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ABSTRACT

Nonlinear stability criterion for plane rotating shear flow under three—dimensional nondivergence disturbences
was obtained by nsing both variational principle and convexity cstimate introduced by Arnold (1965) and Holm et al.
(1985). The results obtained in this paper show that the effect of Coriolis force plays an imporiant role in the
nonlinear stability critetion, and the noalinear stability property of the basic flow depends on both the distribution of
basic states and the way the external disturbance acts on the states. The upper bound of the gradient of the mass den-
sity displacement from the equilibrium k2 = |V[a(x.r) — p, (F|* / [p(F,0) = p.(¥)]* is determined by the basic
stales and one example was given to show the exact upper valoe of k. The remarks on Blumen's paper were also giv-

en at Section 4 of this paper.
I. INTRODUCTION

Blumen (1970) used variational method to study the stability of plane shear flow under
three—dimensional nondivergence disturbances. In his model the basic velocity is only Limited
in the x—y plane without depending on the vertical coordinate, This model corresponds to
unreal fluid system, it cannot be studied by using laboratory experiments, but it is valuable in
theoretical studying.

In this paper, the Blumen’s model was extended to include the Coriolis force which plays
an important role in the geophysical fluid mechanics. The stability criteria show that the sta-
bility property depends on both the distribution of basic states and the external disturbance of
basic states. This case exists in almost all three—dimensional flow (Abarbanel et al., 1986) and
also exists in the nonlinear stability of triad—wave interactions (Ren shuzhan, 1990). There-
fore, the form of the external disturbances is important in studying the stability of three
dimensional flows.

In a linearized fluid system, disturbances are composed of normal mode and continue
spectra {Case, 1960; P. 5. Lu et al., 1986). In recent years, more and more attentions concen-
trated on the continue spectra which, being proved, play an important role in the real atmos-
phere (Farrell, 1982; Zhang Minghua, 1986), although the general theory about the
completeness of the spectra of the real atmosphere does not exist at present time. Generally
speaking, the nonlinear stability criterion becomes a linear stability criterion when disturb-
ances tend to be zero. In the example in Section 4 of this paper, we take basic density distribu-
tion p, = —rz, then the exact upper bound of k? can be obtained. In the example of this
section we take ¥ = F{y), and the disturbance of the mass density has the normal model
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form (This is just the case in Blumen’s paper), then there always has the possibility of basic
states being unstable, so we can conclude that stability parts are possible to compose of con-
tinue spectra. However, in the variational principle, the disturbances are finite small with any
kind of form because we start from the original equations, so the general upper bound of &*
can be derived by using the variational principle.

Stirictly speaking, the criteria given by Blumen are only the linear stability ones in
Liaponov meaning, not for nonlinear stability case. To study the nonlinear stability, the
convexity estimate, which can be found in Abarbanel’s paper, is needed.

We organized this paper in following order. In Section two the general equations were
given and some basic relaticns between the basic states were derived, then variational princi-
ple and the formal stability criterion were introduced in Section three. Section four gave spe-
cial form of the basic state of density, and the upper bound of K® was obtained. [n Section
five we got the nonlinear stability criterion for the basic states given in the example of Section
four.

1I. GOVERNING EQUATIONS

The fluid system is shown in Fig.1 and the governing equations are the Boussinesq equa-
tions

DT +F V)T +fExF=—~VP—pgk/p, @.1)
V-¥=0 2.2
3,p+7 Vp=0 2.3)

Where P=(p—p}/ p,. 7 is the average value of the fluid mass density. p, 1s the
standard value of mass density. In the followmg seetion we suppose that p, =1. f %is the
Coriolis factor and is a function of y. % is the unit vectorin z direction.

The following process is just the same as that in Adarbanel et al.’s paper. Transform (2.1)
into the following form
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Fig.l. The¢ model of three dimensional rotating fluid,
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where Q=fk+Y x7.
It is easy to get the conservation equation of potential vorticity g from (2.1y
8.q+7-Vg=0 2.4)

where g =Vp - [V % ¥ +fk].
At equilibrium (2.1Y becomes

v, x0Q, —‘V(%IV, | +P, +p.g2)+gVp, =0 (2.5)
where subscript “e” denotes the variables at equilibrium and
¥, Vp, =0 (2.6)
v, ~Vq, =0 @n
From (2.5) we get
v, - VG|7, [+ P+ pgad=o0. e

Eq.s {2.62.8) implay taht the term %]?, |* + P, +p,5z is functionaly related to the vari-

able g, then we can suppose that

Bgp =3 |71 + P+ pge @9)

where B is the Bernoulli fonction.
Multiplying (2.5) by Vp gives

V, =9, 8,(4,.0.)Vp. 4. (2.10)
Eq.(2.10) is important in following sections.
TIL VARIATIONAL PRINCIPLE AND FORMAL STABILITY

The main idea about the variational principle is to construct the general Hamilton func-
tion H, by using conserved quantities. From (2.1) and (2.2) we see taht the total energy £,
the potential vorticity ¢ and the mass density p are all conserved quantities. Note that E, p
and ¢ are different kinds of conserved quantities, in which g and p are conserved point by
point, but £ is not. After #,  was obtained we make H, have small fluctuation about

the equilibrium. If the 5” . has the definite sign (both positive and nogative), we say that
the equilibrium is formally stable, otherwise the equilibriom is possibly unstable (although we
can not prove it).

The general Hamilton F, was constructed byg. p and E (E= %J‘d’ x[%h, |* + pgzl)

H, =%jd’x[%l\7} ? +ngI+fd’x'ﬁ(p.q)+ £ apd’xig

where (g,p) is an arbitrary functionof ¢ and p, and A is a constant, dD is the boundary
of the integral area.
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a) The First Variation of &, .

Taking ¥" and p has a small variation about the equilibrium (basic states), then the va-
riation of /f, in first order is

SH 6789y =42, +gz~T* Vg, B0+ 7~y Vo x Vais¥

+ £ apd XA+ QI ~ Vo x VF) - 7
where 77 is the outward normal veetor on the boundary. Obviously
6H, (09.p)|, =0

at equilibrium, it gives

gz=0, « Yy +y© (3.1
V, =yl Vp, x Vg, (3.2)
= -y, 3a.»n
Compating (3.2) with (2.11) we have
lﬁfg =g, B.(q..p.) 34
ey _ e f% 2
or ¢ =g (I B(s,p,}/ s%ds + F(p, )} (3.5)

where Flp, ) isan arbitrary function of p, and will be taken as zero in the following section.
Note that Eq.(3.5) is an important equation!

(b) The Second Varijation of H .

Based on the 65, we can get the second variation of /.

8 H, =D"H {p, .7, )0p 8%
=Id3x{lﬁ+ Ve x Vopl" +| Wy - Vol — |y (| 75,12
+ 0 g) + ¥ e) + 29, ap,sq}

We can also write 8 H, in quadratic form by introducing| Vép|? = k?|sp|*

5 H, =jd’x{1&"ﬁ’, + VO x Vap| + |V - Vopl* + 29, p8g

T © _ el gl
%] [ |V %Hap]} 06
o wcp "«I’ﬁr % )

Tomake 8 >0 needs

p¥ >0 (3.7
O ~ k2| T )~ 2 >0 0.8)

Eq.{3.8) gives the upper bound of X2
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<K z[%ﬁﬂ] >0 3.7y
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£

From (3.2) and (3.7) we have
W=y (Vox Vg /| Vpx Vgl

9¢
Eq.(3.8) also means that
¥ >0 (3.9
Eqs.(3.7-(3.9) are the general stability criteria in three dimensional Boussinesq flows. In the
following section we turn to study the stability for a special equilibrium.
IV. FORMAL STABILITY OF SPECIAL EQUILIBRIUM

[n this section a special equilibrium was given. Suppose that the special equilibrium
linearly depends on the vertical coordinate and the velocity was limited in the x—y plane, i.c.,

V. =V.(xy) p =p.2)=~rz, f=fy+By (Bisa constant)
The pressure formula in the equilibrinm,

F4 1
P(z)= —gfgple)dz =5 grz’

From (2.4) we know that g == ¢(x,y), therefore
v=a."1" Bis.p,)/ s ds =g, '§* Bis)/ s*ds +%z2 @41

theny,, =0, and ¢, =g/ 7r>0. Le,r>0.
From (3.7) we have

o, =V [VpxVgl/IVpxVagl* >0 (4.2)

From (3.8) we have
2

dpy? 5 G
K= (2 <k =ug /|

Since Vp_i Vg, soitis easy to see that
V-7,
Yoo =T V71 >

then

K, =rg/[V- L1 (4.3
where 7, is an unit vector: -
T,=Voxg/|VpxVql
Ifwetake ¥ # {, then we have

2
KZ =maxl——£vaﬁ J <K2+ = g

- 'Vrlzm“
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For example, if we take ¥ = ap® /21, ie., TO ¥, immediately we get that

il

Voo gy >0 ie, a>fp
W, =g/r >0 ie., r>0
J'fz(Kl-«- =2r2

af

Remarks on Blumen’s work:
(1} In Blumen’s work, if ¥ = -:12- wy* T, thény 49 18 always positive and the equilibriom is
always stable, but in our work, the equilibrium is possibly unstable if a < f.

(2) Following Blumen, if we take the normal mode form as

bp = |8plexpli(mx + Iy — cn)]sin% z

then from (4.2) it must be
171 <@g/ (3 +n’a® / H))'7? =12

where #i° =m® +*. Therefore, there always exist some values of n for fixed # to violate
the condition mentioned abave, that means that almost all the normal modes are¢ possibly
unstable and the stable part of the disturbance is composed of continue spectra (or nonmodal
part).

V. NONLINEAR STABILITY

As we said in the introduction that the formal stability is different from the nonlinear
stability (see Holm et al., 1985). To study the nonlinear stability the convexity estimate was

needed.
Suppose that there are some finite small variations in the equilibrium, and that the basic

state of mass density p, = —rz, ¥ = ¥{x,y) as in Section 4, then the variation of H_ s
B, (AVAp)=H (¥, + A7, p, +Ap)— H.(V..p.) (5.1)

~ DH,(7,.0,XAT.Ap)
where both AV and Ap are finite small. From (5.1) the following ¢quation can be obtained
A, (AV,Ap)=%5a'3x{[|AV| + Vi, % VAp]z +|Vy, - Vap[*
~ |V, [}V 80" + 2085, B2} 62)
where .
PAT, Ap)=y(g, + Ag, p, +Bp)—¥lg,, p.)— DH(p., 4. XAp, Aq)

Define that
|Vapl =K (Ap) <K% (Ap)

2O =Y.~ 31V¥, (., 4. K1’
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gopp(psq):'ﬁpp - |v¢q |z|"c|2 ?tpﬂﬂ - |qu |Z|k+ |2
wqq(p!q)=¢qq

and as in Section 4, that ¢, =0.
Tomake 8*H, >0 needs

O0<a<o, (o, 9.)<® (5.3)

A A ApF %0 O
e e |
Ag 0 ailAg ]l Lag 0 o, |LAg
wherez and r are constants.

From the results above we can get the upper bound of X 2
K <K% = (9,0, 1)/ |V, | (5.5

Eqs.(5.1) and (5.2) give the lower bound of 8 H

A, (87 A9) 2 §& {3 |47+ Vo, (p.0.) x Vg’

Ap[r0][aA
+1[ p} [ }[ J'J]}>0 (5.6)
2| Aq 0 allAg
where z and 7 are constants, and the upper bound of # . isgiven by

H_(AV, Ap) S%J.ds % {[ATH— Ve, (o, 4. % Vﬂp]z

AT [Fo][s
LT el
Ag 0= dq
where & and 7 areconstans.

The right hand of (5.6) and (3.7) define two kinds of modes with which (5.6) and (5.7) can
be rewritten in the following form

1A7,40,A91" < B, (AV, A7) = H. (AV;.8p,) < RIAT, Apg Ao’
where AV, and Ap, areinitial disturbances, and R is a constant,

Making the equilibrium be the form as in Section 4, we can easily get the nonlinear stabll

ity criterion.
If the equilibrium satisfies (5.3)—(5.4) and the X, which was defined in section 3 and

bounded by (5.5), then the equilibrium is nonlinearly stable.
The author wishes to thank Dr. Mu Mu for valuable discussions.
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