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ABSTRACT

A closed system of equations describing an asymmetric disturbance in cylindrical geometry is expanded
about a small parameter. The small parameter describes the ratio of the magnitude of divergence in the
boundary [ayer to that above that Jayer. A low order system describes a gradient wind balance in the radial
direction and is quasi-symmetric with respect to the pressure and temperature fields. This system can be solved
as an inverse problem for a mature steady state hurricane. The procedure entails asking the guestions what
structure and heating distributions are required to maintain a given asymmetric distribution of the tangential
velocity (i. e. the angular momentum) in steady state. The method of characteristics enables us to solve for
the vertical motion. That in turn determines the radial motion from the mass continuity equation. Appli-
cation of the hydrostatics to the cylindricat thermal wind equation determines the pressure and the thermal
fields and finally the required heating fields are deduced from the first law. This entire system of inverse dy-
namics is linear although no nonlinear terms are dropped from the original direct set of equations. The
real data applications of this procedure will be described in part LI {to be published in the next issue).

L INTRODUCTION

In recent years a considerable number of studies have been devoted to the investigations
of the full three dimensional typhoon (hurricane) problem. see the review by Anthes {19820,
These studies have provided a better understanding of the life cycle of typhoons {hurricane).
Hawkins and Rubsam (1968)(2Y provided the most detailed synoplic analysis of an asymmet-
ric hurricane. This study provided detailed vertical cross sections of the motion, thermal
and the mass fields across a mature hurricane, Hilda ‘of 1964. The research aircraft pene-
trations of hurricanes have provided unique data sets for the analysis of the structure of the
inner rain area. Modelling studies of asymmetric hurricanes have mostly used idealized
inital state where an incipient disturbance is usually in a gradient wind balance, sé¢ Anthes
(1971 a. by, Tuleya and Kurihara (1975)<), Jones (1977 a, b}t*""), Madala and Piaesek
(197519 and several others. Real data numerical weather prediction experiments have been
attempted by Mathur (1974)®), Fiorino (1978)!**!, Madala and Hodur (19771 and several
others. These studies have shown considerable success in the simulation or prediction of
various features such as the structure of the mass, motion and thermal fields. These include
the asymmetries of the outflow layer, spiral rain bands, eye wall convection and general
descent within the eye wall. Energetically the role of cumulus convection in generating
eddy available potential energy and its release to eddy kinetic energy have been addressed
by Tuleya and Kurihara (1975)t1. More recently Kurihara and Tuleya (198130'%3 and Tuleya
and Kurihara (1981)7 examined the role of convection, horizontal and vertical shear in
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the development of a tropical storm.These studies show the importance of weak easterly
shear (in the vertical) for the development of tropical storms.

The present study is an extension of an asymmetric hurricane model, Krishnamurti (1961,
1962)014-15). Here the maintenance of a mature asymmetric steady hurricane is addressed.
It is shown that given the momentum distribution(i, ¢. the tangential winds) and a formula-
tion of the frictional forces, it is possible to construct a consistent dynamical and thermody—
namical structure of the hurricane. In particular, it is possible to construct the diabatic
heating fields along the rain bands and the eye wall by an inverse approach starting from
the tangential velocity. This problem is approached in two parts. Part | of thc paper
presents a mathematical treatment and a scale analysis of the inverse problem. In part 1l
of this paper we shall show a step by step analysis of the results for a hurricane.

Fig. 1 shows the typical streamline and isogon field that can be obtained from the
analysis of the flight data in a hurricane. Aircraft flight data is not synoptic but most
observations are made in a period of about 3 hours, hence a synoptic analysis of the data
can be made with some degree of confidence. The Doppler navigation system is capable of
giving wind speeds with errors within 0%, and direction within 10°. These are based on
estimates of probable errors in the air speed, ground speed, heading and the drift angle of
the aircraft. The aircraft flight was made near the 250 hPa surface, the analyzed stream-
lines depict the high level outflaw in hurrican Helene of 1958. The outflow is rather marked
and one can obtain a good measure of the tangential and radial winds at this level from the
isotach field shown in Fig. 2. In general, however, the flows above the boundary layer
are more tangential than. radial, hence the tangential motions are better known from flight
data than the radial motions. NOAA research flight facility aircrafts are equipped to
measure among the various parameters wind speeds D-values, air temperatures and mois—
ture in a hurricane.

The flight data is generally of good quality. The isotach of the total wind speed can
generally be analyzed without much difficulty and one frequently finds the smooth crescont
shaped geometry in the analyzed maps. All that can be said about the temperaiure and
D-values is that they are more symmetric about the storm center than the velocity fihd:
The moisture field is generally very poorly defined.

In order 1o draw an internally corisistent three dimensional picture of a mature tropical
storm an alternate manner of description of the flows is proposed in this paper. We assume
that the tangential velocity distribution is prescribed in a storm. For momentum and mass
balance a first order partial differential equation for the vertical motion must be solved wh:ch
in turn describes the radial motion. The temperature, D-value and heating distribution
required Tor steady state maintenance of the storm are cbtained by solving the radial, verti-
cal and the thermodynamic energy equations. An obvious advantage of this scheme lLies in
that all of the differential equations are rendered linear by the prescribed momentum distni~
bution. Furthermore, since the calculations are anchored to an observed distribution of
momentwn the other fields will be expected to be realistic.

A three dimensional hurricane modelf can be of value in our understanding of the
interaction of a hurricane with the environment. Furthermore besides having a forecasting
value such studies will be important for understanding the role of the eye wall and the spiral
rain bands in the momentum, heat and energy balance of the storm.

Our steady state three dimensional mode! is somewhat limited in its scope but we feel
that this approach will answer some of the same questions that one may hope to answer by
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Fig. 1. The ohserved distribution of isogons (thin solid lines) and streamlines

(heavy solid lings) in Hurricane Helene, September 26, 1958 near

the 250 hPa surface. The flight time is marked in parenthesis in

hours, minutes, and scconds in Greenwich time. Plotted winds are
about 30 seconds apart. The horizontal scale is in nautical miles; 0-0

marks a fix on the center of the storm,
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Fie. 2. Isotach analysis of the total winds at the Z5¢ hPa surtace in
Hurricane Helene, September 26, 1953 (units: knots).
The horizontal scale is it nautical emites: 0-0 marks a fix on the

center of the storm.

solving the more general initial value problem.

We shall first show that if fluid parcels conserve their mass and absolute angular mo-
mentum for steady state motions, then for a prescribed langential motion the radial and
vertical motions are exactly determined from solutions of a first order partial differential
equation.

(A list of symbols is included in Table i, placed at the end of the paper). Conservation
of mass is expressed by the relation

1 aUu 1 aFr Ao

oo Lovr  do (1)
aw v ot R
and conservation of absolute angular momentum M, is eipressed by the relation
U aM aM aM \
. ag — o T Yy 2}
. 56+Var+“’ap° (
where M =U'r+f,r¥/2. Eq. (2) may be rewritten in the form
U oM o
—_r_ 8 T 9p
=ow T
ar ar
oy
e _ “ap
gﬂ gﬂ 7

or F=b+am. ’ {3)
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Substituting in (1} we obtain

@ @ dar Ao 1 8br alu .
E}p+r + 8r+r Br+?—?ﬁ_0 C4)

This first order partial differential equation in ¢ can in principle be solved by the method
of characteristics. If one makes the further assumption that flows are quasi-barotropic,
. namely gL/ /ap is small, then convergence, dw/dp, is given by the relation

ol -
20 2 (iaﬁ )_1 au (5
ap ar g, r 98
The right hand side is zero for a symmetric tangential velocity distributicn, hence conver—
gence is related to the asymmetries of the tangential velocity by Eq. (5). The barotropy
. assumption is not essential for the present study.
If we consider the following form for U,

=1
p

M
U=Uy{r)+ >, (Ar)sinnd+ B.(r)cosnd), (6)
convergence da/dp may be expressed by a relation of the form
M
?.= 3 (Colr) sinnd+ D, (r) cosnd) . (7)
a

It follows then that if the tangential velocity field contains a single harmonic, the convergence
field will contain moré than one harmonic.

A hypothetical vortex of the type considered here, with several harmonics in its tangen-
tial velocity distributin will contain several bands of convergence and divergence. This
~ banded form is a consequence of conservation of mass and -absolute angular momentum.

An examination of the distribution of absclute angular‘:momentum in a hurricane leads
one to conclude that the isoline of the angular momentum ¢ould not possibly describe either
the trajectories or the §treamlines. Frictional torques ar_c;rather significant for motions on
many scales including‘the cumulus scale. Indeed a parametarization of the cumulus scale
motion would describé'the gross effects of the frictional torques. The foregoing analysis is
presented 1o illustrate the relation between the momentum. distribution and a banded con-
vergence distribution. In the following section we shall formally show that the inclusion of
frictional torgques alters the picture considerably near the center of the storm but to a lesser

degree away from the center,

1. SCALE ANALYSIS ®F THE STEADY STATE EQUATIONS

The scale theory is based on an expansion of the dependent variables of the governing

equations in powers of a parameter e=#/j,, where R and 1, are measures of the inverse
" of the gradients of a typical variable in the radial and tangential directions in a hurricane,

I e.

2 1 2
2=l 2 (&)
o _ 1 2 (9)
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R and }, may be considered as iwo fundamental length scales larger than the cumulus scale.
In a hurricane variations in the radial direction are somewhat greater than in the tangen-
tial direction both in the boundary layer and above. Hence, it is safe to state that

_R
A

This is equivalent to the statement that a hurricane is quasi-symmetric.
We shall divide the flows into two regions, I: the boundary layer and, 1I: above the
boundary layer. In the regions 1 and II we shall further assume:

e <1. {10)

Region |
U=¥,U7, (11}
=y, ’ (12}
Region 11
U=lus, {13)
V=V, i Ve, (14)

where the primes refer to non-dimensional quantities of order unity. Here i, may be con-
sidered a typical measure of the tangential flow in the storm. In the boundary layer ihe
radial and tangential velocity are of the same order, thus permitting inflow angles of the
order of /4. Above the boundary layer we have assumed that the radial motions are
smaller than the tangential motions.

(1) Convergence in non—dimensional form

The equation

U |1 éFr B
SIS o 15
o4 + r ar * ap 0 (15

for Region I may be written in the form:

Ve @U;_F_Vk@_ L I, do

Ao ar’ e r! orf ap ?

(R pUT 1 Wirt\, Bw _

R\ A T o ) ap (1)

The primed quantities are of order unity, hence, the principal term in the convergence in
the boundary layer is

do | __ Ve 1 OWirt .
ap a R rf or’ an

and (he magnitude of convergence in the boundary layer ~F,/R.
For region II Eq, {8) may be written as

Vo @U’  VoR R 1 'r o _,

G el TTRL, R v arr | ap
Vo 3Ur . 1 avirs ) Ba _ 18
R (_EA’ T ar’ + op 0. (18

Above the boundary layer convergence
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Go i __ V(AU 1 )
apin ;‘,u . BA ¥’ ar’ *
and its magnitude =~} ,/4,.
Hence, the expansion parameter ¢ = K//, may be re-expressed as the ratio:
Convergence above the boundary layer
‘Canvergence in the boundary layer

() Vorticity in non-dimensional form

The expression {,= ﬁ—{- U +f, may be non-dimensionalized in the

ar r R
boundary layer as follows
Ut UV
G S

_ﬂ(,aﬂ’ U’}_R g

7\ e T )T e
_ S LU R R
Let =L/ Vol R) + ot Ao S (20)

hence, to orders of (F:‘/’/ln)“ in the boundary layer

,_ AU U” IR
b= e T Fa
2L U 1

=25 - (21
ar’+r’+1?., @y

Above the boundary layer we obtain

o Voo B LU VR Ty
TR Tart ot i a7

and

. EU’ vr R R &

L= o Tty B e

L U,
r

o T TR

again to powers of{%)o, gEr=- 7

The expressions for vorticity to the lowest order are similar in the boundary layer and above.
However, it is of interest to note that the tangential variations of the radial motions are of
the order B/}, in the boundary layer and {#/4,)* above the boundary layer.

(3} Scale anaiysis of the equations of motion and the thermodynamic energy equation above

the boundary layer

The basic equations are, the tangential equations of motion

oU L, o WU o
&z -‘—UTA+I/( +f.,)+w == X 2Z g, (24)

ihe radial equation of motion
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- v av 2z
RV L v fy @ .
+ a,l +V ar —fU+ 55 957 +F.. (25)
the hydrostatlc relation
ReT ___g2Z y
p ap » (26)
and the thermodynamic energy equation
EJT . eT EJT ar ReT H
L Y BT, G NEL I 7
2A + ar t @ op @ Cop +C,, (27)
We shall perform a scaling of the Eq. {24) through (27) as follows:
U=v,l-,
V=V, %—V’,
a=0Rw’,
82 _1 92
ar R ar’?
a1 3
al A a8l
4 _1 @2
ép P ap’’
*
T-7.7,To= 25",
[~
where J/, is a characteristic tangential velocity. {2 is & characteristic vertical velocity.
Time is scaled by the inverse of the magnitude of convergence above the boundary layer.
P is a characteristic pressure above the boundary layer, defined by the equation,
-
oo _ £ o’
op P ap’ (28)
- .
* where the dimensional ratio -‘%— is of the order -I_/“ , as defined earlier. T, is a char-
o
acteristic temperature and #* a correspbnding'scale height of the atmosphere. The primed
quantities arc non-dimensional.
The horizontal pressure gra.dlcnt force — ng is scaled with the tacit assumption that
gdZ _ Vi 8z’
dr R orr A (29)
This is equivalent to stating that the pressure gradient force is of the same order as the
centrifugal force for scaling purposes. This is based on the observational studies of Gray
. (1961)8,
b Let AZ, denote the variation of geopotential height along the radial direction, then

AZ~Yo
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Furthermore AZ,/AZ, is of the order J,/ R hence AZ, is of the order %? _ W
] g

or

gaZ _ 3 az’

ad AT A

The friction terms F, and F, in the tangential and radial equations are written in the follow-
ing form: T

{30)

P 2 (S ) @
e G e ST S ) o

where »,, », and K are eddy momentum exchange coefficients above the boundary layer.
From dimensional considerations we shall scale these coefficients as follows:

Vo
R,
w0

—.r’ ’ 17'
. - ,
‘e An ’

K= Pz~—~ﬁf'

where }7,/4, is a characteristic unit for thc'mvcrsc of time scales, and R, 7., P, are the
length scales along the coordinates, r, 8, and p respectively. This implies that R /A4,
AV o/ 4, and PY /1, are measures of the eddy momentum exchange coefficients. The reason
for this scaling lies in the following intuitive argument. If subgrid scale motions like the cumu-
lus scale are important for transfer of momentum in a storm of fundamental scales R, A,
and 2, then »,, », and K must be related to these scales in a simple manner.

Eq. (24) through (27) can be non-dimensionalized by the scaling parameters discussed
above, and we obiain the following equations

s U ViR oz
o T TR )*“ ﬁp] % (Ao aA7

b A R R AL d e

f—)LU’ ,+V (

V3 , gggi vk Ut U\ Vh o 8Zf
__[ ;J,n U 8/’ +V +G]” ap’ —_— R (f’ + )]—’— ar,l
Vi(RrR R 8/, ! v, v __Q_( BV’)}
T 5 % aAf(”ﬁaA')'* ( {5+ )]*‘ap’ “on7 )i
. (34)
7 P
Tr=—p' giz ’ (35)
. gH* . aT’ arf 8T’ Ry , T'_ H
Vo5 R U ey +V’ —w’ BP' T, o' = c, " (36)

We shall next expand the non—dlmensmnal dependent variables U/, ¥/, w/, Z/, and TV in
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powers of R/,
Ur=UT+U (RAA) UL (R 4 = D UL(R k)", (37)
VI=V iV (RIA)+ VIR + = D VR 4) (38)
a’=a)ta (Rik) ol (RIAY + - =3 ai(R/i)" (39)
20 =2+ ZU R W)+ ZI (RIAY + =" ZI(RIAD", (40)
T/=T{+T] (RIA)+ T (R + =) TI(R/A)" (41)

n=a

A substitution of the series expansion of L', F”, »", Z' and T’ in Eq. (33) through (36) may

be made to obtain ordered sets of equations to powers of (R/1,)".

The lowest order set of equations is obtained by retaining terms of order (R/i,)°.

This is given by the following:
Equation of motion:

U1 LU _ 83U’ U’

Uy 2

A4 ar’ + r’ +—RT to ap’  ar’ ™ r
2 g U’
+apr p7’ (42)
e us al’
v’ +7R.,7— ar’ (43)
Tie—p ?p’, (44)
Continuity equation.:
ati+ 1 e’ fe’
ar T Tar ap7 O (45)
Thermodynamic energy equation:
ar’ T’ oT' _ao'T! Rg . H R A
e r 24 p WL & 4 5 e LI, [
o TV g e e T T, T GHT T (46

The following properties of this lowest order system of equations above the boundary
layer are of interest. The vortex is in gradient wind balance. Pressure torques do not

influence the momentum distribution implying that the asymmetries in the D-value field
and the temperature field are not very large. Angular momentum is not conserved and hence
a net heating H is required to maintain this storm in steady state. The foregoing analysis
would describe a storm where the boundary layer convergence is much larger than that just
above, 1. €., a¢l. As g approaches 1 departures from gradient wind balance become
significant in Eq. (34).
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1II. CONCLUDING REMARKS

A simple framework for estimating vertical motions and the diabatic heating distributions
in a hurricane is presented in this paper. The approach is relatively straightforward in that
the inverse problem is linear. Given the distribution of angular momentum, a sequence of
linear equations in turn describes the radial, vertical, thermal and heating distributions al-
though the equations are in fact complete. Our aim is to seek a relationship between the
angular momentum distribution and the asymmetric heating distribution such as the eye
wall and rain bands. It should also be possible to examine the refative intensity of heating
in the eye wall and in the rain bands of a hurricane.

Although the scaled system permits azimuthal asymmetries in the ‘motion and heating
fields, the pressure and the thermal fields to the lowest order are quasi-symmetric. The
validity of that feature in the inner rain area has been peinted out in the observational
studies of Hawkins and Rubsam{1968)12 and several others. The relative flexibility of this in-
verse approach is due to the absence of pressure torques in the azimuthal direction. That
makes the stepwise construction of the hurricane possible. It should be noted that although
the inverse system is apparantly linear at every stage the fully scaled so-called nonlinear equa—
tions are in fact used everywhere. )

The entire evolution of the asymmetries in the heating critically depends on the asymme-
tries of the angular momentum distribution. Thus the success of this method reguires a
good data base for the definition of the asymmetric tangential yelocity. Since that is the
larger of the velocity components, the present methods of opservagions, via research aircraft,
are capable of providing sufficient accuracy of this field. The formulation of the friction
terms in the momentum equations determines the sinks of moientum for this problem.
In the second part of this paper we shall show that the essential gsymmetries of the vertical
motion and the heating are not critically dependent on the formulation of friction. It is
the asymmetries of the observed momentum distribution that seems vital for the structure
determined by the proposed method.

The research reported here was supported by the National Science Foupdation (NSF) grant No. ATM
83040805. The computations reported here were carried out at the NCAR CRAY. NCAR is sponsored by
the Naticnai Science Foundation. Mr, Sheng Jian would iike to convey his appreciation to Nanjing Uni-
versity for permitting him to study at Florida State University.

Table 1 List of Symbols

radial coordinate, positive outward

tangential coordinate, positive in the cyclonic sense
pressure, the vertical c¢oordinate

tangential component of velocity

radial component of velocity

vertical component of velocity

absolute angular momentam per unit mass

fo £ Coriolis parameter

Lo absolute vorticity

Ee\:c‘hcb«

— Y oU/aP
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R characteristic length scale in the radial direction

kN characteristic tangential velocity

e non—dimensional tangential velocity

¥ non-dimensional tangential velocity

V4 geopotential height

F,  frictional force per unit mass in the tangentiai direction

F, frictional force per unit mass in the radial direction

R, gas constant

o non-adiabatic heating per unit mass

Cp specific heat of air at constant pressure

H*  scale height of the atmosphere

i characteristic vertical velocity

g acceleration of gravity

v, radial eddy-momentum exchange coefficient

Pa tangential eddy-momentum exchange coefficient

1. vertical eddy-momentum exchange coefficient

P characteristic pressure

¥ radius of ihe zone of maximum tangemtial veloeity

1 symbol for the boundary layver

11 symbol for region above the boundary layer
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