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ABSTRACT

In this paper, A—B hybrid equation method is given. This meth‘:.pd is different not only from high truncated spec-
tral method, but also from amplitude evolution method. Dynamic problem in the baroclinic atmosphere may be
transferred into complex Lorenz system by means of the method. Therefore, this method is an effective tool for stud-
ying nonlinear bifurcation in wave—flow interaction. Meanwhile, it is of advantage to use this method, because it can
overcome a lot of difficulties existing in high truncated spectral method and amplitude evolution method.

L. INTRODUCTION

The nonlinear stability in wave—flow interaction is a basic problem in the atmospheric
dynamics. In this field, many outstanding papers and works have been published. Quite a few
well—known meteorologists in the world have made admirable contributions to the study of
this field. Some of them have achieved considerable success. When studying two—dimensional
convective problem, Lorenz (1963) introduced the Lorenz system and set up a new way for re-
searching the problem of nonlinear stability. When studying the transformation of high—in-
dex, low—index and blocking, Charney (1979) systematically illustrated a high truncated spec-
tral method. Once it was thought that the truncated spectral method is a bridge for transfer-
ring a physical problem or physical model into Lorenz system. However, when studying some
problems by means of truncated spectral method, we met some difficulties, because differently
truncated spectra influenced bifurcation points in Lorenz system. Besides, high truncated
spectral method itself has two evident faults. The first is that the truncated spectral method, in
fact, loses some correlative perturbation terms (namely, Reynolds stress) because of artificial
speciral truncation(Pedlosky, 1981). Whereas, the lost correlative perturbation terms are ex-
actly one of the principal factors of changing the basic flow. The second is that choosing spec-
tral function is quite skillful. In addition to making spectral functions satisfying \/ 2F, =
—g*F;, the spectral functions must still embody mainly dynamic process of the physical
problem studied. However, the different research objects are of the different dominant
dynamical factors. Hence, the alternative of spectral functions depends on the researcher’s
experiences. This kind of skill troubles many researchers.

For the sake of overcoming some faults of truncated spectral method, Pedlosky (1979)
obtained the amplitude equation of perturbation stream function, using perturbation method.
Then the amplitude equation was transferred into Lorenz system via elaborately choesing
parameters. The selection of parameters needs quite high skill. It is impossible to
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transfer the amplitude equation into Lorenz system if the parameters are not correctly chosen.
In short, the selection of parameters also puzzled many meteorologists. In addition, the trans-
formation from amplitude equation into Lorenz system is easily achieved in the barotropic
atmosphere rather than in the baroclinic atmosphere.

Obviously, the key problem we faced is whether we can find a method to fulfil the trans-
formation of physical problem inte Lorenz system. If so, could this method overcome above
shortcomings? In order to answer these guestions here, we introduced A—B hybrid equation
method.

1. A-BHYBRID EQUATION

Theory of wave~flow interaction indicates that on the one hand, unstable wave must
have adjustment heat flux and momentum flux. The convergence of this flux may alter the ve-
locity of the basic flow. On the other hand, the change of the basic flow velocity necessarily
gives the feedback to wave disturbance. The supercriticality of the basic flow velocity in the
baroclinic atmosphere (it is mainly regarded as the degree of the vertical shear of the basic
flow) is a typical example of feedback. In this section, thersfore, we derive A—B hybrid equa-
tion on the condition of supercriticality. For narrating the method clearly, we adopt the mod-
el of /—plane approximation in the baroclinic atmosphere. That is,

5 og dy, 2 ~ _ Tz
5+ a‘waﬂ[vz"'r ~F v = 5V i
g Oy f, 8 - = _I\n2
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For a wave with total wave number X defined by K =Vk® + m*a®>, Pedlosky (1987)
proved that when this wave becomes instability, the corresponding critical value of the basic
flow shear is U, , and the critical value of F is F,. Under the condition of supercritical
state, F may be writien as

2 2 prl
_K r'K 3)

where A< < F,. Suppose we now consider placing a wavelike disturbance on the basic
state. The upper and lower velocities of the basic state are U/; and U,, and they are
anti-symmetric, i.e., U, = —U,. Each of the critical parameters in the problem can be or-

dered with respect to a4, i<,

A=0(a3)
o= 0(a,) @
r=0{a,) ,

where g, is a disturbance amplitude, r isa fncnc-nal coefficient, A is a supercritical value
of vertical shear of the basic state, ¢ is a transformation factor of time scale of amplitode

evolution.

We (ake
T =at, (5)

T is a slow time scale of amplitude evolution. By means of these relationships, ¥ may be ex-
panded in the form of the asymptotic series with respect to a, .

Vo =¥ + gl +a,07 +agel + ) (6)
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If the flow is within the bounds of » =0 and y =1 bounded by rigid walis, then the
meridional velocity is to vanish. Boundary conditions may be written as

dp,
o =0 y=0,1. ]

When (6) is substituted into (1) and (2), we obtain orders of @, equal to the approximation
of a sequence of linear problems. The first of which is the O{a,) problem:

v, ¢
Gl + Ko 40 )] =0 ®)

where n = 1,2 (hereafter indications are just the same).
We write

U, =2U, = —2U, .

The solution of the form (8) may be written as
. ikx -

o = Red,(Te* sinmny = 4,(TF—5"2 + » , ®
where m is any integer, the symbol Re reminds us that only the real part of the following
expression is taken, and the symbol “ * " refers to the complex conjugate of the preceding
term.

Note that the lowest— order horizonal and vertical structures of the wave are determined
at this order without regard to the supercriticality, the dissipation and the temporal behavior
or the nonlinearity of the wave field.

The O(aj) order approximation yields the following inhomogeneous problem for

2}
ol

U, 2
—2-5-{\720’(2} +—((P(2] 5'2) = )} =

£ g er ]

The total perturbation stream function up to and including O(af,) is rewritten as

ikx

" =¢0A92 sinmmy + * an
_ 4i d_‘i j|} ikx R
P2 —an{A a”kU ( dT A 5~ simmy + *, (12}

Comparing (9) with {12), we can know that the solution of the first order is a neutra] wave.
The amplitudes 4, and 4, arealternative. 4, and 4, maybe writtenas 4, =4, = 4.
In the first order, wave—flow interaction does not occur, because the wave is neutral.
Hence, it is unnecessary to add the feedback effect of the wave on the basic flow. However, in
the O(al) order, the derivative term of amplitude A with respect to time is comprised in the
perturbation stream function ¢,. Therefore, there is wave—flow interaction, and
perturbation wave yields enhancement or decrement. In this case, there is the feedback effect
of the basic flow on the wave. In order to balance this feedback effect, an additional solution

is added into the solution of O(a3) order, ie.,
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o =007 (13)

This sclution represents an O(aé) correction to the basic flow and trivially satisfies the hom-

ogeneous part of (10), because it is independent of x. Solutions of this type could be added at
each stage of the expansion, but as we shall see that such additions are required to balance the
basic flow alteration forced by the nonlinear wave fluxes of the wave perturbation.

Collecting terms of O(af}) yields the final problem, i.e.,
w1 Us 6
= "a—’ﬁ[ vz ‘—((.0(2) "‘Pf}( n )]

U.: d [
N a g el ) g Ve

K
J[wi",vl 0K o]

o2 760 + 5o — el (14)

2 2
where 3= A + = UfK—z
2 Tk

1t is found that there is a response in ¢! which would be linearly growing in relation to
x. Since the x interval is infinite, such solutions for ¢! would become large encugh to

invalidate the ordering implied by (6). For keeping our expansion valid, we need Lo ¢liminate
secular term, i.e.,

a 62‘1’5.2] K » a2 2) 510(2)
771 5 Tz (TeT - ) +3s e
=(-1)"“K2 ’3"[ 414 + IAP]s'mzmny. (15)

The lefi—hand side of (15) represents the rate of the change of the correction to the
zonally averaged potential vorticity modified by a loss term due to Ekman friction (Pedlosky,
1987). On the boundary conditions of y = 0,1, it is automatically satisfied with

0 & (D;[uz) 16 o @ a: f) N
= 5 (e —of B} il (16)
In this problem, an additional boundary condition is
ol _
30r =0, y=01 (17)
1t implies
5 aT(‘”m -0y =0, y=01 ‘ (18)

Eqs.(17) and {18) indicate that the adjusted meridional velocity caused by the change of zonal
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flow induced by waves should vanish on the boundary. This boundary condition is corre-
sponding to that posed by Pedlosky (1979} when he smdied the nonlinear baroclinic stability.

According to Pedlosky’s {1987) research result, waves can only alter the basic flow by in-
ducing a mean meridional circulation. Due to the anti—symmetry of the problem in the verti-
cal direction, this meridional circulation must be with opposite signs in the two layers to satis-
fy mass conservation, i.e., @ and® should satisfy

o = —of = MOy, T), (19)

where M is a constant to be determined.
Invoking (19), we can write (15) and (17) as

aréte & o Kmrc[d 2
3?'[5 T —K ¢} +yay—z MU, LaT +2y:||A| sin2mmy 20)
3o _
5;5? =0, y=0,1, (21}
=2
wherey—za‘

In order to obtain perturbation amplitude 4, only (20) and (21) are not sufficient. If we
choose

o=kUA'? /2K (22)
— U.v 1/2
a4y =8, 23)

then by means of O(ag) order, we have

2 1 a?
ZT +374 s AJ; sinzmaya—J:?ldy -0 24)
Fqs.(20), (21) and (24) are the basic equations to be used.

Pedlosky (1987) made a significant contribution to the derivation of the amplitude equa-
tion. After getting amplitude equation, however, he concentrated his attention to seeking the
methed of salving ®. His aim is that once @ is found, the amplitude A could be obtained
by substituting @ into amplitude equation. This is why he did not complete the transforma-
tion of the amplitude equation to Lorenz sysiem, although the idea is conforming to common
practice.

How can we complete the transformation?

If we define

[P
B= J. ?5 ?sm2mnydy . (25}
(24) may be rewritten as
‘f—T—2+%% A+AB=0 . (26)

Multiplying both sides of {20) by s1n2mny, then integrating the equation from 0 to 1 with re-
spect to ¥, we have
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a8 5 K mu d
'a—,f, + iKz B= e [d—f + 2’?][}1'2 ) 2n
(1+£5)  a(teE5),
dm n dm°

where (21) and the methed integration by parts are used.
For convenience, we choose

K mn
M= — (28)
1+ )
Therefore, (27) may be rewritten as
a8
a—f+AB=[EdT +2y]]A|2, (29)

where A= ————

K
(l * dm*nt )
Eqgs.(26) and (29) are a group of A-B hybrid equations we concerned mostly. The equa-

tions establish the base of transferring a physical problem into Lorenz system.
III. FROM A-B HY BRID EQUATIONS TO LORENZ SYSTEM

In the past, transferring Benard convection problem into Lorenz system was completed
by using the truncated spectral method. Although there are some faults in it, we stiil got some
enlightenment from the spectral method. In Benard convection model, there are two equa-
tions including two variables * and 8°, and Benard convection problem can be transfer-
red into Lorenz system by means of spectral expansions of ¢ and 8" . A—B hybrid equa-
tions have some analogies with Benard convection equations. There are also two variables 4
and 8 in A~B hybrid equation. Their differences are mainly that 4 and B are independent
of space, and * and §°  are functions of time and space respectively. Hence, 4 and B
are simijar to the coefficients of the spectral expansion. We only consider those factors re-
lating to time, such as X(7), ¥(7) and Z(T).

Based on above idea, we take the following transformation.

=0T {300
X=v20"'4 (1)
Y=%mk+x (2
z=%n“3, 33)

where Q is an adjustable parameter to be determined. X indicates derivative of X with re-
spectto 1.
Invoking above transformation, (26) may be rewritten as

'X+%yn“}'<=n'2x—yn‘1xz. (34)

Taking derivative of (32) with respect to 7, then substituting the derivative of (32) into (34),
we have
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¥=—-XZ+3X~-7¥, (35)

where £) is taken as Q=%y, F=(1+207%.

Invoking (30)—{33), (29) may be rewritten as
__mil o ot XK )+ XX 36
4mint + K% 2y X ) 36)

For ¥’ =%Q).( * + X", substituting ¥* into (36), we obtain

z'=-52+%(x‘r+xy'),v (37
where b = —ZT— , X" and Y" areconjugate termsof X and Y respectively.
1+—
( dm®r?
Eqs (32),(35) and (37) construct a complex Lorenz system,i.e.,

= —-gX+3aY (38)

¥=-XZ+FX-Y (39
Z=-BZ+L(X Y +XY"), (40)

where5=2 and|4|’ =A4A”. 4" isconjugate term of 4.

Though the transformation of A—B hybrid equation intc Lorenz equation has
completed, and the behaviors of perturbation amplitude may be studied in phase space, we
still need to inspect whether the amplitude of A is real or complex in Lorenz system. When X

Y=2Z=0, from (38), wehave

X=Y @1
Substituting (41) into (39), and letting ¥ =0, we have
Z=F—1 (42)
Substituting (41}, (42) into (40), and letting Z =0, we get
IXI* =67 —1) 43)
and
- KUiA
F-1)=——t—— . (44)
I’G
Kz fz (1 + — 7 )
m n

As long as A > 0, it can be found from (43) that
X=xBF-0'"", (45)

hence X is a real value.
From (42), we obtain
. ETUZA
Z=(r—l)=‘£KTr2~“ . {46)
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Therefore Z is also a real one.

From (31) and (32), we can know that 4 and B corresponding to X’ and Z are also
real. It thus is clear that near the balance point, complex Lorenz system may be reduced to
real Lorenz system, when discussing the properties of perturbation amplitude.

According to above discussions, Eqs.(38)—(40) may be rewritten as

X=—3X+5Y {47
Y=—XZ+FX-Y (48)
Z=—bhZ+XY {49)

Egs.(47) and {49) are standard Lorenz equations. & and 7 correspond to Prandtl number
and Rayleigh number respectively. In original Lorenz equations, Prandtl number was chosen
as 10. Here ¢ is 2, and the critical value of 7 is
; _BETh+3) _2AS+H)
< F-b-1 1-4

From (50}, we can know that when 1 — F>0, and0<F < 1, theorigm (X =Y=Z=0) is
only a stable balance point,and others are unstable. However, when 1 <7 <7, the origin is
unstable. Therefore, il is very important to determine F,, .

Only when k 2 7, can the condition (1 —b=1 ———22— >0) be correct. Hence in

K
i+ 4mx’

F-plane model, only the evolution of perturbation amplitude of short wave less than synoptic
scale is studied. For the researches of long wave and planetary wave, f—plane approximation
must be considered.

Note that 7 depends on frictional coefficient r. The dependence of perturbation
amplitude on » may be embodied by 7. It is clear that 7 is an important parameter in
Lorenz system.

(50)

IV. PROBLEMS AND DISCUSSIONS

Above transformation of A—B hybrid equations 10 Lorenz system is completed via a
concrete physical problem. Whether there exists a general transformation method? The an-
swer is certain, as long as we introduce the following general form of A—B hybrid equations
(Dodd et al.,1982):

&4 dA .

LN —_— = — 5
pre +AldT] ad —FAB 1)
yr + AR ar. + A, )4l (52)

where A,, A,, A,, « and & are coefficients depending on the concrete physical problem,
Let us introduce the following transformations:

t=QT, (53)
X=02%'"0""4 , (54
Y=(%A3)_'QX+X , ‘ (55)
Z=0Q00n"'A;'B (56)

Generally speaking, Q is always regarded as function of A “and 4,. By Utilizing
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above transformation relations {33)—(56), general A—B hybrid equation can be transferred in-
to Lorenz system.

Here the problem doubted is that when deriving A—B hybrid equation, we consider
amplitude 4 as a complex one. But in the Lorenz system, A is a real one, why? The answer
is that if letting

A = RN 7
and substituting (37} into (24), and separating real part from imaginary part, we have
d ; 3 ;
TR0 = - L@ (s8)
&R 3 dR ' o,
e + >Yar R+ RL stmnyE;Tdy =0, (59)
where f= %
From (58), we know
R?0 = Dexp( - %?TJ- (60)

In which, D is an integral constant.

From (60), it is seen that 5—73_ must eventually vanish becanse of the presence of friction. Tt

implies that in presence of friction, we can consider amplitude A4 as real one, because

A = Re® = Reos? + iRsiné,
When §0, A Rcos# holds

V., CONCLUSIONS

We have absorbed the basic ideas of the high truncated spectral methoed uvsed by Charney
(1979) and amplitude evolution methed set up by Hart (1979) and Pedlosky (19813, and com.-
bined Dodd’s ideas with the problems of wave—flow interaction in the atmosphere. As a
result, we set up A—B hybrid equation method. The method is & powerful tool for studying
nonlinear stability of wave—flow interaction, especially in the baroclinic atmosphere.

This method has some rules to go by, and the transformation method is relatively fixed.
It overcomes some difficulties existing in two methods mentioned above. Hence it is easy to
treat with.

It is interesting to transfer the dynamic problems of atmosphere into complex Lorenz
system, becanse complex Lorenz system has not been touched upon by meteorologists yet.
Exploring complex Lorenz system, undoubtedly, will promote the researches of atmospheric
dynamics.
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