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ABSTRACT

The stability of large~scale horizontal motion in the atmosphere is discussed in this paper by using qualitative .

analysis theory of non—linear ordinary differential equations, Both the non—linear distribution of basic Zephyr flow
and the vanation of geostrophic vorticity along the latitude {f=J, + 86 ) are all included in this paper’s
mathematical model so as to analogue the background field of large—scale horizontal air motion more really in the ro-
tating reference frame of the earth. Some significant results are drawn out from this paper and the conclusions of
Li{1986)'s and Wan et al {1990)'s are extended widely, '

I. INTRODUCTION

With the rapid developing of non—linear differential equations’ theory, scientists began
to siudy the phenomena of bifurcation, catastrophe and chaos in the atmosphere. As to
large—scale horizontal motion in the atmosphere, the previous result was demonstrated by us-
ing parcel method to discuss the inertial stability of air motion in the linear basic Zephyr flow
while the geostrophic parameter f being taker as a constant. In 1986, Li Chongyin studyed
the phenomena of bifurcation and catasirophe of large—scale horizontal air motion in
cubic—form non—linear basic Zephyr flow by using qualitative analysis theory of non—linear
differential equations while the geostrophic parameter being taken as a constant. Wan et al.
{1999), considering the effect of Rossby parameter f, also discussed these phenomena in
linear basic Zephyr flow. In this paper, basing on the real background field of large—scale hor-
izontal air motion, the author, using the theory of bifurcation and catastrophe, puts the
interaction of Rossby parameter § and quadric form non—linear basic Zephyr flow to the
comprehensive study of the characteristics of large—scale horizontal air motion; meanwhile
the distribution of cubic form non—linear basic Zephyr flow has also been analysed simply.

II. MATHEMATICAL MODEL

Casting aside the influence of viscous dissipation, the large—scale horizontal motion can
be expressed as follows:

du _ . 13
& fv pax (1)
dv _ _ . _10p

Supposing that the basic Zephyr flow accords with the geostrophic balance and that the dis-
tribution of environmental pressure field does not change with the horizontal motion of air
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package, we have

1 _13p _ _m=li _lé
pix pix 0 . ﬁ_pa _pay ? )
Substituting (3) into Egs. (1)—(2) we obtain
d(v y )
E =fr=f——2=, @
=f(z7 —u) . (5

As far as the large—scale horizontal motion in the atmosphere is concerned, the effect of
geostrophic parameter /s changing along the latitude is very important, so we assume

F=f +§§(y —yo)=fo+ B0 =ye) ©®

= ——53‘2 , and it is considered as a con-

where B is the Rossby parameter, f= §£
»=Yo

stant.
Integrating Eq.(4), i.e., du =fd(y — »,) from y, to y ,and noticing Eq.(6) we have

[ au={" 1+ 80 =yoay

Letn=y—y, . wecbtain the integral consequence

ama +h+ B

Supposing the basic Zephyr flow djstrib}:tﬁ as parabolic type, i.e., E=17(yo)+g—;~n

+ % g_f , which may simulate the upper Zephyr flow more truthfully, then substituting w
Yy

and ¥ into Eq.(5) and arranging it in n order, one can eventually get the controlling equa-

tions of large—scale horizontal air motion as follows:

@, Q
L far @Ge-pton-[ b (1~ S5 st -5 (-2 . @

where « represents the geostrophic deviation at the primary position, i.e., @ =u{y,) — (¥, ),
and §; repments the absolute vorticity of basic Zephyr flow at the initial position, ie.

& =1 — . Eqs.{7)~(8) are a couple of non~linear autonomous dynamic system. From
these two equations we can see that the factors affecting the air motion’s stability are varicus.
IIl. THE HOMOGENEQUS BASIC ZEPHYR FLOW
First of all, we will discuss the constant basic Zephyr flow, i.e., 2 =u(y,) = const, obvi-
i

ously, %=a—-2- =0, ¢ =f, . Supposing the geostrophic deviation at the primary
¥
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Fig.1. Periodic movement of stable center.

position is zero, from Eqs.{7)~(8) we get

dy _
D=y, ©
d 3 :
D —fin-rpn B (10)
1. F—plane Approximation .
Letf=f, =const , thus $=0 , from Eqs.(3)—(10) we obtain
dy _
' av
dv _ _
d fon (42

Distinctly, the very motion system delineates the linear large—scale horizontal air motion,
and its equilibrium state is (v =0; 5 =0), and the characteristic roots of its characteristic
equation are A> = —f; , that is to say, its characteristic roots are a couple of conjugate
imaginary roots whose real parts are zero. Therefore, the equilibrium state (0,0) is a stable
center, and the loci of air package’s motion in the phase plane (5,v) are a group of elliptical
orbits (Fig.1). Demonstratively, once the air package is disturbed, it will vibrate periodically
along some fized orbits around the equilibrium state (0,0) on the conditions of f—plane ap-
proximation and homegeneous basic Zephyr flow. The air motion is inertial stable.

2. fi—plane Approximation

By taking in the effect of Rossby parameter f , ie, f=f; + pn , the controlling equa-
tions can be presented as follows:

dy _ .
df =V a2 (9)
dv_ o 3.1 f 3 ,
5= —fgheT =5 (10y
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This motion system has three equilibrium states, (v=0; =0}, (v=0; = ~f, /B
2
and (v =0; = Efo )
Successively, we will analyse the stability of every equilibrium state.
(1) As to equilibrium state { v =0; 5 =0), its characteristic equation is
0—-4a 1

-/ _3fuﬁ'i—‘ﬁ2 Ry ;:g=

ie, A= - fﬁ , that is to say, the characteristic roots are a cou.iple of conjugate imaginary
ones whose real parts are zero (Re A=0), and the hyperbolical property of the equilibrium
siate {0,0) is destroyed. So the linearization method cannot be used to analyse the stability of
this very equilibrinm state (0,0), the sequential—function categorizing method will be adopted
io distinguish between centers and focus in equilibrium states of high—order non—linear mo-
lion syslem (Zhang, 1981).

LetM=n, N= — 1 v, T =f,{; substituting them into Egs. (9)—(10Y, we have

fo
dM
—dT =-N , (13)
2 3
dT =M+ zifo N +L2fo N (14)

We introduce polar coordinate ( r,8 ) as follows:
M=rcos® , N=rsinf ,

and let

OV 4
2f0 I 2 s
substituting them into Eqs.(13)—(i4} and arranging the two equations in power order of r |
we finally get
g,—: = gsinficos” Br° + bsinfloos’ fr®

d0

=1+ geos’ Or + hoos” Br°
dr

Combining the above two equations, simultaneously disposing the variate t , we obtain

jﬂ { asinBeosfr® + bsinfeos” 8% )/ (1 + ( acos Yor+beos'Ort )y . (15)
If r is tiny enough, Eq.(15) can be expanded into a power series of r , i.e.,

dTQ = (asinficos” Or" + bsingeos’ 87°) - [1 — {acos’ @r + bcos® 8r7)
+ {acos® Br + boos* 6r)° —(acos fr + beos* Br3) + ...
= gsinficos’ 8r” + (beos’ 6 — a*cos 9)511181' +ia’cos®d— 2abcos’ 6)smﬂr

+ (2a° boos” @ + abeos’ B — b cos” 8 — a* eos' Psindr + ...... . (16)
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Suppose the solution of differential Eq.(15) as follows

rBc)=c+r, (B’ +r(@c + ... \ an

where
) =ry(0)= =0 . (18)

Substituting (17) into (16) and comparing the bilateral coefficients we have

Fa . 2

20 = gsinficos™ 8, (19)
&5 _ yusineos br, + (boos’ 6 — a’ cos® O)sin

Jg — 2asinboos”fr, (bcos a“cos” O)sing {20)
d

7;% = gsinbcot’ 6r2 + 3(beos’ 6 — a*cos’ M)sindr,

+ 2asinfcos’ ar, + (2°cos 8 — 2abcos® B)sing | 20

Integrating Eq.(19), and noticing the primitive condition (18), we get
r, = —%(cossﬂ— 1y,

apparently, r, is a periodic function with the period of 2x .
Suppose Eq.(20)'s solution is

ry=g;0+f3(0 .,

where /() is a periodic function of 2r , meanwhile

2n
8 =3 | asinbos’ r + (boos 6 — a’ cos’ Osindlds

0 I PSP P SNY: DUSNE PO
= j.o (2asinfcos™6) - [ 3(cos 0 — 1))d0
=0 .

so r, is also a periodic function of 27 . .
Using mathematical induction and basing on the orthogonality of triangular functions,

In
ie., J sinfcos” 8468 =0 , we can prove that ro.7y,F 4 g are all periodic functions of
a

2% . Therefore, the equilibrium state (v =0; n =0) is still a stable center, its stability is not
affected by Rossby parameter £ at all.
(2) As regards equilibrium state (v=0; n= —f, / fi), its characteristic equation is
04 1
3 -~ =0 ,
~fo = Yobn 380 04|

Jo

ie, 1* = %fﬁ , the characteristic roots are i, >0 and 4, <0 , so the equilibrium state ( 0 ,

—Ju 7 By is hyperbolical; that means, the phase chart of this non—linear system is
topologically equal 1o that of its relative linear system. Consequently, the equilibrium state
(0,—f, / B) is an unstable saddle, and the air package will part from the equilibrium position
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Fig.2. Unstable movement of saddle,

acceleratively once it is disturbed (Fig.2).

The aforementioned result shows that, even in the homogeneous basic Zephyr flow, there
still has unstable air motion by which the importance of Rossby parameter fi for large—scale
horizental air motion is just verified. '

(3) For the equilibrium state (v =0, 5= — 2/, / B), its characteristic equation is

024 1
2 =0 ,
-1 3fnﬁn—-ﬂn 0-4) =,
ie., 2* = —f , the characteristic roots are a conple of conjugate imaginary roots whose real

parts are zero, that means, the hyperbolical property of the equilibrium state (0, — 2/, / §) is
destroyed. By means of sequential—function categorizing methed the equilibrium state ( 0,
— 2f, / B) can be easily testified to be a stable center.

3. The Influence of Geostrophic Deviation

In the preceding discussions, the geostrophic deviation at the initial position is not in-
volved. Now we will study the effect of geosirophic deviation with the p-plane
approximation, fom Eqs.(7)—(8) we have

dn _
dt Yo

2
D fatga—fim—3hmn -En (23)

(22)

As regards this non—linear system, we just let f, = §=1 for simplifying the discussion
and making the physical meaning clear. From Eqs.{22)—(23) we have

dn _

i v o, {24)
dv TR N T e

e +(@—1)n 2 3 5 . (25)

The motion system has three equilibrium states (v=0; 7= —1),(v=0; p=—1
+¥1+2x) and (v=0; g= —1—-v1+ 2z ) , its characteristic equationis A = (a — [}

-3n- % #* . By demonstrating, the stability’s variation of every equilibrium state with o is
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Fig.3. The effoct of geostrophic deviation x on the stability of large—scale horizontal air motion
(fa = £=1). The bold line represents stable states, and the dashed line represents unstable states.

shown in Fig.3.

From Fig.3. we can see that if « < —1/2 , then there is only one kind of movement
state, the stable equilibrium state (v=0; n= —1) , and thatifg> — 12, the air pack-
age’s movement produces supercritical Hopf bifurcation, that means that the air package’s
movement bifurcates out two stable equilibrium states (0,—1++v1+22) and
(0,—1—v1+22 ) while the equilibrium state (0, D) becomes unstable with the increasing
ofa .

From the preceding discussions we can conclude that in the constant basic Zephyr flow,
the motion system has only one stable equilibrium state (v =0; 5 =0) if the geostrophic
parameter /s variation along the latitude is not taken in, which means that the air motion is
inertial stable, and that on the contrary, if the Rossby parameter s effect is involved in, the
motion system will generate more than one equilibrium states (including an unstable one). If
the effect of geostrophic deviation at initial position is further considered, the air movement
will generate Hopf bifurcation with the variation of .

IV. PARABOLIC NON-LINEAR BASIC ZEPHYR FLOW

Wan et al. (1999) had ever minutely researched the stability of large—scale horizontal air
motion in linear basic Zephyr flow with f—plane approximation and f—plane appreximation
properly. In this section , the author will extensively analyse the air motion’s stability in
quadric form non—linear basic Zephyr flow.

ﬁu laaz _.[ _ % 0, O
Lelu~u@0)+ 262'1 , notice that if § ===, then § P ay(f By)

= a—ﬁ where ¢ represents the absolute vorticity of basic Zephyr flow at any position, from

Eqs.(7)—(8) we obtain

dy :
dt =V , (26)

3J il
B pat (Ba=tota = (§hoge + 06 P =550 @
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1. F—plane Approximation

By taking the geosirophic deviation at initial position as a nil and noticing f =/}, , the
controlling equations can be expressed as follows:

i

E:I =v , (28)
d fo 3u

@ = htent g (29)

This system has equilibrium states (v =0; n = 0) and (v =0, n=2& / 2;—1;) .

(1) As regards equilibrium state (v = 0; # =0) , the characteristic roots of its character-
istic equation are A* = —f,&, . Therefore, if &, <0 , the characteristic roots are 1, >0
and 4, <0 , the equilibrium state (0, 0) is an unstable saddle; whereas, if £, >0 , the char-
acteristic roots A, and 1, are a couple of conjugate imaginary ones whose real parts are
zero, using sequential—function catagorizing method we can prove that the equilibrium state
(0,0) is a stable center,

tg T

2—

(2} As to equilibrium state (v=0; n=2L7 j—-;i) , the characteristic roots are
y?

A =f, &, . Therefore, if £, <0, 4, and i, are a couple of conjugate imaginary roots
2 —_
whose real parts are zero, so the equilibrium state (0, 2%, 7 g—;i) is a stable center; whereas,
: ¥

if £, >0, then 2, >0 and 1; <0, so the equilibrium state (0, 2, /@ /eyt is an
unstable saddle.

From above—mentioned discussicns we can see that with changing the absolute vorticity
of basic Zephyr flow at primary position from negative to positive, the stabilities of these two
equilibrium states are all transformed at £, =0 , producing transcritical bifurcation (Fig.4).
The stability’s changing of equilibrium state {0, 0) accords with the common inertial stability
criterion, meanwhile, the equilibrium state (0, 2¢, /(8°u/ &¥® )) behaves contradictorily.
This phenomenon is caused by the heterogeneous distribution of basic Zephyr flow,

1

ie., (3_3; 0.
dy

o L ® e

Fig.4. The stability of air moticn in nen—linear basic Zephyr flow,(f = const, ¢ =10). I
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2. p—piane Approximation

Still assuming =0 at y =y, , noticing /=7, + #n , from Eqgs.(26)—(27). we obtain
the controlling equations as follows:

‘;—'}=v , (30)
i
= —foton— 3oz +80 )0 530" )

This system has equilibrium states (v =0; 7=0),(0 =0; #= —f, / f) and ( v=0; n
= =27 gf ) , and its derivative matrix presents as

0 i

7 a
~fato "( oﬁ +2ﬁ€o)’1_%§y{ﬂz H

n.v)
. o .
(1). Firse, let's fix @ and take £, as the controliing parameter

a). As regards to equilibrium state (v =0; 5 =0)) , its characteristic equationis 4 > =
—fuéo - So, if &, <0, then 4, >0 and 1, <0, the equilibrium state (0, 0) is
hyperbolical, i.e., the system’s phase charl around the equilibrium state (0, 0} is topologically
equal to that of its relative linear system, and (0 ,0) is an unstable saddle. Whereas, if &, >0,
then the characteristic roots are a couple of conjugate imaginary ones whose real parts are ze-
ro, the hyperbolical property of the equilibrium state {0, 0) is destroyed; demonstratively, {0,
0) can be proved as a stable center by vsing sequential-function categerizing method.

b). As to equilibrium state (v=0; n= —f; / B}, its characteristic equation is

2 = _f_oér:) e >l ibri
A fo(éo 263,) Therefore, if £, >2ﬁ6y , then i, >0 and A, <0 , the equilibrium

fod
286y
are a couple of conjugate imaginary ones whose real parts are zero, decidedly, the equilibrium
state {0, — f, / B} can be proved as a stable center.

state (0, —f, / f) is an unstable saddle, whereas, if £ < , then the characteristic roots

c). As to equilibrium state (v=0;, n= —2§,/ g—f) , its characteristic equation is

=g, (fo —28¢&, /-g—E) . In the following passages, we will sort out two conditions to ana-
lyse.

First, a—j >0, if ¢, <0 , the characteristic roots are a couple of conjugate imaginary

ones whose real parts are zero, so (0,—260 7 g—j) can be proved as a stable center with

sequential—function categorizing method, on the contrary, if 0 < ¢, <%g—f , then 1, >0

and A, <0 and (0, — 2§,/ g—j) is an unstable saddle, similarly, if £, >%%{ , the charac-

teristic roots are a couple of conjugate imaginary roots whose real parts are zero, so
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Fig.5. The variation of each equilibrium state’s stability with £, in parabolic non—linear basic Zephyr
flow, under the effect of Rossby parameter fiix = 0).

( —2&,/ 5) becomes a stable center again.

o @ BEN
Second, af <0,if§ < 2;95{ then 2, >0 and 4, <0 , and (o,—z:.,/gs) is an
unstable saddle; if %a— < £, <0 , the characteristic roots are a couple of conjugate imagi-

nary ones whose real parts are zero, and ( 2%,/ 5) becomes a stable center;

ifé, >0, then, >0 and 4, <0, (0,—2&, /a—f) becomes an unstable saddle again.

The stability’s changing with £, of every equilibrium state is presented in Fig.5 based on
4

the different sorts of 3 >0 and 4 <0 .
Y dy

d
(2) Now, iet's fix &, , and take 55 as the controlling parameter
a). The stability’s variation of equilibrium state {0,0) is similar to what we have discussed

in(l).
b). As to equilibn'um state  (0,~f, / f) , its characteristic equation is

P =10 (fu —%gjy) 5y %ﬁéjo , then i, >0 and i, <0, (0, —f, / B) is an unstable
saddle; and if g—f‘ > j—,ﬁ £, . the characteristic roots are a couple of conjugate imaginary ones
0

whose real parts are zero, consequently, (0, —f, / B) becomes a stable center.

¢). As regards equilibrium state ( 0,—2& /7 g—f ) , its characteristic equation is
P =& (fu —28E, / %) . Kinds of conditions should be discussed.
First, in the inertial stable region, ie., {; >0 , ifgiy >28¢, 7 f , thend, >0 and 4 ,

<0 , (0, —-2¢, /gjy-) is an unstable saddle, and if ¢ <g§- <2B&, / f, , then the charac-
teristic roots are a couple of conjugate imaginary ones whose real parts are zero, so

(0.-28,/ 5) is a stable center, and 1f5{ <0, then 4, >0 and 4, <0, (0, —25,,/—§)
y
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Fig.6. The variation of each equilibrium state’s stability with a in parabolic non—linear basic Zephyr

fiow, under the effect of Rossby parameter f{x = 0).

becomes an unstable saddle again.
Contradictorily, in the inertial unstable region, i.e., £, <0 , if 2—5 >0 , the characteris-

tic roots are a couple of conjugate imaginary ones whose real parts are zero, so

0,—2¢, /g—f) is a stable center, and if 28&; /[, <g—y§ <0, then 4, >0 and 4, <0 , so

(0, —~2& 7 %}%) is an unstable saddle, and if%y{ <2B&, /f, . the characteristic roots are a

couple of conjugate imaginary ones whose real parts are zero, 5o (0, —2%, 7 %S) becomes a

stable center again.

Finally, the aforementioned results are generalized in Fig.6 according to different sorts of
& >0 and &, <0.

From Fig.5 and Fig.6 we can see that with the interaction of Rossby parameter § and
non—linear basic Zephyr flow, the stability’s variation of air motion has evolved more
complicatedly. Comparing above~menfioned results comprehensively with Wan et al. {1990)'s
which was drawn out with the f—plane approximation and in linear basic Zephyr flow, we can
get the following conclusions:

(1) In the linear and the non—linear basic Zephyr flows, because of the effect of Rossby
parameter § , some equilibrium states always lost their stabilities in inertial stable region and
some new stable equilibria are generated in inertial unstable region.

(2) As to the linear distribution of basic Zephyr flow, the stability of every equilibrium
state transforms two times with the variation of the absolute vorticity of basic Zephyr flow at
primary position, that means that the air motion gemerates two times of transcritical
bifurcation. As to the quadric form non—linear basic Zephyr flow presented in this paper, the

stability of each equilibrium state is controlled by parameters {, and gf— simultaneously.

Once %’% is fixed, in the two different regions, i.e., % >0 and % <{ , the stabilities of




160 Advances in Atmospheric Sciences Vol.8

equilibrium state (0,—2{0 / 3—5) , respectively, generate two times of transcritical

bifurcation with the variation of £, , and its stability’s changing is precisely contrary in these
two different regions (see.Fig.5). This result approximately testifies the significance of
non—linear distribution of basic Zephyr flow for air motion’s stability variation. While &, is
fixed, in the two different regions, i.e., the inertial stable region (£, > 0) and inertial unstable

4

one (£, <0} , the stabilities of equilibrium state {0, — f;, / §) transform only one time at a

=-2-ﬁfo with the variation of g—ﬁ;nevertheless. the stabilities of equlibrium state
L[]

(0,—2{0 / g—j) , transform two times at g—ﬁ =0 and g—f = )%GE &, with the variation of
2

3y and its stability’s variation just opposite in the two different regions (£, >0 and

&, <0). Noticeably, the bifurcation presented in Fig.6 is a kind of special ones with defect.

(3) It can be easily observed that no matter the basic Zephyr flow distributes linearly or
non—linearly, the stability’s variation of equilibrium state (v =0; 5 =0} is only influenced by
£, , and it accords with the common inertial stability criterion. Obviously, once the air
package is disturbed at initial position, its movement is affected by neither Rossby parameter
B nor the distribution of basic Zephyr flow, it is enly decided by the absolute vorticity of ba-
sic Zephyr flow at primary position.

{(4) From Fig.5 and Fig.6 we can see that an unstable equilibrium state always exists in
two stable equilibrium states, and that a stable equilibrium state always exists in two unstable
¢quilibrivm states, This phenomenon just conforms to the theory of manifold’s separatrix in
non—linear differential equations. In the very following passage, the author will only take
Fig.6a as an example to discuss minutely. The rest parts shown in Fig.5 and Fig.6, can be ana-
lysed similarly.

In Fig.6a, if g—i <0 , there has a stable equilibrium state {0,0) between the two unstable
equilibrium states (0, =2,/ g—f) and (0, —f, 7/ £} . Therefore, for the primitive disturb-

. ) .
ance originating anywhere in the region (v =0, —~fo /T B<n< —2§, /55) , the system will
eventually tend to the equilibrium state (0,0). These results can also be verified by the system’s
topological structure, ie., the phase chart in plane (i,v) (Fig.7a). Conversely, if

< gf < %ﬁ &, , there has an unstable equilibrium state (0, — f, /) between the two stable
]

equilibrium states, (0,0) and (0, -2,/ %) . So, as regards the primitive disturbance origi-
nating everywhere in the region (v =0; —f / <y <0) , the system will eventually tend to
the equilibrium state (0,0), meanwhile, as regards the injtial disturbance originating every-

where in the region (v =0, —2&, /%5; << —fu/ ,6’) , the system will finally tend to the
o

equilibrivm state (0, =28,/ 5;) . The above—mentioned phenomenon can also be seen in

the phase chart of plane (n,v) (Fig.7b). If —%’z > F;

gﬁﬁn , the result is similar to the one
0
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é
of i <0 . From above conclusions we can realize that because of the influence of Rossby

parameter f and non—linear basic Zephyr flow, there have more than one equilibrium states
in the large—scale horizontal air motion, and that once the air package is disturbed, it can on-
ly tend to a certain stable equilibrium state instead of moving aimlessiy.

(5) If the cubic form non—linear basic Zephyr flow is further considered, not only is the
stability of each equilibrium dissimilar in different space domain which is determined by

a8 2
parameters ( & FE, g—g ) , but also generates Hopf bifurcation at &,=
id
- 9(:;—5) / (243 5) . that is to say, the number of equilibrium states also changes at the
¥
two sides of the bifurcation point (For the limit of the paper’s length, the demonstration is
omitted). Reasonably, we can imagine that the more complicate the distribution cf basic
Zephyr flow is, the more complex the bifurcation and the catastrophe will appear in air mo-
tion.

1. For the f—Plane Approximation, by Considering the Effect of Geostrophic Deviation at
Initial Position, the Controlling Equations can be Expressed as Follows:

dn _ ’
v =v , (26)

_ 1, 8 o ’
L —fon+asfot)n— (35 oG )1t 530 @n

This dynamic system has three equilibrium states (v = O;n = — f, / B), ( v=0; 1=

¢, ’5+ [6 +2% /—{) and (v=0; q——i/—i /r:(,+za‘f /—{) . Com.

paring w1th abovementloned chapters’ analysis, one can uotloe that no matter how the basic
Zephyr flow distributes, the equilibrium state (0, — f,, / §) always exists as far as the f—plane
approximation is involved in, Possibly, the effect of Rossby parameter § accounts for the
phenomenon. Specially, the air motion controlled by dynamic sysiem (Eqs.(26Y—(27)} only
motivates a kind of lag transcritical bifurcation with the variation of « instead of generating
cusp catastrophe as the common cubic form non—linear dynamic system does. This speciality
is the distinctive characteristic of large—scale horizontal air motion. For expounding clearly, a
special example is put out in the following passages.

W Ko toe [T EF AT

Fig.7. The phase chart in plane (7. ¥h
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Letf,=8=1, & =2, {% =1, from Eqs.(26)'—(27) we have

d
L=, (32)
dv 2t L3
i +(x—2n 3 A 33
This system has equilibrium states (0,—1), (0,—2+~4+2x ) and (0,—2
—+v 4+ 2« ), its characteristic equation is 2= x—2)— 55— % n® . Therefore, if & < — %3

or 4> -g +%V 13+6¢ or < —% —%\f 13 + 6z , the characteristic roots are a couple

of conjugate imaginary ones whose real parts are zero, so each equlilibrium state can be

proved as a stable center by means of sequential—function categorizing method. If —g

—%V6a+ 13 << —g +:}\J'6a:+l3 , then i, >0 and A, <0 , each equilibrium state is

an unstable saddle (Fig.8)
From Fig.8 one can observe that with the «’s increasing from negative to positive, the

motion motivates bifurcation at 2 = —% and the equilibrium state (0, —1) transforms to equi-

librivm state (0, —2 + ¥4+ 2z ) . Dissimilarly, with the 2's decreasing from positive to neg-
ative, the equilibrium state {0, —2— Va+2¢ } leaps over state point A to state point B, i.e.,
(0, —1), this is the very lag transcritical bifurcation.

V. CATASTROPHE

In this section, the author will briefly analyse the catastrophe phencmenon of the
large—scale horizontal air motion in cubic form non—linear basic Zephyr flow with f—plane
approximation.

¢-2-15 @

-t ——me———————————

a s
Fig.8. The lag transcritical bifurcation ({f, =p=1& =2, 35 =1 3. The auxiliary curve

{@—2)—5q— % n? =0 is used to determine the stability region.
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3,

Fig 9. The curved surface n® — &+ 2 =0.

_l_ﬁuz la

Letu~u(yo)+ n+25 2 7 ﬁaf"

., we can demonstrate the controlling equa-

tions as follows:

d—'l =v (34)

3-——
d" R L L T 4 R 2

Apparently, this dynamic system still contains the equilibrium state (v=0; n= —7, / §).
The other equilibrium states are given out by the following equation

1 Pu 3 $28 2 -
§85a 7 ~5a 1 Blnt =0 (36)
au BE S
Lel—- =§, a =10 , then Eq.(36) is simplified as
By i3

' —&n+a=0

Therefore, the collection of equilibrium states forms a curved surface in the parameter
plane (¢,,2) (Fig.9)

On this curved surface, the stability of each equilibrium state is different from the cusp
catastrophe determined by dynamic system x = —x? —bx —a which has ever been re-
searched by many scientists (see, Liu, 1989), it must be decided by the characteristic roots of
characteristic equation A* = fx — Folo — 285+ 31, 7 +48y" in Bqs.(39)—(35). Therefore,
the stability’s variation of this system is more complex, the standard cusp catastrophe in
three—dimensional space domain does not exist, and the common cusp catastrophe in
two—dimensional plane does also not exist while £; is fixed. In fact, this catastrophe is a kind
of degenerate swallow—tail catastrophe determined by quartic form non—linear dynamic sys-
tern.

VI CONMCLUSIVE REMARKS

The variety and complexity of weather phenomena is due to the numerous factors which
continuously affect the atmospheric movement and due to the compiicated non~linear prop-
erties of atmospheric equations. Since Lorenz researched the phenomena of bifurcation, ca-
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tastrophe and chaos of Rayleigh—Benard convection, using a non—linear model of cubic form
truncated spectrum. The theory of non—linear differential equations has been gradually and
widely used 1o explain and analyse many complex phenomena of air motion. Scientists have
been recognizing the non—linear properties of atmospheric motion more and more deeply.
Though the mathematical model used in this paper is still not perfect enough, anyhow, the
complexity of large—scale horizontal air motion has basically been revealed. In a certain de-
gree, the traditional idea of categorizing air motion’s stability based on inertial stability criter-
ion is also altered.

The author is very grateful to Prof. Yang Peicai for his heartfelt help and thankful to Professor Wan Jun for his
help.
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