高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国东部降水中大尺度环流和局地陆—气相互作用的贡献:河南“21·7”强降水事件特征影响因子探究

陈玥 王爱慧 支蓉 封国林

陈玥, 王爱慧, 支蓉, 等. 2022. 中国东部降水中大尺度环流和局地陆—气相互作用的贡献:河南“21·7”强降水事件特征影响因子探究[J]. 大气科学, 47(X): 1−16 doi: 10.3878/j.issn.1006-9895.2208.21239
引用本文: 陈玥, 王爱慧, 支蓉, 等. 2022. 中国东部降水中大尺度环流和局地陆—气相互作用的贡献:河南“21·7”强降水事件特征影响因子探究[J]. 大气科学, 47(X): 1−16 doi: 10.3878/j.issn.1006-9895.2208.21239
CHEN Yue, WANG Aihui, ZHI Rong, et al. 2022. Contributions of Large-Scale Circulation and Local Land–Atmosphere Interaction to Precipitation in Eastern China: Investigation on Influencing Factors of the July 2021 Heavy Precipitation Event in Henan Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(X): 1−16 doi: 10.3878/j.issn.1006-9895.2208.21239
Citation: CHEN Yue, WANG Aihui, ZHI Rong, et al. 2022. Contributions of Large-Scale Circulation and Local Land–Atmosphere Interaction to Precipitation in Eastern China: Investigation on Influencing Factors of the July 2021 Heavy Precipitation Event in Henan Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(X): 1−16 doi: 10.3878/j.issn.1006-9895.2208.21239

中国东部降水中大尺度环流和局地陆—气相互作用的贡献:河南“21·7”强降水事件特征影响因子探究

doi: 10.3878/j.issn.1006-9895.2208.21239
基金项目: 国家杰出青年科学基金项目41925021,国家自然科学基金项目41875106、41975088
详细信息
    作者简介:

    陈玥,女,1996年出生,博士研究生,主要从事陆—气相互作用研究。E-mail: cheny17@lzu.edu.cn

    通讯作者:

    王爱慧,E-mail: wangaihui@mail.iap.ac.cn

  • 中图分类号: P458

Contributions of Large-Scale Circulation and Local Land–Atmosphere Interaction to Precipitation in Eastern China: Investigation on Influencing Factors of the July 2021 Heavy Precipitation Event in Henan Province

Funds: National Natural Science Fund for Distinguished Young Scholars (Grant 41925021), National Natural Science Foundation of China (Grants 41875106, 41975088)
  • 摘要: 2021年7月河南省遭遇突破历史极值的极端强降雨,造成极大人员伤亡和经济损失,同时此次事件暴露出对中国东部汛期降水预测存在一定不足,提示我们需要加强汛期降水和传统影响因子不匹配的机理研究。本文首先利用再分析ERA5月资料识别了与2021年7月有相似环流背景的中国东部夏季降水事件;进一步利用基于相似环流型的动力调整方法,对1979~2021年7月中国东部降水距平开展了大尺度环流动力影响和局地陆面作用分离;最后,量化研究了上述两个作用对此次极端降水事件的贡献。得到如下主要结论:2011年是2021年7月的500 hPa环流相似年,然而相应降水场在华北到长江中下游地区呈现显著差异。利用动力调整方法从降水距平中分离出大气环流的影响,相关分析表明余项反映局地陆—气反馈作用。降水余项是引起2021年7月江淮到长江下游地区的异常强降水的主要原因。归因分析表明,余项主要是由局地热力因子变化引起的,其中,蒸发加强,感热通量显著降低,增加了大气强对流不稳定能量,并通过影响大气相对湿度和边界层高度,使得降水增加。推广到1979~2021年7月降水的演变过程发现,中国东部降水余项的年际变率很强,极端降水异常主要体现在余项中,而环流分量相对稳定,结果强调了局地热力作用对夏季极端降水的重要影响。本研究表明,中国东部夏季降水的预测需要同时考虑大尺度大气环流特征和局地热力作用的贡献,后者对于极端降水预测的贡献尤为重要。
  • 图  1  1979~2021年7月(a)中国东部、(b)河南省的ERA5再分析资料(黑色实线)和CN05.1观测降水(绿色实线)的纬度加权区域平均距平序列,带圆点的绿色虚线表示用《中国统计年鉴》中主要城市7月总降水得到的距平估计值。(c)1979~2020年7月中国东部500 hPa位势高度距平(蓝色实线, r-Z500)、降水距平(橙色实线, r-Pr)与2021年7月相应要素的空间相关系数,灰色圆点表示空间相关系数未通过显著性水平为0.05的统计检验

    Figure  1.  Latitudinal weighted regional mean anomaly series of precipitation (Pr, units: mm) in ERA5 reanalysis data (black solid line) and CN05.1 observation data (green solid line) in (a) eastern China and (b) Henan Province in July during 1979–2021, the dashed green line with dots represents the estimated anomaly values of total precipitation in major cities in July from the China Statistical Yearbook. (c) The spatial correlation coefficients of 500-hPa geopotential height anomaly (blue line, r-Z500) and the precipitation anomaly (orange line, r-Pr) in eastern China between July during 1979–2020 and July 2021, the gray dots indicate that the spatial correlation coefficients did not pass the statistical test at the significance level of 0.05

    图  2  基于相似环流型的动力调整方法过程示意图

    Figure  2.  Schematic of the dynamic adjustment approach based on constructed circulation analogs

    图  3  2011年7月(上)、2021年7月(下)中国东部(a、d)降水距平(填色,单位:mm d−1)和500 hPa位势高度距平(等值线,单位:gpm),(b、e)降水距平环流分量(填色,单位mm d−1)和500 hPa相似环流距平(等值线,单位:gpm),(c、f)降水距平余项(填色,单位mm d−1)。黑色实(虚)线表示正(负)位势高度距平,绿色等值线表示500 hPa位势高度为5880 gpm

    Figure  3.  (a, c) Precipitation anomaly (shadings, units: mm d−1) and 500-hPa geopotential height anomaly (contours, units: gpm), (b, e) precipitation anomaly circulation component (shadings, units: mm d−1) and constructed circulation analog of 500-hPa geopotential height anomaly (contours, units: gpm), (c, f) precipitation anomaly residual (shadings, units: mm d−1) over eastern China in July 2011 (top panels) and July 2021 (bottom panels). The black solid (dashed) line represents the positive (negative) geopotential height anomaly, and the green contour indicates that the 500 hPa geopotential height is 5880 gpm

    图  4  2021年7月、2011年7月中国东部陆面和近地面对流因子相对于1979~2021年7月气候态的距平百分率。8个因子分别为表层(0~7 cm)土壤湿度(SSM)、潜热通量(FLH)、感热通量(FSH)、净长波辐射(LWnet)、净短波辐射(SWnet)、边界层高度(PBLH)、对流有效位能(CAPE)和K指数(K index)

    Figure  4.  Anomaly percentages of land surface and near-surface convection factors in eastern China in July 2021 and July 2011 relative to the July climate state from 1979 to 2021. The eight factors are surface (0–7 cm) soil moisture (SSM), latent heat flux (FLH), sensible heat flux (FSH), net longwave radiation (LWnet), net shortwave radiation (SWnet), planetary boundary layer height (PBLH), convection available potential energy (CAPE), and K index, respectively

    图  5  1979~2021年7月中国东部降水距平(左列)及其环流分量(中列)和余项(右列)与1979~2021年(a–c)6月、(d–f)7月和(g–i)8月土壤湿度距平的相关系数,填色区域均通过了显著性水平为0.05的统计检验

    Figure  5.  Correlation coefficients between precipitation anomaly (left), its circulation components (middle), the residual (right) in eastern China in July from 1979 to 2021 and soil moisture anomaly in (a–c) June, (d–f) July, (g–i) August during 1979–2021. The shadings denote correlation coefficients passing the statistical test with a 0.05 significance level

    图  6  2021年7月中国东部(a)大尺度降水距平、(d)对流降水距平及其(b、e)环流分量、(c、f)余项

    Figure  6.  (a) Large-scale precipitation anomalies and (d) convective precipitation anomalies and their (b, e) circulation components, (c, f) residual components in eastern China in July 2021

    图  7  1979~2021年7月中国东部的(a)降水距平(Pr)及其环流分量(Pr-Circ)和余项(Pr-Res)的箱线图,(b)降水距平按百分位数分段对应的动力调整分量贡献率均值。箱线图中的加号表示离群值

    Figure  7.  (a) Boxplot of precipitation anomaly (Pr), circulation components (Pr-Circ), and residuals (Pr-Res), (b) precipitation anomaly segmented by percentiles, with the corresponding mean contribution rate of dynamic adjustment components in eastern China in July from 1979 to 2021. The plus sign in the boxplot represents outliers

    图  8  2021年7月河南省(a)降水距平(填色,单位:mm d−1)、500 hPa位势高度距平(等值线,单位:gpm),(b)降水距平环流分量(填色,单位:mm d−1)、500 hPa位势高度相似环流距平(等值线,单位:gpm),(c)降水距平余项(填色,单位:mm d−1

    Figure  8.  (a) Precipitation anomaly (shadings, units: mm d−1) and 500-hPa geopotential height anomaly (contours, units: gpm), (b) precipitation anomaly circulation component (shadings, units: mm d−1) and anomaly of constructed circulation analog of 500-hPa geopotential height (contours, units: gpm), (c) precipitation anomaly residual (shadings, units: mm d−1) in Henan Province in July 2021

    图  9  2021年7月和2011年7月河南省陆面和近地面对流因子相对于1979~2021年7月气候态的距平百分率

    Figure  9.  Anomaly percentage of land surface and near-surface convection factors in July 2021 and July 2011 in Henan Province relative to the July climate state from 1979 to 2021

    图  10  1979~2021年7月河南省(a)降水距平及其(b)环流分量、(c)余项的年际变率(单位:mm d−1)分布,(d)降水距平及其环流分量和余项的箱线图

    Figure  10.  Interannual variability distribution for (a) precipitation anomaly (units: mm d−1), its (b) circulation component (units: mm d−1) and (c) the residual (units: mm d−1), (d) boxplot of precipitation anomaly, its circulation component, and residual in Henan Province in July from 1979 to 2021

  • [1] Brubaker K L, Entekhabi D, Eagleson P S. 1993. Estimation of continental precipitation recycling [J]. Journal of Climate, 6(6): 1077−1089. doi: 10.1175/1520-0442(1993)006<1077:Eocpr>2.0.Co;2
    [2] 程炳岩, 钱晓燕, 朱业玉. 1999. ENSO事件与河南旱涝年型的关系 [J]. 河南气象(2): 22−23. doi: 10.16765/j.cnki.1673-7148.1999.02.016

    Cheng Bingyan, Qian Xiaoyan, Zhu Yeyu. 1999. Relationship between ENSO events and drought and flood years in Henan Province [J]. Henan Meteorology (in Chinese)(2): 22−23. doi: 10.16765/j.cnki.1673-7148.1999.02.016
    [3] Conil S, Douville H, Tyteca S. 2007. The relative influence of soil moisture and SST in climate predictability explored within ensembles of AMIP type experiments [J]. Climate Dynamics, 28(2): 125−145. doi: 10.1007/s00382-006-0172-2
    [4] Deser C, Terray L, Phillips A S. 2016. Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications [J]. Journal of Climate, 29(6): 2237−2258. doi: 10.1175/JCLI-D-15-0304.1
    [5] Ding Y H, Chan J C L. 2005. The East Asian summer monsoon: An overview [J]. Meteor. Atmos. Phys., 89(1): 117−142. doi: 10.1007/s00703-005-0125-z
    [6] Ek M B, Holtslag A A M. 2004. Influence of soil moisture on boundary layer cloud development [J]. Journal of Hydrometeorology, 5(1): 86−99. doi: 10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2
    [7] Eltahir E A B. 1998. A soil moisture–rainfall feedback mechanism 1: Theory and observations [J]. Water Resources Research, 34(4): 765−776. doi: 10.1029/97WR03499
    [8] Fischer E M, Seneviratne S I, Vidale P L, et al. 2007. Soil moisture–atmosphere interactions during the 2003 European summer heat wave [J]. Journal of Climate, 20(20): 5081−5099. doi: 10.1175/jcli4288.1
    [9] 龚志强, 封国林. 2008. 中国近1000年旱涝的持续性特征研究 [J]. 物理学报, 57(6): 3920−3931. doi: 10.3321/j.issn:1000-3290.2008.06.102

    Gong Zhiqiang, Feng Guolin. 2008. The research of durative characteristics of dry/wet series of China during the past 1000 years [J]. Acta Physica Sinica (in Chinese), 57(6): 3920−3931. doi: 10.3321/j.issn:1000-3290.2008.06.102
    [10] Guan X D, Huang J P, Guo R X, et al. 2015. The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere [J]. Scientific Reports, 5: 12669. doi: 10.1038/srep12669
    [11] 郭瑞霞. 2019. 北半球中高纬度冷季气温和降水变化的归因分析 [D]. 兰州大学博士学业论文.

    Guo Ruixia. 2019. Attribution of winter temperature and precipitation change over mid-to-high latitude in Northern Hemisphere [D]. Ph. D. dissertation (in Chinese), Lanzhou University.
    [12] Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. [J]. Quarterly Journal of the Royal Meteorological, 146: 1999−2049. doi: 10.1002/qj.3803
    [13] 郝立生, 丁一汇, 闵锦忠. 2012. 东亚季风环流演变的主要模态及其与中国东部降水异常的联系 [J]. 高原气象, 31(4): 1007−1018.

    Hao Lisheng, Ding Yihui, Min Jinzhong. 2012. Main modes in East Asian monsoon circulation evolution and its relationship with precipitation anomaly in eastern China [J]. Plateau Meteorology (in Chinese), 31(4): 1007−1018.
    [14] 姜荣升. 2021. 基于CWRF研究我国降水变化及其与边界层高度的关系 [D]. 南京信息工程大学博士学位论文.

    Jiang Rongsheng. 2021. Study on precipitation variation and its relationship with boundary layer height in China based on CWRF [D]. Ph. D. dissertation (in Chinese), Nanjing University of Information Science and Technology.
    [15] 金祖辉, 陶诗言. 1999. ENSO循环与中国东部地区夏季和冬季降水关系的研究 [J]. 大气科学, 23(6): 663−672. doi: 10.3878/j.issn.1006-9895.1999.06.03

    Jin Zuhui, Tao Shiyan. 1999. A study on relationshipes between ENSO cycle and rainfalls during summer and winter in eastern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23(6): 663−672. doi: 10.3878/j.issn.1006-9895.1999.06.03
    [16] Koster R D, Dirmeyer P A, Guo Z C, et al. 2004. Regions of strong coupling between soil moisture and precipitation [J]. Science, 305(5687): 1138−1140. doi: 10.1126/science.1100217
    [17] Koster R D, Sud Y C, Guo Z C, et al. 2006. GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview [J]. Journal of Hydrometeorology, 7(4): 590−610. doi: 10.1175/jhm510.1
    [18] Li J, Wang B. 2018. Predictability of summer extreme precipitation days over eastern China [J]. Climate Dynamics, 51(11): 4543−4554. doi: 10.1007/s00382-017-3848-x
    [19] Li M X, Ma Z G. 2013. Soil moisture-based study of the variability of dry–wet climate and climate zones in China [J]. Chinese Science Bulletin, 58(4): 531−544. doi: 10.1007/s11434-012-5428-0
    [20] 林朝晖, 刘辉志, 谢正辉, 等. 2008. 陆面水文过程研究进展 [J]. 大气科学, 32(4): 935−949. doi: 10.3878/j.issn.1006-9895.2008.04.19

    Lin Zhaohui, Liu Huizhi, Xie Zhenghui, et al. 2008. Recent progress in the land–surface and hydrological process studies [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 935−949. doi: 10.3878/j.issn.1006-9895.2008.04.19
    [21] Liu S Y, Liang X Z. 2010. Observed diurnal dycle dlimatology of planetary boundary layer height. [J]. Journal of Climate, 23(21): 5790−5809. doi: 10.1175/2010jcli3552.1
    [22] Liu L, Zhang R H, Zuo Z Y. 2017. Effect of spring precipitation on summer precipitation in eastern China: Role of soil moisture [J]. Journal of Climate, 30(22): 9183−9194. doi: 10.1175/JCLI-D-17-0028.1
    [23] 刘婷婷, 陈海山, 蒋薇, 等. 2016. 基于土壤湿度和年际增量方法的我国夏季降水预测试验 [J]. 大气科学, 40(3): 591−603. doi: 10.3878/j.issn.1006-9895.1507.15161

    Liu Tingting, Chen Haishan, Jiang Wei, et al. 2016. Summer precipitation prediction in China using soil moisture and the year-to-year increment approach [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(3): 591−603. doi: 10.3878/j.issn.1006-9895.1507.15161
    [24] 刘婷婷, 朱秀芳, 郭锐, 等. 2022. ERA5再分析降水数据在中国的适用性分析 [J]. 干旱区地理, 45(1): 66−79. doi: 10.12118/j.issn.1000-6060.2021.132

    Liu Tingting, Zhu Xiufang, Guo Rui, et al. 2022. Applicability of ERA5 reanalysis of precipitation data in China [J]. Arid Land Geography (in Chinese), 45(1): 66−79. doi: 10.12118/j.issn.1000-6060.2021.132
    [25] Lorenz E N. 1969. Atmospheric predictability as revealed by naturally occurring analogues [J]. Journal of the Atmospheric Sciences, 26(4): 636−646. doi: 10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
    [26] 孟妙志. 2003. K指数在暴雨分析预报中的应用 [J]. 气象, 29(8): 1−2. doi: 10.7519/j.issn.1000-0526.2003.8.014

    Meng Miaozhi. 2003. Application of K index in rainstorm analysis and forecast [J]. Meteorological Monthly (in Chinese), 29(8): 1−2. doi: 10.7519/j.issn.1000-0526.2003.8.014
    [27] Merrifield A, Lehner F, Xie S P, et al. 2017. Removing circulation effects to assess central U. S. land–atmosphere interactions in the CESM Large Ensemble [J]. Geophysical Research Letters, 44(19): 9938−9946. doi: 10.1002/2017GL074831
    [28] Nicolai-Shaw N, Gudmundsson L, Hirschi M, et al. 2016. Long-term predictability of soil moisture dynamics at the global scale: Persistence versus large-scale drivers [J]. Geophysical Research Letters, 43(16): 8554−8562. doi: 10.1002/2016GL069847
    [29] Orth R, Seneviratne S I. 2017. Variability of soil moisture and sea surface temperatures similarly important for warm-season land climate in the community earth system model [J]. Journal of Climate, 30(6): 2141−2162. doi: 10.1175/JCLI-D-15-0567.1
    [30] 钱维宏, 陆波. 2010. 我国汛期季度降水预报得分和预报技巧 [J]. 气象, 36(10): 1−7. doi: 10.7519/j.issn.1000-0526.2010.10.001

    Qian Weihong, Lu Bo. 2010. Score and skill of seasonal forecasts of summer precipitation in China [J]. Meteorological Monthly (in Chinese), 36(10): 1−7. doi: 10.7519/j.issn.1000-0526.2010.10.001
    [31] Rowntree P R, Bolton J A. 1983. Simulation of the atmospheric response to soil moisture anomalies over Europe [J]. Quarterly Journal of Royal Meteorological Society, 109(461): 501−526. doi: 10.1002/qj.49710946105
    [32] Saffioti C, Fischer E M, Scherrer S C, et al. 2016. Reconciling observed and modeled temperature and precipitation trends over Europe by adjusting for circulation variability [J]. Geophysical Research Letters, 43(15): 8189−8198. doi: 10.1002/2016gl069802
    [33] Saffioti C, Fischer E M, Knutti R. 2017. Improved consistency of climate projections over Europe after accounting for atmospheric circulation variability [J]. Journal of Climate, 30(18): 7271−7291. doi: 10.1175/JCLI-D-16-0695.1
    [34] Seneviratne S I, Corti T, Davin E L, et al. 2010. Investigating soil moisture–climate interactions in a changing climate: A review [J]. Earth-Science Reviews, 99(3–4): 125–161. doi:10.1016/j.earscirev.2010.02.004
    [35] Shukla J, Mintz Y. 1982. Influence of land-surface evapotranspiration on the earth’s climate [J]. Science, 215(4539): 1498−1501. doi: 10.1126/science.215.4539.1498
    [36] Smoliak B V, Wallace J M, Stoelinga M T, et al. 2010. Application of partial least squares regression to the diagnosis of year-to-year variations in Pacific Northwest snowpack and Atlantic hurricanes [J]. Geophysical Research Letters, 37(3): L03801. doi: 10.1029/2009gl041478
    [37] Smoliak B V, Wallace J M, Lin P, et al. 2015. Dynamical adjustment of the Northern Hemisphere surface air temperature field: Methodology and application to observations [J]. Journal of Climate, 28(4): 1613−1629. doi: 10.1175/JCLI-D-14-00111.1
    [38] 孙继松, 陶祖钰. 2012. 强对流天气分析与预报中的若干基本问题 [J]. 气象, 38(2): 164−173. doi: 10.7519/j.issn.1000-0526.2012.2.004

    Sun Jisong, Tao Zuyu. 2012. Some essential issues connected with severe convective weather analysis and forecast [J]. Meteorological Monthly (in Chinese), 38(2): 164−173. doi: 10.7519/j.issn.1000-0526.2012.2.004
    [39] 孙莉娟, 陈海山, 潘敖大, 等. 2015. 土壤湿度年际异常对中国春、夏季气候模拟的影响 [J]. 气象科学, 35(5): 521−533. doi: 10.3969/2014jms.0099

    Sun Lijuan, Chen Haishan, Pan Aoda, et al. 2015. Impacts of interannual soil moisture anomaly on climate simulation in spring and summer over China [J]. Journal of the Meteorological Sciences (in Chinese), 35(5): 521−533. doi: 10.3969/2014jms.0099
    [40] 陶诗言, 丁一汇, 周晓平. 1980. 暴雨和强对流天气的研究 [J]. 大气科学, 3(3): 227−238. doi: 10.3878/j.issn.1006-9895.1979.03.05

    Tao Shiyan, Ding Yihui, Zhou Xiaoping. 1980. The present status of the research on rainstorm and severe convective weathers in China [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 3(3): 227−238. doi: 10.3878/j.issn.1006-9895.1979.03.05
    [41] Wang L, Chen W, Huang G, et al. 2017. Changes of the transitional climate zone in East Asia: Past and future [J]. Climate Dynamics, 49(4): 1463−1477. doi: 10.1007/s00382-016-3400-4
    [42] Wei J F, Dirmeyer P A. 2012. Dissecting soil moisture–precipitation coupling [J]. Geophysical Research Letters, 39(19): L19711. doi: 10.1029/2012GL053038
    [43] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg20130406

    Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese Journal of Geophysics (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg20130406
    [44] Wu L Y, Zhang J Y. 2013. Role of land–atmosphere coupling in summer droughts and floods over eastern China for the 1998 and 1999 cases [J]. Chinese Science Bulletin, 58(32): 3978−3985. doi: 10.1007/s11434-013-5855-6
    [45] Wu Z Y, Feng H H, He H, et al. 2021. Evaluation of soil moisture climatology and anomaly components derived from ERA5-Land and GLDAS-2.1 in China [J]. Water Resources Management, 35(2): 629−643. doi: 10.1007/s11269-020-02743-w
    [46] 杨涵洧, 龚志强, 王晓娟, 等. 2021. 中国东部夏季极端降水年代际变化特征及成因分析 [J]. 大气科学, 45(3): 683−696. doi: 10.3878/j.issn.1006-9895.2007.19247

    Yang Hanwei, Gong Zhiqiang, Wang Xiaojuan, et al. 2021. Analysis of the characteristics and causes of interdecadal changes in the summer extreme precipitation over eastern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(3): 683−696. doi: 10.3878/j.issn.1006-9895.2007.19247
    [47] Yang K, Wang C H. 2019. Seasonal persistence of soil moisture anomalies related to freeze–thaw over the Tibetan Plateau and prediction signal of summer precipitation in eastern China [J]. Climate Dynamics, 53(3): 2411−2424. doi: 10.1007/s00382-019-04867-1
    [48] 杨扬, 杨启东, 王芝兰, 等. 2021. 中国区域陆气耦合强度的时空分布特征 [J]. 干旱气象, 39(3): 374−385. doi: 10.11755/j.issn.1006-7639(2021)-03-0374

    Yang Yang, Yang Qidong, Wang Zhilan, et al. 2021. A study of spatial and temporal distribution of land–atmosphere coupling strength in China [J]. Journal of Arid Meteorology (in Chinese), 39(3): 374−385. doi: 10.11755/j.issn.1006-7639(2021)-03-0374
    [49] 翟国庆, 高坤, 俞樟孝, 等. 1995. 暴雨过程中中尺度地形作用的数值试验 [J]. 大气科学, 19(4): 475−480. doi: 10.3878/j.issn.1006-9895.1995.04.10

    Zhai Guoqing, Gao Kun, Yu Zhangxiao, et al. 1995. Numerical simulation of the effects of mesoscale topography in a heavy rain process [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 19(4): 475−480. doi: 10.3878/j.issn.1006-9895.1995.04.10
    [50] Zhang J Y, Wang W C, Wei J F. 2008. Assessing land–atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation [J]. Journal of Geophysical Research:Atmospheres, 113(D17): D17119. doi: 10.1029/2008JD009807
    [51] Zhang R H. 2015. Changes in East Asian summer monsoon and summer rainfall over eastern China during recent decades [J]. Science Bulletin, 60(13): 1222−1224. doi: 10.1007/s11434-015-0824-x
    [52] 张霞, 杨慧, 王新敏, 等. 2021. “21.7”河南极端强降水特征及环流异常性分析 [J]. 大气科学学报, 44(5): 672−687. doi: 10.13878/j.cnki.dqkxxb.20210907001

    Zhang Xia, Yang Hui, Wang Xinmin, et al. 2021. Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan [J]. Transactions of Atmospheric Sciences (in Chinese), 44(5): 672−687. doi: 10.13878/j.cnki.dqkxxb.20210907001
    [53] 赵俊虎, 支蓉, 申茜, 等. 2014. 2012年我国夏季降水预测与异常成因分析 [J]. 大气科学, 38(2): 237−250. doi: 10.3878/j.issn.1006-9895.2013.12215

    Zhao Junhu, Zhi Rong, Shen Qian, et al. 2014. Prediction of the distribution of the 2012 summer rainfall in China and analysis of the cause for anomaly [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(2): 237−250. doi: 10.3878/j.issn.1006-9895.2013.12215
    [54] 中国气象局气候变化中心. 2021. 中国气候变化蓝皮书(2021) [M]. 北京: 科学出版社.

    Center on Climate Change. 2021. Blue Book on Climate Change in China (in Chinese) [M]. Beijing: Science Press.
    [55] 中华人民共和国统计局. 2018. 中国统计年鉴—2018 [M]. 北京: 中国统计出版社.

    National Bureau of Statistics of China. 2018. China Statistical Yearbook-2018 (in Chinese) [M]. Beijing: China Statistics Press.
    [56] 中华人民共和国统计局. 2019. 中国统计年鉴—2019 [M]. 北京: 中国统计出版社.

    National Bureau of Statistics of China. 2019. China Statistical Yearbook-2019 (in Chinese) [M]. Beijing: China Statistics Press.
    [57] 中华人民共和国统计局. 2020. 中国统计年鉴—2020 [M]. 北京: 中国统计出版社.

    National Bureau of Statistics of China. 2020. China Statistical Yearbook-2020 (in Chinese) [M]. Beijing: China Statistics Press.
    [58] 中华人民共和国统计局. 2021. 中国统计年鉴—2021 [M]. 北京: 中国统计出版社.

    National Bureau of Statistics of China. 2021. China Statistical Yearbook-2021 (in Chinese) [M]. Beijing: China Statistics Press.
    [59] 竹磊磊, 常军, 张善强. 2012. 河南夏季干旱气候特征分析 [J]. 气象与环境科学, 35(1): 49−55. doi: 10.3969/j.issn.1673-7148.2012.01.009

    Zhu Leilei, Chang Jun, Zhang Shanqiang. 2012. Characteristic analysis of summer drought in Henan Province [J]. Meteorological and Environmental Sciences (in Chinese), 35(1): 49−55. doi: 10.3969/j.issn.1673-7148.2012.01.009
    [60] 左志燕, 张人禾. 2007. 中国东部夏季降水与春季土壤湿度的联系 [J]. Chinese Science Bulletin, 52(14): 1722−1724. doi: 10.3321/j.issn:0023-074x.2007.14.021

    Zuo Zhiyan, Zhang Renhe. 2007. Relationship between summer precipitation and spring soil moisture in eastern China [J]. Chinese Science Bulletin (in Chinese), 52(14): 1722−1724. doi: 10.3321/j.issn:0023-074x.2007.14.021
  • 加载中
图(10)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  68
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-11
  • 录用日期:  2022-10-11
  • 网络出版日期:  2022-08-25

目录

    /

    返回文章
    返回