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ABSTRACT

The nonlinear discriminant function, when covariance matrixes of each population are not equal to each
other, is discussed on the basis of Bayes® criterion, and by using the stepwise discriminant method, a method for
calculating the nonlinear discriminant function is provided, which is called “stepwise nonlinear discriminant
analysis”. In addition, an appropriate discriminant analysis model is selected by testing whether the covariance
matrixes of each population arc equal, which was proposed by Box. The calewlations show that, the discrimi-
nant effects of this method are superior not only to linear discriminant analysis, but also to nonlinear discrimi-
nant analysis in which the stepwise discriminant algorithm is not used when covariance matrixes of each popu-
lation are not equal to each other. Satisfactory resuits have been obtained in applying this method. This is an
important improvenent on the linear discriminant analysis used in the weather typing prediction at present,

1. INTRODUCTION

In the weather typing prediction at present, discriminant analysis has widely been used
{Wang and Li et al., 1974; Li and Yao, 1977) mainly for lincar problems. However, we
often meet problems which tend to be nonlinear and, if we still use linear discriminant
analysis. the effects of lorecast would be very bad. Thus, we must take into account the non-
linear discriminant (Clark et al., 1975; Lorenz, 1980). Many works (Gal-Mowcorterchin et
al., 1971; Yao and Liu, 1983) have shown that the discriminant effects are, to some extent,
better than those of linear discriminant analysis in some problems, and their resufts conform
mare to reality when nonbinear discriminant analysis is used. Nonlinear discriminant analysis
is rational and advantageous.

But the above works are only within the limits of two-category discriminant. Moreover,
the term numbers in the nonlinear discriminant function increase greatly with the predictors’
increment because of the occurrence of nonlinear terms in the nonlinear discriminant function.
Thus, not only the caleulation amounts increase, but also the discriminant effects of nonlingar
discriminant analysis cannot compare with those of linear discriminant analysis. Recently,
Yao and Liu {1985} have provided a stepwise sieve method of predictors in the noniinear dis-
criminant function, and have oblained good results. This paper makes a systematic exposi-
tion of nonlinear discriminant analysis and sets up the so-called “stepwise nonlinear discrimi-
nant analysis™ of the multiple-category nonlinear discriminant function {including the two-
category one) making use of the algorithm of the stepwise discriminant analysis (Li and Yao,
1977). At the same time, the model selection of the discriminant analysis is discussed.

1I. THE MATHEMATICAL MODEL

Assume that each individual composed of p variables x,. x,,..., x, comes from G pop-
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ulations A,. 4,.....4g, respeclively. For a given individual X =(x,, x,,..., xp), We need
to discriminate which population it belongs to in G populations. Bayes’ criterion for this prob-
lem is that the mean losses of classification errors on each population reach a minimum, i.c.
the posterior probability

plglX)= —Gggf-f& s g=1,2,G (L)
25Qufal X)

reaches a  maxinmun.

If the probability density function f{(X} and the prior probability Q, of each popula-
tion A, (g=1.2,...&) are known and the mean losses of classification errors on each popula-
tion are cqual, the discriminant function can be established as follows:

ValX) =Qufe{X)0-1,2,.G. (2)
If
Vg*(X):1\4'13:\-/:&1"9():)}, (3)
then the individual X belongs to the population A ,%.

Assume that the population A g=12....G) is distributed according to a multivariate
Guussian density function with mean vector e, and covariance matrix X, ie. fo (X)~N
(g, ). then, the density function of the population A, is

[:40X) = s i ng.,,exp[‘%(ﬁf CrESNX —p) [ ()
g;1,2,~-,G

where the mean vector of the population glg—1.2,...,G) is
o= {Ligstagy e Laogl's
while the covariance matrix of the population g{g=1,2,....G) is

Gy Oy COap

Eo-loile= Ta1 TeamTap
g
Tp1 Tpy*Opp
Substituting Eq. {4) into (2), carrying out logarithmic computations for Qg f,(X), and
omitting the terms which bear no relation to g when the covariance matrixes of each popula-
tion are not egual to each other. we obtain the following nonlinear discriminant function:

Vo(X) = — ;—XfE;*X%u;zg'X‘ —zl—u;E;‘ug

Sl Bl +100s g1,2,56 (5)

The parameters u, and X, (g = 1,2,...,6) of the population are often unknown in fact.
These parameters must be estimated by using the sample data, ie.
Mo==Xg= (Figs Brgr '+ Tpa) 'y g=1,2--,G. (6)
Eg’*‘SQ:(ngi)’ i:jzlpzf"spﬂ 921,2,"',G, (7)
where
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|
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S.r,':'J'-_-?“'_"1'2;(.3559.&*3.@)(xjy.i_l'iy) (8]

k=1
Li=1,2, 1 g=1,2,-,G
are the mean values of the variable ¢ for population g and the covariance of population g, re-
spectively. In Eq. (8), x, . is the &th observation value of variable / for population g, and n,
is the number of observations in population g.
Note thar if & 5 the total number of observations, we have

[
1\;:2?’13- (9 )
By using the sample data, the prior prebability €, cun be estimated from
Qe=~gy=ng/N. (e
Then, Eq. (5) wiil become
yg(xp“%x'srxw?;sr X LlX.87 K, - é—lnlsgl +lngy, (11)
g=1,2,,G.
Let
[ Cognn Cgigt=s Cgap
P Sem O = 08T g= 12,46, (12)
\ Cgpr Cap: Capp
(Cg];cgzg"'Cgp)=X;S;| ) q:l,-?,“';Gg (13)
Cpe= — %ifﬂg:. )_(g - %LHISS'J Flnge, g=1,240,G. (142

Then Eq. (11) may be wrilten as

P 3 ¢
yg{,X):Z Z CgiiXi%it Z CorXi—Cops §=1124:, 0 (15)

=1
For a given individual X, the values V (X}, g=1.2,....(G of ¢ nonlinear discrim-
inant functions may be obtained from Eg. {15). I

Ys*(XoHl\;IaéG%l’g(Xo)h (16)
then the individual X, belongs o the population A,*.

If we assume that the covariance matrix of each population is €qual to each other, then we
obtain the following linear discriminant function:

Y. (XD :J_("DS;'X~éJ—f',.S_'5(_g+1n Gos =142y, G, (17
where
S=W/N-G,
while W={(w). i,j=1.2...p, s a within cross-product matrix. Its element is
c "«
wu':ZZ(xmk*fingiwffJ‘g}’ faj=1s2y0m, g (18]
g=1 k=1
Considering

(Cmscsn“'cg.f’):)_E;S_isgzlszs"':cn (19)
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Cqy == 7%_?'_787.Xp+111q;‘s g“l- 25""G- (20)
Eq. (17 may be written as

YG(X‘):Z Ca, X 1 Cays g=1, AETIN 3 (2])

The discriminant rules corresponding to Eq. (21) are the same as the abave,
I1I. THE STEPWISE NONLINEAR DISCRIMINANT

Previcus discussions show that when the number of variables is p, the number of terms
is p 4 1 in the linear discriminant function, but 2p + ¢} + 1 in the nonlinear discriminant func-
tion. Thus, the number of terms in Eg. (15} is considerably increased when there are a large
number of variables. This makes computation more difficult and does not prove that the non-
linear discriminant function has an advantage over the linear one, even though the presence of
the nonlinear term makes the number of terms increase rapidly and diseriminant effects risc
obviously in the nonlinear discriminant function. In fact, in the discriminant function the
ability of the divisian of each term on the various kinds of groups is different.  In linear dis-
criminant analysis the algorithm of the stepwise discriminant has been widely used to select
impartant variables {Li, Yao and Yang, 1977), and has obrained good effects.  We believe
that this algorithm may be used 1o do nonlinear discriminant analysis as well.  Retained are
the variables that play an important role in dividing various kinds of groups in the nonlinear
discriminant function.

It can be seen from Eq. (13) that, besides the linear ferms with p variables, there exist ad-
ditional p+ ¢; nonlinear terms in the nonlinear discriminant function with p variables.
Therelore, if we carry out a transformation of variables for those nonlinear terms, then together
with p original variables, all told 2p + ¢/ variables are obtained. Thus, nonlinear discriminant
analysis with p variables may become linear discriminant analysis with 2p+¢; variables.
Therefore, the stepwise nonlinear discriminant analysis proposed by the author is divided into

two steps:

First, a transformation of variables is made to give p variables, and 2p + ¢ variables are
obiained, i.e. the original p variables x, (i=1,2,....p} plus p-¢} new variables x.x; (7j=1.2,
v PIoEE )

Second, the algorithm of the general stepwise discriminant is adopted for 2p 4-¢} varia-
bles and the nonlinear discriminant function is set up.

If the number of variables is great enough or the computation is limited by the capacity
of computer, then ihe two-step sieve method (Li and Yao, 1976) can be adopted, ie. the
Witks™ values which possess the ability of single factor discriminant are first calculated to 2p +
¢} variables as [ollows:

U-:‘:'&'”.:/!.fs 5_1929"‘,2P+Cf:; (22}
where
Id oy
W= O lxm— ) i=1,2,2p e, (23)
=1 k=1

are the square sum within cross-product, while

= 7y
i,,-:z Z (.”E.‘gk_ff{)z; 521529'“92Pi'ci” (24\

F=1 k=1L
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are the square sum of total cross-product, where #;, is the mean of variable x, for group
g (see Eq. ("N. iz, the total mean of variable x., i.c.

c "
»'?;:-,\],-szmhi:ls2--'-s2p+ci. (25)

LY
At the same time, by using the statistical values for Wilks values U,
r 1-U, N—-G . .
F"|(G‘Al,:,4G)=, IJ—, 77G_"17'! 3:1225"'52P+Cr! (26)

F_tests are made.  Several variables of less U, {i.e. bigger F ) are screened primiarily. and then
a few variables are screened with rigorous algarithm of the stepwise diseriminant from the var-
iables obtained by primary selection and the better equations of the nonlinear discriminant
function are set up.

The basic principle and computational procedures of the stepwise discriminant analysis
are the same as those of Li and Yao (1977) and Li et al. (1977).

IV. SELECTION OF THE DISCRIMINANT MODEL

Whether the linear or the noalinear discriminant function is adopted in the discriminant
analysis depends mainly on whether the covariance matrixes of each narmal population are
equal te each other or not.  Therefore, in selecting an exact model of the discriminant, first,
it must be lested whether the covariance matrises of each normal population are equal to each
other or not. We use the following verification method proposed by Box (see Gal-Mowcor-
terchin et al., 1971

Assuming that S,. S,. .... S¢ are the estimate values of the covariance matrixes for the
sample of G populations, respectively. The null hypothesis Ho states as follows: §,, §,. ...
S are all from normal population with the same covariance matrix tested.

Assuming that ¥, N, ..., Ng are the sample size of each population, respectively.
Let #,= Ny —l{g=1.2.....G). The statistic Te conforms a chi-square distribution with the

degree of freedom (G—I) p(p—1)2 when the null hypothesis Ho is founded. Here

. & G
T:thg)ln[de'%s)—an in(de+sg)s (27)
=1 ¢ =
& , )
BT | -

__=f . - . _
PTG -1 L&m &
2
—_
while the pooled covariance matrix § of the sample has the form

S=nsSs [ s (29)

e

Giving the level of significance g, if Te>> X}, then the null hypothesis Ho is rejected, ie.
ihe covariance matrix of each population is not equal to each other. Conversely, if Te<{XZ,
then the null hypothesis Ho is accepled, i.e. the covariance matrix of each population is equal

to each other.
Thus, we may confirm which discriminant model should be selected.

V. SEVERAL EXAMPLES

In order to verify whether the above scheme is feasible or not. we condugt comparisons and
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cxplanations 1o the following several examples.
Example 1, from Chang and Fang (1982):
In this example, G=2. p=7, N=35 N =12 N =23
From Egs. (27) and {28), we obtain Tc=&1.1058, while X} (21)=-32.671, i.e. Tr>
Xi (21).  Itshows that the covariance matrixes of two populations are not equal in this exam-
ple. The nonlinear discriminant functions should be adopled.
Using the algorithm of the siepwise discriminant, we obtain the results as follows:
The equations of the linear discriminant function (p= 7} are
Y= ~5.47354+0.3710x: +17.6037x; — 0. 0026x,,
¥,— -5.5328 - 0.1507x; +38.4613x. ~ 0.0411x:.
The equations of the nonlinear discriminant function {p-=35) are
Yi= —11.6857 - 2.3471%; — 0.0229x, — 0.0469x
+0.3958x,x, —16.9000x,0¢,
¥i= —4.8183+0.9929x, 4 0.0309x,; — 0.6269x;
4 0.1327x,%, - 0.4430x,5x,.

Table 1. Comparisons hetween  Twe  Discriminant  Models

“oadel F-level  ™umbers of L X X: ' Numbers  of
Entry Variables ‘ Classification Errars
Lingar 1 1;',?“3 (3) 7315
kAl 3 10,3907 29101 3

Discririrat

scriming ! Yoo (3) 11.345

, | R R
Nuoplingar } X 57 11.070
Diseriminant 2.0 5 0.2852 | 38.27 1

X2, (5) 15068

The equations of the linexr discriminant function with 7 variables have been set up by
Chang and Fang (1982), and the numbers of the classification crror are also 3. It may be seen
that from either the verification of ihe classification effeets ur ine cases of the classification er-
ror. the equations of the nonlincar discriminant function have an advantage over 1he linear one.

Example 2, from Specialily of Matkemades of Computation, Department of Mathema-
tics, Nanjing University (1979):

In this example, G=3, p— 5. ¥—23, N 11, & =7 N;= 5

From Egs (27) and (28). we obtain To -41.9477. while X2 (200-=30410, ie Te> Xy,
(200. 1t shows that the covariance matrixes of three populations are not equal to each other
in this example. The noolinear diseriminant functions should aiso be adopted.

Using the algorithm of the stepwise discriminant. we oblain the results as follows:

The equations of the linear discriminant function {p=15) are

¥,=—15.0339-+0.0308x.41.466%x:,
V.= —17.6363+0.0694x, + 0.9853x;,
},= —18.311340.0328x. + 2. 2307 x5.
The equations of the nonlinear discriminant function (p==20} are
Y= —8.3655+0.0600%, + 0.0067x,x5,
o= —16.8685+0.0922x, — 0.0019x,x5,
Ya= —15.7770—0.0661x, —9.0407x2%5.
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Table 2. Comparisons between Two Discriminant Models

Model F-level Mumbers of U x: X} umbers of
Entry Classification

Variables Errors

0.4422 I5.9328! Xi. (4) 9488 5

Discriminant

Xl (4)13.277

MNonlinear 1 1.0 .

Linear ;2.0 ‘ 2
I
I
Dscriminant |

1
2 !o.4007 178314 y2 4y 9488 E 4
! Xoa (4) 13277 ‘

Two variables are screened out to bath linear and nonlinear discriminant models in this
example for the same F-level, But {/, the ability of the classification of nonlinear discriminant
model is greater than that of the linear one. In the test of significance, the former is more
remarkable than that of the latter and the numbers of the classification error decrease by one
when the nonlinear discriminant function is used.

Example 3, from Yao and Liu (1985):

In this example, G=2, p=3, N=16 N =8 N, =8

From Egs. {(27) and {28), we obtain Te=10.2733, while X[ {(3)=7815,ie. Tc>X;,
(3}, The covariance matrizes of two populations are not equal either in this example. The
nonlinear discriminant analysis should be adopted.

Using the algorithm of the stepwise discriminant, we obtain the results as follows:

The equations of the linear discriminant function (p=3) are

¥,=—5.35584+0.5292x,+0.1638x,,
¥,= —5.820241.4738x, 1 0.0580x,.
The equations of the nonlinear discriminant function (p=9) are
Y,=—7.9471+0.8943x,40.6410x, - 0.0073x 1,

V,=—14.7206+2.1498x,+0.9418x, —0.0135x;.

Table 3. Comparisons between Two Discriminant  Models

Maodel F-level Mumbers of v Xt X: Numbers of
Entry Classification
Variables Errers
Linear 2.0 2 0.4986  9.0472 &, (2) 5991 ‘ 3
Discriminant | ; | X:, (2) a0
Nonlinear S0 ! 3 0.3245 ‘14.0682 Xis () 7815 | 1
Discriminant ! 2
| XE, (3) 11345

The equations of the linear discriminant funcrion with 1 variables have been set up by
Yao and Lin (1985). The numbers of the classification error are 4 for the above equations.
In addition, we have tested two discriminant models using the independent sample data from
1973 to 1982, The results of calculation show that the accuracy of prediction of the linear
discriminant function is 709%;, while that of the noniinear one is 909;. It {s thus clear that
the discriminant effect of the nonlinear discriminant function is very good in this example,
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VI, COXCLUSIONS

We have obtained several results by the previous analysis as follows:

(1) The results of the nonlinear discriminant function are more practical than that of the
linear one in the weather typing prediction and the effects of the classification of the former is,
{0 some extent. better than that of the latter. [t shows that the use of the nonlinear discriminant
function is important in the weather classification prediction.

(2) The scheme of the stepwise nonlincar discriminant analysis proposed by the author
is feasible, and has important significance to the practical use.

(3 In order to select the exact discriminant model, we should test whether the covariance
matrixes of the sample data of each population are equal to each other or not, in terms of the
Box criterion in the practical use.
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