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ABSTRACT

Starting from the primary equations, the author derives the KdV equation which describes solitary Rossby
waves in the tropical atmosphere, and indicates that, because these waves are ageostrophic, they differ from the
quasigeostrophic solitary Rossby waves studied by Redekopp et al.  Owing to nonlinear action, these wave: are
also different from traditional linear waves of the tropical atmosphere. The author believes that the stationary
tropical atmospheric waves reflect the characteristics of solitary waves in that the energy does not disperse,

1. INTRODUCTION

The intrinsic quality and the evolutive regularity of tropical atmospheric waves are the
most fundamental problems of tropical synoptic and dynamic meteorology. Matsuno (1966)
was the first to build a theory about tropical atmospheric waves. He demonstrated the exist-
ence of mixed Rossby—gravity waves and Kelvin waves, and indicated that tropical Rossby
waves and gravity waves may still be distinguished in general cases. The Rossby fumber of
atmospheric motion in the tropics is greater than in mid- and high-latitudes, so the order of
magnitude of advective acceleration is close to that of the pressure gradient and Coriolis force.
Hence the nonlinear effect is of greater significance in the tropics than in mid- and high-
Iatitudes. In the seventies the knowledge of nonlinear waves in various physical realms has made
much headway, with the scattering inverse transformation method gaining great suecess,
These results have been used to study quasigeostrophic atmospheric motion, and it is found
that there exist quasigeostrophic solitary Rossby waves in the atmosphere (Weidman and Re-
dekopp, 1979; Redekopp, 1977; Hukuda, 1979). In the tropical area, the geostrophic rela-
tion between wind and pressure fields does not hold; thus a new theory about these nonlinear
waves must be developed. In this paper, starting from the primary equations, we will derive
the KdV equation describing tropical atmospheric solitary Rossby waves, and discuss some
fundamental features of these ageostrophic waves.

II. ASYMPTOTIC EXPANSIGN OF THE SET OF TROPICAL ATMOSPHERIC D\_’NAMICV
EQUATIONS

We define the following length and time scales:

* Died in Beijing, 1984, This posthumous manuscript is recommended by Prof. Zeng Qingcun and Dy,
Wu Guoxiong.
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where Co=./gH , 8=28/a,, H is the scalar depth of the atmosphere, (@ the angular
velocity of the earth, and g, the radius of the earth. We also suppose that the scalar velocity
is 7, The dimensionless equation of motion of barotropic divergent atmosphere in an equa-
torial g-plane can be written as
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where ¢ is time, x and y are eastward and northward coordinates respectively, 4 and v are
corresponding wind velocities, ¢ iz geopotential height, and R_f_I_T' The magni-

tude of the Rossby number is one order greater in the tropics than in mid- and high-lati-
tudes, so that direct neglect of terms involving R is not suitable. We will retain them, but reduce
the latter R, and neglect their high-power terms only when the problem of cigenvalues
is solved in Section IIIL
Suppose that the stream field consists of a2 basic flow U(y) and a time-dependent
disturbance, ie.,
v=e0" (t,%, %) (3)
d=d(y)+ed {rxsy)
where g is a characteristic nondimensional parameter expressing amplitude of disturbance.
Substitution of (3) into (2) wields
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where U_,=% and ¢, = d'ﬁ
Introduce the foIlowmg multiplenscale variables:
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Obviously in the case considered here, the meridional scale is smaller than the zonal scale, so
that mixed Rossby-gravity waves do not exist (Li and Yao, 1981).
We expand o', ¢’ and ¢" with the small parameter ¢:
W =u, teu, et
vi=e'tuy eyt + }

d=d,ted, +e'd.+

(8)
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Upon substituting (5) and {6) into (4) and taking the lowest approximation of ¢, we obtain

yU=-4,=0 (7)
which shows that the basic flow of low-latitude armosphere is in geostrophic balance. As
y in front of {J is not constant, this balance relation is slightly different from the geostrophic
relation of midlatitude.

Taking the first-order approximation, we obtain:
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From the second-order approximation we obtain
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From (8) and (9), nonlinear terms do not appear in the equations of first-order approximation,
so the meridiona! structure of the disturbance is similar to that for linear waves. The nonlinear

action makes waves vary slowly with time.
III. DERIVATION OF KdV EQUATION

Suppose (8) has soluticns with the following form:

o= P15 E} 8 (5)
v.,:fﬁ(‘r,rf)ﬁ,(y) } (10)
o= 9(z+E) )
Substituting (10) into (8) yields
(U =)o+ (Uy— )00+ da=0
2. 1
A ﬂn +5- =0
oy J : @)
.o 29,
(U —cldo+ st + 80 — 87_0

In this paper, we do not aitempt 1o discuss the problem of critical layer, so we may assume
that {J— -0, Fliminating ¢, and U/, in (8", we obtain an ordinary differential equation
about #,:

d'0,
dyt

+ A,(y)%u,(y)aﬁo, 1)

: : __p_2U=e)U,
in which A (y)= U?, =1 and
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The boundary condition is

2,—9, y—>too (13)
Egs. (11)}—(13) determine meridional structure and phase speed of the waves. We will discuss
the details of this eigenvalue problem in the next section. When the solution of (113—{13),
U, and 93.,- is obtained and substituted into the equations of second-order approximation,
we should have
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in which the subscripts £ or y represent derivatives with respect to £ or y.
Since the homogeneous part of (14) is identical with (1), from solvable condition 4 (z,£)
must  satisfy

erpote9Pitenpase=0, (15)
in which
o= - g, AR ey, |
ez:jl{( Sl 2c) )(au+ﬂw:}a) + (24, zzw+awﬂn+an,aw)( 17) |
(- L{f‘ +% )(ﬂu3n+ﬂo3u) ~ (BosBot BeBoy + BoyPoy . (16)
+ﬂn$m)}0ndy,
e,=j:ﬂ§dy, J

Eq. (15) is a typical KdV equation. As KdY equations have permanent pulse-like travelling
wave solutions, called solitary waves or solitons, (15} may show that there exist atmospheric
solitary waves in the tropics. They form as a result of combined action of nonlinear and dis-
persive process while balancing each other. During moving and interacting with one another,
the solitary waves bebave like stable particles. On the contrary, linear waves exert effects of
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dispersion only, so their energy disperses all around. This fact shows the intrinsic difference
between the nonlinear solitary waves in the tropical atmosphere and the linear waves,

Iv¥. MERIDIONAL STRUCTURE OF WAVES

In previous sections we have stated that the waves discussed so far in this paper belong to
long waves whose meridional structure is still a linear problem, but as shown by (%) or {16).
they surely influence the nonlinear characteristics of the waves. Let us assume a basic flow
with a horizomal shear as follows:

Ulpy=Uly—y)=Us+U,y. (17)

In light of the discussion in Section I, we neglect the terms involving high powers of R,
so (11) and (12) are reduced to

g;) (Cu+bny+coy )’_ (a|+b.y—y’)'ﬂn=0, (18)

a,=2U e /[ (U —c)?—1], b,=-U,, eo=—U,
w=(gng=v ) b= [ g e }

which are more or less similar to the result of a previous paper. Thus we may use the trans-
formation given there in this paper, ie.

A ) —b
W= ﬁueXP{b y+2+b y’+a+';° oy}

(1]

’ (20
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Substitution of (20) and (21} into (18) yields

‘i,zw H ]ff; +-5w=0, (22)
o= gt Ut g1 . (23)
Eg. (22) is a confluent hyperbolic equation with a solution as
1 a1 3
=K, 'W( FEEEY z)-lf K;z”’h{(— 2'1‘5‘,?,2). (24)

Changing (13) into a boundary condition in the limited region y=ztyv,, ¥,=0, we
can determine the eigenvalue « from this boundary condition. The dispersion relation of first
order approximation (linear) is

P A S—
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(25)

or

u
2a+1+5"

where K is zonal wave number, If g= —1 and U, =0 italso represents the Kelvin wave's
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frequency. The Rossby wave approximation expressed by (25) had bzen shown {Lighthill
1969, Lau 1982) to be equivaient to the assumption of geostrophic balance in zonal direction
which is in agreement with (8) (linear case).

Since the zonal wind expressed by (8) is in geostrophic balance, the gravity waves are ex-
cluded and Yanai waves disappear. This fact may be found from {25), ie., if we let K=0,
the wave speed formula given by Matsuno (1966), and compare that with {25), it can be seen
that they are Rossby waves, So (23) is a very fair approximation for large-scale Rossby waves
and Kelvin waves. But the KdV equation derived in this paper describes nonlinear process
of Rossby waves only (Fig. 1)

\\ memal gravity

o | 2 /
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2
-
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;: /‘(,:. = Kelvin
AL i . "
= 05 —1-2 % 21 05
-—— westward eastwarg —a-
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Fig. 1. The dispersion relation for squatorial
waves (referred to Pediosky, 1980).

From (24), we may further obtain

1 9,
Uo——:Tb—r:c—)T-:T[*{Uy—y) (U—C)‘”nﬁyu'@o +—Ey~:{ 1
(28)
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The meridional structure of the waves is similar to that in the linear case, yet they are modu-
lated by nonlinear effects in the zonal direction and their amplitudes vary with time. The shear
of basic flow affects both the linear dispersive relation and the meridional structure of waves.
Tius from (16) it inevitably affects coefficients of the KAV equation. This fact is an important
aspect of the effect of the shear of basic flow on the tropical atmosphere. In this paper we can—~
not discuss this problem in detail. The author will discuss this problem in a special work.

V. CHARACTERISTICS OF TROPICAL SCLITARY ROSSBY WAVES

For convenience, we first transform (135) into the following normal form:
u,—ﬁﬂﬂq Fuggp=0 (27)
u=e,e37'" e /6, 9=1(g./e.)'"¢. (28)
* Tn section 11, we indicate that, because of the combined actions of dispersive and nonlinear
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terms, the solutions of (15) may be solitary waves. This is its most distinctive feature. We
call the solitary waves solution of (15) or {27) a tropical solitary Rossby wave. Its mathemat—
ical form is

u(r,n) =asech®(ky—4£°v+46), (29}

a=2k*,
% and § being determined by distribution of the initial disturbance. Eqg. (29) shows that the
speed of this wave is proportional to its amplitude and inversely proportional to the square
root of its width, Ualike the linear dispersive waves, these waves do not disperse energy when
they advance forward. This fact implies that waves with characieristics of permanent pulse-
like travelling waves can also exist in the tropical atmosphere. Furthermore, as an arbitrary
initial condition can not simultaneously excite two solitary waves with the same wave speed,
when there are two such solitary waves in the atmosphere, they inevitably meet because of their
different wave speeds. In the interacting process, they vary only in phase, but still advance
with their initial speeds after interaction. This fact unveils the great difference between the
tropical atmospheric solitary waves and pure linear modes in the aspect of interaction. For
example, if two waves in the initial time are represented by
u(x;o) =12K;SEChZEK,' +6]

and

i=1, 2, K.,=1, K,=2,
then the solution with two disturbances superimposed is

u(xyt) = 34+ 4cosh[(2x—8t) +coshi{dx—64f)']
? [3cosh(x—28f) +cosh(3x—36¢) ]

This result shows that the amplitude is enlarged. The superimposed waves will separate from
each other after some time and the larger wave will run in front of the smaller one. So the sol-
jtary waves will automatically rearrange themselves. This interaction has been shown by
numerical computation with the method of characteristic line (Li and Yao, 1982). Fig. 2 is
the case of two solitary waves. When T =0.75 then the two waves combine with each other,
and the intensity of amplitude increases. When T'=1.5 they separate again and at this
time the larger solitary wave is in front of the smaller one.

This situation can also be qualitatively represented in a two-dimensional map. Fig.3
shows the geopotential height evolution in the equaterial area for

U=Uy}'+uu (”n<0).
1t is seen from the figure that the larger soliton matches the smalier one. When they are com-
bined with each other, at last the larger one lies in front of the smaller one. In the equatorial
area we often observed that the synoptic systems combine and separate from each other in
the weather maps. We think that these may be the behaviors of inferaction of the solitary Ros-
sby waves.

The resuits of spectral and synoptic analyses of tropical atmospheric motion show that
there exist slowly moving atmospheric waves in the trepics, the frequency of which falls in the
category of Rossby waves. Their lives are usvally long and they can keep on advancing afier
crossing the whole ocean. But the linear theory about tropical atmospheric waves holds that
the energy of tropical Rossby long waves propagates with a group speed different from their
phase speed, i.c., waves will not remain stabie when they match a long distance. Therefore,
the linear theory cannot explain these waves completely. In the light of our work, the above
behavior is just the characteristic of solitary Rossby waves swhich isformed . under balance
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between nonlinear and dispersive effects. In addition, the stream field of disturbance is like a
pulse, whereas troughs (or lows) alternating with ridges (or highs) are more often seen in the
tropical atmosphere.  Although great parts of waves are severely affected by diabatic heating,
the nonlinear effect is still playing an important part in majotaining the wave shape to lock
like a pulse.

Solitary waves are not the unique solution of the KdV equation. Generally speaking, the
stream field described by the KdV equation consists of a number of solitary waves with differ-
ent speeds and an oscillating wave train. Especially when the initial stream field satisfies
the inequality U7{0,%)>=0, the solution involves only the oscillating wave train. Now
mathematicians have an intimate understanding of non-soliton solutions of the KdV equation.
Its stream field consists of waves involving troughs alternating with ridges, especially a tri-
angular leading wave head with an oscillating wake. They disperse energy, so ali the wave trains
decay with time. 1t can be seen that these waves are different from the solitary waves discussed
above, hence we call them nonlinear Rossby wave trains. This type of wave train is different
from linear waves (i.c., the solution for the case ¢,=0). Iisleading wave decays more quickly
than the tail one in contrast with linear waves. After a long time, oscillating wave tails
form a number of wave groups. No matter how long the wavelength of the initial disturbance
is, it may be short in wave groups. In other words, the shorter wave may be excited by long
initial disturbance with 2 nonlinear effect. We should describe the evolution of these short
waves with the nonlinear Schrodinger egqualion.
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V1. CASE WITHOUT BASIC FLOW

Let U(y) in (11)13) vanish; thus the corresponding eigenvalue problem is trans—
formed into

&, .[_ | S P
ay* -+ p ¥ _|ﬁ.-—-0. (30)
Its solutions are

2n-}i -y _ }
to= 2L el L o ()~ Han () (31)
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where H.{y) is the nth order Hermitian polynomial and
N
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The coefficients of the KdV equation are
el=}_ni‘ﬁ=dy S

e,=j:_{[ ”y—%%] {05+ Bayty) “({j‘ +%)('ﬂn$n + ¥, ’sny )}-:).,dy (32)

e,= K:_ﬁid y

For quasigeostrophic motion in mid or high latitudes, solitary Rossby waves cannot exist
if the shear of basic flow vanishes. In the tropical atmosphere, solitary Rossby waves may
exist even if the shear of basic flow vanishes. Here we are going to show that this difference is
due to the ageostrophic characteristic of the tropical atmospheric motion.

We suppose that the first order approximate stream field obeys geostrophic balance; thus
the terms involving ({J —¢) in (8) and (9) disappear and (14) becomes a conservative form of

. quasigeostrophic potential vorticity. It is easy to demonstrate that (32) becomes

o %\ [,@;(a:ﬂwm) + 3 (Reu+0ohes) ]gody

]:{aﬂ (s + 5"50) + o (thay +)"50)}’ +ipy (B +Doy) —'ﬁel.'g.,}ﬂ,dy . (33)

o -

The first and second terms on the right represent the advection of potential vorticity. The
third is a divergence term. The fourth originates from the variation of ¥, i.e. the variation of
the Coriolis parameter. Keeping in mind that geostrophic flow is nondivergent and y should
be treated as constant in geostrophic relation between wind and preisure we may regard the
last two terms as zero. Thus we have




134 ADVANCES IN ATMOSPHERIC SCIENCES Vol. 4

i o)
To the first-order approximation, the stream field derived from the linear equation is
Doy yocihey (35)

so that
e;=10. (36)

To ageostrophic flow, the iast equality of (33) still holds. However, divergence of stream
field and advection of potential vorticity are both nonzero. In addition, e, must also involve
the influence of ageostrophic acceleration, i.e., the terms involving (/—¢) in (8) and (9).
Therefore even there is no basic flow with zonal shear, the effect of nonlinear advection still
exists, and solitary Rossby waves may still emerge. This is exactly the difference between
tropical ageostrophic solitary Rossby waves and quasigeostrophic solitary Rossby waves. This
also shows that nonlinear effects are not negligible for ageostrophic flow.

vil, THE MKdV EQUATION

From (32), as a result of symmetry of the Hermitian polynomial, the coefficient of the KdV
equation vanishes when r is even. This case is different from geostrophic flow discussed in
previous sections, At present, either the advection of potential vorticity or the divergence of
stream field still exists, but due to the symmetry of the stream field their integrative effect in the
y direction is zero. In these cases (not only for even—numbered meridional waves, but also for
other cases with e,=0), we must introduce the following new time and length scales in order
to derive the nonlinear evolution equation. i.e., let

(;’J‘!..qpcs;éﬂssri, ;xze;g. {37)
Furthermore, let

vi=gty et gt

' =dsted. feld
Substituting (37) and (38) into (4), we derive the first—order approximation equations identical
to (8). The second—order approximation equations are

W=ty teu; +eu;+
} (38}
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The third-order approximation equations are
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Solving (8), (39), and (40), we may obtain: .
uozé(f’g)ﬂn()’)s Un=¢£(ft<§)?}o(3’)9 'i'b:‘ﬁ(r’g)‘ﬁ’?(y)’
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i which
P ey
g~ | (B ) @t 0uy 0,805
- Ul—c (2808, v = 28, B0y + Boythry — BiyyPo+ & yltoy + O1floyy)
(43)

LT Us—y 22Uy N s a g a ;
L U—c + (LT_“c)a__l:|(ﬂo¢.'fﬂ]¢‘u'1'f}nﬂsu'l‘9:¢u}'}

— [y, +ﬂu$|y + By lh@w Doy hay +'ﬁn$:|:-'y FDirPor+ Doy ]}l%dy.

Eq. (42) is a well-known modified KdV equation {(MKdV equation). Its permanent travel-
ling wave solution has the following form:
vz, ) =tsech{|&./88 | ({—cat)}y (44)

sgn (&,) 8,.

Cm=

@) —

Its nonpermanent wave solution also corresponds 1o a nonlinear wave train, but the ratio of
its nonlinear term to its dispersive term is not variable over time. In this respect the nonlinear
wave is described by an MKdV equation. No matter how small is the initial amplitude {and
the nonlinear term) of the wave described by the KdV equation, the relative effect of the non-
linear term can match the dispersion term afler all, which implies great differences between this
kind of wave and linear waves.

VII. CONCLUSION

A kind of nonlinear ageostrophic solitary Rossby wave may exist in the tropical atmos-
phere. These waves are governed by the KdV equation or the MKdV equation. They are differ-
ent from either geostrophic solitary Rossby waves in mid- and high-latitudes or linear waves
in the tropics. They are generally affected by the shear of basic flow, but can also emerge with-
out basic flow. We think that some stable slowly-moving atmospheric waves observed in
the tropics belong to this kind of nonlinear solitary wave according to their characteristic
of energy dispersion. Distinguishing these waves produced under the combined effects of non-
linear and dispersion processes in synoptic and statistical analyses is undoubtedly of great sig-
nificance for understanding the intrinsic quality of evolution of tropical weather and holding its
regularity.
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