainstorms in this region should be strengthened as part of the promotion of the urgent demands of operational forecasting and disaster prevention and reduction. The dynamic and thermal structure evolution, trigger mechanism, and topographic influence of the torrential rain process that occurred in Lushan county, Ya’an, Sichuan Province, on August 10, 2020, were analyzed using the ERA5 reanalysis data, combined with the ground-encrypted observation data and the three-source fusion near real-time precipitation data provided by the Meteorological Information Center of the China Meteorological Administration. This research reveals the configuration of water vapor, dynamic and thermal structure evolution, and triggering mechanism of torrential rain in a warm location under the background of weak synoptic forcing and special topography. The results are as follows: (1) This severe rain process was associated with a warm rainstorm of southeast winds, with no clear influence system at 500 hPa and no jet stream at a lower level. The combined action of the western Pacific subtropical high moving westward, the strengthening of warm and wet airflow from the southeast, and the weak vortex convergence airflow at 850 hPa affected by Ya’an’s “windward slope” and “bell mouth” topography and Lushan’s southwest “˄” type canyon topography caused this brief and intense precipitation. (2) From the beginning to the peak of precipitation, the uplift velocity, cyclonic vorticity, and horizontal convergence caused by boundary layer topography were always superimposed with systematic vertical upward movement, vorticity, and divergence, which enhanced low-level convergence, intensified vertical upward movement, and promoted precipitation intensification. (3) The rainy region experienced increased convective instability due to the differential advection of θse. The weak cold advection of θse in 500 hPa was also one of the triggering elements of rain in warm regions. In a high-energy and high-humidity environment with convection suppression, the energy was zero. The initial convection was caused by cold orographic advection in the evening and dispersed along the 1500 m terrain line. A γ mesoscale convergence line was formed on the west side of the “˄” type valley and maintained by upstream heavy precipitation, which caused thunderstorm cold pool outflow and mountain wind. After rapidly descending the mountain, the cold pool also remained near the mountains on the east side of the “˄” type canyon, thereby forming a strong temperature gradient. These factors triggered and maintained the torrential rain in Lushan at night.
-
Key words:
- Nocturnal rainstorm /
- Special terrain /
- Convection instability /
- Trigger /
- Cold pool
-
图 1 (a)雅安及其周边地区地形分布和(b)2020年8月10日20:00至11日11:00(北京时)芦山(站号56279)、芦山清仁(站号S7102)、芦阳镇磨刀村(站号S7307)、芦阳镇栏杆头(站号S7313)四个站点逐小时降水量(柱状,单位:mm)与累积降水量(折线,单位:mm,黑色圆点标注4站暴雨中心)
Figure 1. (a) Terrain distribution in Ya’ an and its surrounding areas. (b) Hourly precipitation (column, units: mm) and cumulative precipitation (broken line, units: mm) in Lushan (56279), Lushan Qingren (S7102), Modao Village of Luyang Town (S7307), and Langantou of Luyang Town (S7313) from 2000 BJT (Beijing time) on 10 to 1100 BJT on August 11, 2020. Black dots in (a) represent rainstorm centers of 4 stations
图 2 2020年8月10日(a)20:00、(b)23:00 500 hPa高度场(等值线,单位:dagpm)叠加850 hPa水汽通量(矢量箭头,单位:g cm−1 hPa−1 s−1)和水汽通量散度(填色,单位:10−5 g cm−2 hPa−1 s−1)分布;10日23:00(c)700 hPa、(d)850 hPa风场叠加3 km和1.5 km以上地形高度分布
Figure 2. 500 hPa geopotential height (isolines, units: dagpm) superposed with 850 hPa vapor flux vector (vectors, units: g cm−1 hPa−1 s−1) and vapor flux divergence (color shaded, units: 10−5 g cm−2 hPa−1 s−1) at (a) 2000 BJT, (b) 2300 BJT on 10 August 2020; (c) 700 hPa and (d) 850 hPa wind field superimposed over 3 km and 1.5 km terrain height distribution at 2300 BJT on 10 August 2020
图 3 2020年8月10日23:00(a)沿30.15°N水汽通量(矢量,单位:g cm−1 hPa−1 s−1)及水汽通量散度(填色,单位:10−5 g cm−2 hPa−1 s−1)的纬向—垂直剖面;(b)10日09:00~21:00(协调世界时)沿(30.15°N,102.93°E)水汽通量散度的时间变化
Figure 3. (a) Zonal–vertical cross sections of vapor flux vector (shaded, units: g cm−1 hPa−1 s−1) and vapor flux divergences (vectors, units: 10−5 g cm−2 hPa−1 s−1) along 30.15°N at 2300 BJT on 10 August 2020 and (b) time variations of water vapor flux divergence along (30.15°N, 102.93°E) from 0900 UTC to 2100 UTC on 10 August 2020
图 4 2020年8月10日(a)20:00、(b)23:00和11日(c)01:00、(d)02:00沿30.15°N垂直速度(填色,单位:Pa s−1)及u、v流场的纬向—垂直剖面;(e)10日23:00沿30.15°N涡度的纬向—垂直剖面;(f)10日12:00至11日00:00(协调世界时)沿30.15°N地形抬升速度(单位:Pa s−1)的纬向—时间剖面;(g)10日19:00至11日04:00沿芦山站(30.15°N,102.93°E)地形涡度、地形散度(单位:10−5 s−1)的时间序列;(h)10日09:00~22:00(协调世界时)区域(29.5°~30.7°N,102.5°~103.5°E)平均风速(单位:m s−1)随时间变化
Figure 4. Zonal–vertical cross sections of vertical velocity (color shaded, units: Pa s−1) and u, v flow filed along 30.15°N at (a) 2000 BJT , (b) 2300 BJT on 10 August, (c) 0100 BJT, (d) 0200 BJT on 11 August 2020; (e) velocity along 30.15°N at 2300 BJT on 10 August; (f) zonal–time sections of topographic vorticity along 30.15°N from 1200 UTC on 10 to 0000 UTC on 11 August; (g) time series of the topographic divergence and velocity (units: 10−5 s−1) of Lushan Station (30.15°N,102.35°E) from 1900 BJT on 10 to 0400 BJT on 11 August; (h) time series of the area mean wind speed (units: m s−1) in (29.5°–30.7°N, 102.5°–103.5°E) from 0900 UTC to 2200 UTC on 10 August 2020
图 5 2020年8月10日09:00至11日03:00(协调世界时)沿30.15°N(a)500 hPa与850 hPa θse差值的纬向—时间剖面(单位:°C)以及(b)差动θse平流(单位:10−2 K s−1)的纬向—时间剖面;(c)8月10日20:00 500 hPa θse平流分布;(d)温江站(56187)8月10日20:00T-logp图
Figure 5. (a) Zonal–time sections of θse difference values (units: °C) and differential advection of θse (units:10−2 K·s−1) for 500 hPa and 850 hPa from 0900 UTC 10 to 0300 UTC 11 along 30.15°N; (c) 500 hPa advection of θse at 2100 BJT on 10 August and (d)T-logp diagram at 2000 BJT on 10 August in Wenjiang Station (56187)
图 6 2022年8月10日(a)18:00、(b)20:00、(c)23:00地形温度平流总量的分布(单位:10−3°C s−1);(d)10日20:00地面风场分布;(e)地面3小时变温(虚线)叠加10日20:00至11日03:00 24°C等温线分布。(d、e)中灰色阴影为1000 m以上地形
Figure 6. Advection distribution (units: m s−1) of terrain height at (a) 1800 BJT, (b) 2000 BJT, and (c) 2300 BJT 10 August 2020. (d) Distributions of surface wind at 2000 BJT on 10 August; (d) surface temperature variations in 3 hours (dotted line), and 24°C isotherm from 2000 BJT 10 to 0300 BJT 11 August 2020. Gray shadows in (d, e) are terrain over 1000 m
图 7 2020年8月10日(a)20:02、(b)21:54、(c)22:16、(d)22:44、(e)23:12和(f)11日00:19雅安雷达1.5°仰角反射率因子(单位:dBZ)叠加1500 m地形线分布
Figure 7. Ya’ an radar reflectivity (units: dBZ) distribution on 1.5° elevation and 1500 m terrain lines: (a) 2002 BJT, (b) 2154 BJT, (c) 2216 BJT, (d) 2244 BJT, (e) 2312 BJT on 10 August, and (f) 0019 BT on 11 August 2020
-
[1] 白爱娟, 刘晓东, 刘长海. 2011. 青藏高原与四川盆地夏季降水日变化的对比分析 [J]. 高原气象, 30(4): 852−859.Bai Aijuan, Liu Xiaodong, Liu Changhai. 2011. Contrast of diurnal variations of summer precipitation between the Tibetan Plateau and Sichuan Basin [J]. Plateau Meteorology (in Chinese), 30(4): 852−859. [2] 蔡芗宁, 周庆亮, 钟青, 等. 2007. 边界层参数化对“雅安天漏”降水数值模拟的影响 [J]. 气象, 33(5): 12−19. doi: 10.7519/j.issn.1000-0526.2007.5.002Cai Xiangning, Zhou Qingliang, Zhong Qing, et al. 2007. Impact of boundary layer parameterization on numerical simulation of "Ya-An-Tian-Lou" [J]. Meteor. Mon. (in Chinese), 33(5): 12−19. doi: 10.7519/j.issn.1000-0526.2007.5.002 [3] 陈忠明, 闵文彬, 缪强, 等. 2004. 高原涡与西南涡耦合作用的个例诊断 [J]. 高原气象, 23(1): 75−80.Chen Zhongming, Min Wenbin, Miao Qiang, et al. 2004. A case study on coupling interaction between plateau and southwest vortexes [J]. Plateau Meteor. (in Chinese), 23(1): 75−80. [4] Dong Danhong, Huang Gang, Tao Weichen, et al. 2018. Interannual variation of precipitation over the Hengduan Mountains during rainy season [J]. International Journal of Climatology, 38(4): 2112−2125. doi: 10.1002/joc.5321 [5] 付智龙, 李国平, 姜凤友, 等. 2022. 四川盆地西部一次暖区山地暴雨事件的动力过程分析与局地环流数值模拟 [J]. 大气科学, 待排.Fu Zhilong, Li Guoping, Jiang Fengyou, et al. 2022. Dynamic analysis and local circulation numerical simulation of a warm-sector mountain rainstorm event in western Sichuan Basin of China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), in press. doi:10.3878/j.issn.1006-9895.2110.21054 [6] 高笃鸣, 李跃清, 程晓龙. 2018. 基于西南涡加密探空资料同化的一次奇异路径耦合低涡大暴雨数值模拟研究 [J]. 气象学报, 76(3): 343−360. doi: 10.11676/qxxb2018.008Gao Duming, Li Yueqing, Cheng Xiaolong. 2018. A numerical study on a heavy rainfall caused by an abnormal-path coupling vortex with the assimilation of southwest China vortex scientific experiment data [J]. Acta Meteorologica Sinica (in Chinese), 76(3): 343−360. doi: 10.11676/qxxb2018.008 [7] Hu Xuelin, Yuan Weihua, Yu Rucong. 2021. The extraordinary rainfall over the eastern periphery of the Tibetan Plateau in August 2020 [J]. Advances in Atmospheric Sciences, 38(12): 2097−2107. doi: 10.1007/s00376-021-1134-7 [8] Huang Yongjie, Cui Xiaopeng. 2015a. Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method [J]. Atmospheric Science Letters, 16(2): 177−183. doi: 10.1002/asl2.562 [9] Huang Yongjie, Cui Xiaopeng. 2015b. Moisture sources of torrential rainfall events in the Sichuan Basin of China during summers of 2009–13 [J]. Journal of Hydrometeorology, 16(4): 1906−1917. doi: 10.1175/JHM-D-14-0220.1 [10] 黄楚惠, 李国平, 牛金龙, 等. 2011. 一次高原低涡东移引发四川盆地强降水的湿螺旋度分析 [J]. 高原气象, 30(6): 1427−1434.Huang Chuhui, Li Guoping, Niu Jinlong, et al. 2011. Moist helicity analysis of a heavy rainstorm in Sichuan Basin induced by plateau vortex moving eastward [J]. Plateau Meteor. (in Chinese), 30(6): 1427−1434. [11] 李国平. 2007. 青藏高原动力气象学[M]. 2版. 北京: 气象出版社, 110–114Li Guoping. 2007. Dynamic Meteorology of the Tibetan Plateau (in Chinese) [M]. 2nd ed. Beijing: China Meteorological Press, 110–114. [12] 李琴, 崔晓鹏, 曹洁. 2014. 四川地区一次暴雨过程的观测分析与数值模拟 [J]. 大气科学, 38(6): 1095−1108. doi: 10.3878/j.issn.1006-9895.1401.13255Li Qin, Cui Xiaopeng, Cao Jie. 2014. Observational analysis and numerical simulation of a heavy rainfall event in Sichuan Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(6): 1095−1108. doi: 10.3878/j.issn.1006-9895.1401.13255 [13] 李跃清, 张晓春. 2011. “雅安天漏”研究进展 [J]. 暴雨灾害, 30(4): 289−295. doi: 10.3969/j.issn.1004-9045.2011.04.001Li Yueqing, Zhang Xiaochun. 2011. Main advances in the research of “Yaan Sky Leakage” [J]. Torrential Rain and Disasters (in Chinese), 30(4): 289−295. doi: 10.3969/j.issn.1004-9045.2011.04.001 [14] 苗秋菊, 徐祥德, 施小英. 2004. 青藏高原周边异常多雨中心及其水汽输送通道 [J]. 气象, 30(12): 44−46. doi: 10.7519/j.issn.1000-0526.2004.12.010Miao Qiuju, Xu Xiangde, Shi Xiaoying. 2004. Water vapor transport structure of anomalous rainy centers in the ambient area of Tibetan Plateau [J]. Meteor. Mon. (in Chinese), 30(12): 44−46. doi: 10.7519/j.issn.1000-0526.2004.12.010 [15] 闵涛, 吴亚平, 吴筱, 等. 2019. 雅安区域性暖区暴雨特征及其概念模型的建立 [J]. 气象研究与应用, 40(3): 38−42. doi: 10.3969/j.issn.1673-8411.2019.03.009Min Tao, Wu Yaping, Wu Xiao, et al. 2019. Characteristics of rainstorm in Ya’an regional warm zone and its conceptual model establishment [J]. Journal of Meteorological Research and Application (in Chinese), 40(3): 38−42. doi: 10.3969/j.issn.1673-8411.2019.03.009 [16] 彭贵康, 柴复新, 曾庆存, 等. 1994. “雅安天漏”研究 I: 天气分析 [J]. 大气科学, 18(4): 466−475. doi: 10.3878/j.issn.1006-9895.1994.04.11Peng Guikang, Chai Fuxin, Zeng Qingcun, et al. 1994. Research on “Ya-An-Tian-Lou”. Part I: Weather analysis [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica), 18(4): 466−475. doi: 10.3878/j.issn.1006-9895.1994.04.11 [17] 彭贵康, 张小渝, 谷生慧, 等. 2004. 雅安市降水“精细化”预报的动力学基础 [J]. 四川气象, 24(2): 8−12. doi: 10.3969/j.issn.1674-2184.2004.02.003Peng Guikang, Zhang Xiaoyu, Gu Shenghui, et al. 2004. The dynamic basis of "precise & detail" forecasting method for precipitation in Yaan [J]. Journal of Sichuan Meteorology (in Chinese), 24(2): 8−12. doi: 10.3969/j.issn.1674-2184.2004.02.003 [18] 彭贵康, 卢萍, 李昀英. 2008. 雅安“8·26”特大暴雨的天气分析 [J]. 高原山地气象研究, 28(3): 27−36.Peng Guikang, Lu Ping, Li Yunying. 2008. Synoptic Study on“8·26” Ya’an torrential rain in august 2003 [J]. Plateau and mountain Meteorology Research (in Chinese), 28(3): 27−36. [19] Qian Cheng, Ye Yangbo, Zhang Wenxia, et al. 2022. Heavy rainfall event in mid-August 2020 in southwestern China: Contribution of anthropogenic forcings and atmospheric circulation [J]. American Meteorological Society, 103(3): s1111−s1117. doi: 10.1175/BAMS-D-21-0233.1 [20] 汤欢, 傅慎明, 孙建华, 等. 2020. 一次高原东移MCS与下游西南低涡作用并产生强降水事件的研究 [J]. 大气科学, 44(6): 1275−1290. doi: 10.3878/j.issn.1006-9895.1911.19206Tang Huan, Fu Shenming, Sun Jianhua, et al. 2020. Investigation of severe precipitation event caused by an eastward-propagating MCS originating from the Tibetan plateau and a downstream southwest vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1275−1290. doi: 10.3878/j.issn.1006-9895.1911.19206 [21] 王两铭, 罗会邦. 1980. 饱和湿空气动力学的基本方程和主要特征 [J]. 气象学报, 38(1): 44−50. doi: 10.11676/qxxb1980.005Wang Liangming, Luo Huibang. 1980. The basic dynamic equations and the main properties of the saturated moist air [J]. Acta Meteorologica Sinica (in Chinese), 38(1): 44−50. doi: 10.11676/qxxb1980.005 [22] 王晓芳, 崔春光. 2012. 长江中下游地区梅雨期线状中尺度对流系统分析Ⅰ: 组织类型特征 [J]. 气象学报, 70(5): 909−923. doi: 10.11676/qxxb2012.077Wang Xiaofang, Cui Chunguang. 2012. Analysis of the linear mesoscale convective systems during the Meiyu period in the middle and lower reaches of the Yangtze River. Part Ⅰ: Organization mode features [J]. Acta Meteorologica Sinica (in Chinese), 70(5): 909−923. doi: 10.11676/qxxb2012.077 [23] 王雨斐, 李国平, 王宗敏, 等. 2022. 冬奥崇礼赛区一次冷湖过程形成及消散的数值模拟研究 [J]. 大气科学, 46(1): 206−224. doi: 10.3878/j.issn.1006-9895.2109.21070Wang Yufei, Li Guoping, Wang Zongmin, et al. 2022. Numerical simulation of the formation and dissipation of a cold air pool in the Chongli winter Olympic games area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(1): 206−224. doi: 10.3878/j.issn.1006-9895.2109.21070 [24] 文宝安. 1980. 大气边界层中散度、涡度、铅直速度的计算 [J]. 气象, 6(10): 34−35. doi: 10.7519/j.issn.1000-0526.1980.10.023Wen Baoan. 1980. Calculation of divergence, vorticity and vertical velocity in atmospheric boundary layer [J]. Meteor. Mon., 6(10): 34−35. doi: 10.7519/j.issn.1000-0526.1980.10.023 [25] 吴泽, 范广洲, 周定文, 等. 2014. 基于WRF模式的雅安暴雨数值模拟研究 [J]. 高原气象, 33(5): 1332−1340. doi: 10.7522/j.issn.1000-0534.2013.00084Wu Ze, Fan Guangzhou, Zhou Dingwen, et al. 2014. Numerical Simulation of the Rainstorm Process in Ya’an Based on WRF Model [J]. Plateau Meteor. (in Chinese), 33(5): 1332−1340. doi: 10.7522/j.issn.1000-0534.2013.00084 [26] 肖递祥, 杨康权, 俞小鼎, 等. 2017. 四川盆地极端暴雨过程基本特征分析 [J]. 气象, 43(10): 1165−1175. doi: 10.7519/j.issn.1000-0526.2017.10.001Xiao Dixiang, Yang Kangquan, Yu Xiaoding, et al. 2017. Characteristics analyses of extreme rainstorm events in Sichuan Basin [J]. Meteor. Mon. (in Chinese), 43(10): 1165−1175. doi: 10.7519/j.issn.1000-0526.2017.10.001 [27] 肖红茹, 王佳津, 肖递祥, 等. 2021. 四川盆地暖区暴雨特征分析 [J]. 气象, 47(3): 303−316. doi: 10.7519/j.jssn.1000-0526.2021.03.004Xiao Hongru, Wang Jiajin, Xiao Dixiang, et al. 2021. Analysis of warm-sector rainstorm characteristics over Sichuan Basin [J]. Meteor. Mon. (in Chinese), 47(3): 303−316. doi: 10.7519/j.jssn.1000-0526.2021.03.004 [28] 宇如聪, 曾庆存, 彭贵康, 等. 1994. “雅安天漏”研究 II. 数值预报试验 [J]. 大气科学, 18(5): 535−551. doi: 10.3878/j.issn.1006-9895.1994.05.04Yu Rucong, Zeng Qingcun, Peng Guikang, et al. 1994. Research on “Ya-An-Tian-Lou”. Part II: Numerical trial-forecasting [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica), 18(5): 535−551. doi: 10.3878/j.issn.1006-9895.1994.05.04 [29] Yu Rucong, Yuan Weihua, Li Jian, et al. 2010. Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China [J]. Climate Dyn., 35(4): 567−576. doi: 10.1007/s00382-009-0568-x [30] 郁淑华, 高文良. 2017. 高原低涡与西南涡结伴而行的不同活动形式个例的环境场和位涡分析 [J]. 大气科学, 41(4): 831−856. doi: 10.3878/j.issn.1006-9895.1612.16213Yu Shuhua, Gao Wenliang. 2017. Analysis of environmental background and potential vorticity of different accompanied moving cases of Tibetan plateau vortex and southwest china vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(4): 831−856. doi: 10.3878/j.issn.1006-9895.1612.16213 [31] 曾庆存, 宇如聪, 彭贵康, 等. 1994. “雅安天漏”研究III: 特征、物理量结构及其形成机制 [J]. 大气科学, 18(6): 649−659. doi: 10.3878/j.issn.1006-9895.1994.06.02Zeng Qingcun, Yu Rucong, Peng Guikang, et al. 1994. Research on “Ya-An-Tian-Lou”. Part III: The physical structure and possible mechanism [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica), 18(6): 649−659. doi: 10.3878/j.issn.1006-9895.1994.06.02 [32] 曾智琳, 谌芸, 朱克云. 2019. 2017年6月一次华南沿海强降水的对流性特征及热动力机制研究 [J]. 大气科学, 43(6): 1295−1312. doi: 10.3878/j.issn.1006-9895.1901.18207Zeng Zhilin, Chen Yun, Zhu Keyun. 2019. Convective characteristics and thermal dynamic mechanisms for coastal torrential rainfall over South China during June 2017 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1295−1312. doi: 10.3878/j.issn.1006-9895.1901.18207 [33] 章翠红, 夏茹娣, 王咏青. 2018. 地形、冷池出流和暖湿空气相互作用造成北京一次局地强降水的观测分析 [J]. 大气科学学报, 41(2): 207−219. doi: 10.13878/j.cnki.dqkxxb.20160115001Zhang Cuihong, Xia Rudi, Wang Yongqing. 2018. Observational analysis of a local heavy rainfall in Beijing caused by terrain, cold pool outflow and warm moist air interactions [J]. Trans. Atmos. Sci. (in Chinese), 41(2): 207−219. doi: 10.13878/j.cnki.dqkxxb.20160115001 [34] 张家国, 周金莲, 谌伟, 等. 2015. 大别山西侧极端降水中尺度对流系统结构与传播特征 [J]. 气象学报, 73(2): 291−304. doi: 10.11676/qxxb2015.019Zhang Jiaguo, Zhou Jinlian, Chen Wei, et al. 2015. The structure and propagation characteristics of the extreme-rain-producing MCS on the west side of Dabie Mountain [J]. Acta Meteorologica Sinica (in Chinese), 73(2): 291−304. doi: 10.11676/qxxb2015.019 [35] 赵玉春, 王叶红. 2010. 高原涡诱生西南涡特大暴雨成因的个例研究 [J]. 高原气象, 29(4): 819−831.Zhao Yuchun, Wang Yehong. 2010. A case study on plateau vortex inducing southwest vortex and producing extremely heavy rain [J]. Plateau Meteorology (in Chinese), 29(4): 819−831. [36] 赵玉春, 许小峰, 崔春光. 2012. 川西高原东坡地形对流暴雨的研究 [J]. 气候与环境研究, 17(5): 607−616.Zhao Yuchun, Xu Xiaofeng, Cui Chunguang. 2012. A study of convective rainstorms along the east slope of western Sichuan Plateau [J]. Climatic and Environmental Research (in Chinese), 17(5): 607−616. [37] 周长春, 吴蓬萍, 周秋雪. 2015. 一次复杂地形暖区强降水的特征及触发机制分析 [J]. 暴雨灾害, 34(1): 27−33. doi: 10.3969/j.issn.1004-9045.2015.01.004Zhou Changchun, Wu Pengping, Zhou Qiuxue. 2015. Analysis of the characteristics and trigger mechanism of the warm-sector heavy precipitation over complex terrain [J]. Torrential Rain and Disasters (in Chinese), 34(1): 27−33. doi: 10.3969/j.issn.1004-9045.2015.01.004 [38] 宗志平, 陈涛, 徐珺, 等. 2013. 2012年初秋四川盆地两次西南涡暴雨过程的对比分析与预报检验 [J]. 气象, 39(5): 567−576. doi: 10.7519/j.issn.1000-0526.2013.05.004Zong Zhiping, Chen Tao, Xu Jun, et al. 2013. Analysis and Forecast verification of two southwest vortex torrential rain events in Sichuan Basin in early autumn of 2012 [J]. Meteor. Mon. (in Chinese), 39(5): 567−576. doi: 10.7519/j.issn.1000-0526.2013.05.004 -