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ABSTRACT

Numerical models of trajectories of small aerosol spheres relative to oblate spheroids were used 1o determine ice
crystal scavenging efficiencies. The models included the effects of acrodynamic flow about the ice particle, gravity,
aerosol particle inertia and drag and electrostatic effects. Two electric configurations of the ice particle were invesu-
gated in detail. The first applicd a net charge to the ice particle, of magnitude equal to the mean thunderstorm charge
distribution, while the second applied a charge distribution, with no net charge, to the ice particle to modet the electric
multipole charge distribution. The resulis show that growing ice crystals with electric multipoles are better scavengers
than single ice crystals with nel thunderstorm charges, especially in the Greenfield gap (0.1 to 1.0 um), and that larger
single crystals are better scavengers than smaller single crystals. The resulis also show that the low density ice crystals

are more effective scavenpers with net charges than they are with charge distribution.

I. INTRODUCTION

The problem of precipitation scavenging of atmospheric aerosols has drawn more and
more altention in recent years due to the problem of acid deposition, also called acid rain.
Scavenging by warm rain processes has been widely studied, both experimentally and
theoretically. The question of ice crystal scavenging has been more difficult to answer, and the
results more variable. In this article numerical models are used to determine ice crystal
scavenging efficiencies as a function of their size, density and electric charge distribution.

Two theoretical models are formulated, which allows computing the efficiency with
which aerosol particles of radii 0.05<r<{60.0 ym are collected by simple ice crystal plates.
The hypothesis of electric multipoles, as well as their parameterized mathematical model, is
given.

II. THE NUMERICAL MODELING OF ICE CRYSTAL SCAVENGING

1. Background

Basically, the ice particles presented in the atmosphere can be idealized as spheres,
columnar disks or thin oblate spheroids. Jayaweera and Cottis (1960) and List and
Schemenauer (1971) have experimentally demonstrated that the hydredynamic drag on a thin
disk is, within a small experimental errot, the same as that on a simple hexagonal plate of the
same radius. A similar result was obtained by Jayaweera {1972) from a comparison of the
terminal fall speed of circular disks with simple hexagonal plates. The work of Pitter et al.
(1973) also supported the hypothesis that simple hexagonal plates, disks and thin oblate sphe-
roids have essentially the same flow fields, and consequently exhibit similar hydrodynamic
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behavior.

Numerical solutions te the Navier—Stokes equations of molion were obtained by
Michael (1966) for steady viscous flow past an infinitely thin disk with 1.5< N, < 50; and by
Schlamp et al. (1975) for viscous flow around a columnar ice crystal employing the technique
suggested by Hamielec and Raal (1969). Happel and Brenner (1965) discussed Stokes flow
past an oblate spheroid on the basis of the work of Oberbeck {1876). Rimon (1969) and
Rimon and Lugt (1969) obtained the numerical solution for time—dependent flow past oblate
spheroids of axis ratio 0.05 and 0.2 and N, =10, 100. Masliyah and Epstein (1970) studied
the steady flow past oblate spheroids of axis ratio 0.2 and 0.5 and N, =1, 5, 10, 20, 100. By
pointing out the deficiencies of previous studies on solutions of flow past an oblate spheroid,
Pitter et al. (1973) obtained numerical solutions of the full, steady—state Navier—Stokes equa-
tions of motion for the case of viscous flow past oblate spheroids of axis ratio lower than 0.2
and for a wider range of Reynolds numbers (1<< N, << 50). They adapted the numerical
method employed by Woo (1971) for flow fields around spheres.

The present study is essentially an adaption to the last work. The flow fields used are
based on those of Pitter et al., but differ from them in some details concerning the modifica-
tion of streamfunction and interpolation of velocity field. These flow fields were employed for
the study of ice crystal scavenging aerosol at intermediate Reynolds numbers (N, =2, 5, 10,
20).

(1) The caiculation of the sireamfunction

The streamfunctions obtained by Pitter et al. (1973) were available for the present study.
These data had been written to magnetic tape in E—format for archival. However, inspection
of the variations of streamfunctions in the vicinity of the oblate body and clos¢ to the axis of
symmetry vielded several regions where ihe streamfunction was not smooth. This fact may be
attributed, in part, to the effect that at low Reynolds numbers considerable difficulties in the
numerical calculation arise due to step size and wall effect. As a result, the application of fi-
nite—difference formulae for the velocity components would result in air flow velocity
discontinuities, an unrealistic situation at intermediate Reynolds numbers. In an attempt to
obtain accurate flow fields, a method for interpolation and curve fitting suggested by Stark
(1970) was employed to smooth the streamfunction fields.

When analyzing the numerical solutions of Navier—Stokes equations of motion, if is
instructive Lo examine the sireamfunction at a given upstream grid point according to the fol-
lowing criteria:

WL <PU+ L), YU <P +1),
v(1.7) =0, Wi =0,

where the index, 7, represents the polar angle 4 and the second index, J/, represents the

radial coordinate £.
The interpolation was made along both polar and radial directions. An interpolating
polynomial of m — 1 ordet (m=8 for the present study) was utilized:

PX)=a, +a, X' +a, X+ +a, X" +a, X", (n
4] 1 2 m

where X could be either the polar or radial index, and coefficients 44,4, ~".a,_, were
computed by least square fit through grid points satisfying above criteria. The resulting inter-
polation function was therefore used to estimate the streamfunction at those discontinuous
grid points.
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This simple treatment for smoothing the streamfunction is believed to be crucial to the
computational accuracy of the velocity field.

Figure 1 reveals the modified streamfunction for ¥, =2. A 6° increment for the polar
angle was adopted. The value for the radial coordinate increment was set at 0.1. The numbers
in Fig.1 denote the radial coordinates. At the surface of the oblate spheroid, £=¢,, and J
=1, and at the outer boundary, é=¢,,, and J=4%.

(2) The interpolation of velocity fields

As mentioned in the previous section, the velocity field generated by a falling oblate
spheroid should tend to be undisturbed when approaching the outer boundary.
Unfortunately, the theoretical results for velocity fields by Pitter et al. exhibited some negative
values for z velocity components at grid points close to outer boundary. In order to resolve
this deviation from the actual flow, a linear interpolation was used to modify the velocity
fields. The expression for the vertical velocity components given by the flow field suggested
that it may be in close proximily to assume a hyperbolic tangent for the interpolating
function,

P(X)=a, +a,tghk , 2

where the coefficients 2, and #, are again determined by least square fitting through those
correct inner grid points and the outer boundary with zero velocity.

Considering the actual need for the determination of the collision efficiency in the later
section, only the velocity in a narrow, far—upstream region was modified, of which the hori-
zontal separation from the axis of symmetry was less than the semi—major axis length of the
oblate spheroid. ;

2. The Hypothesis of Electric Multipole

In 1950, Workman and Reynolds investigated the electrical phenomena occurring during
the freezing of dilute aqueous solutions, in an attempt to explain the mechanism of thunder-
storm electricity. Their results, which have been termed the Workman—Reynolds effect, con-
sist of electrostatic potential differences across the ice—water interface that arises during freez-
ing of water containing low concentrations of jonizable salts, as a consequence of differential
incorporation of anions and cations into the ice crystal lattice.

This theory has been substantiated and extended by experimental (Reynolds et al., 1957,
Brook, 1959) and theoretical {Gross, 1954; LeFebre, 1967) work on charge transfer mecha-
nisms, (he effects of specific solutions (Gill and Alfrey, 1952; Gill, 1953; Lodge et al., 1956;
Heinmets, 1962; Parreira and Eydt, 1963; Levi and Milman, 1966), the effect of electrode ma-
terials and electrode treatment an the charge separation (Carlin, 1956), the correction between
freezing rate and preferential ion incorporation (Gross, 1965), sclution partition coefficients
{Gross, 1967) and spontaneous freezing of suppercooled solutions {(Pruppacher et al., 1968).
These electric effects have also been discussed by Gross (1968) and Cobb and Gross (1969).

Based on the interpretation of the Workman—Reynolds effect applied to atmospheric ice
crystals, Finnegan and Pitter (1988) explained the agpregate of two single crystals and the re-
sulting T—shaped crystals observed by Cheng (1967), Odencrantz (1968), Smith—Johannsen
(1969) and Magono and Tazawa (1972).

They suggesied that when water vapor condenses onto the ice crystal, the arriving water
substance is initially in the transitory liquid phase, and as water becomes more ice—like, the
water molecules in the surface layer are associated with bent and broken hydrogen bonds de-




178 Advances in Atmospheric Sciences Vol.8

pending on supersaturation and ice crystal temperature. Additionally, a number of ions are
present, including ionizable species (salts} and water itself.

When the ice crystal is growing by vapor diffusion, the surface layer of water molecules
undergoes ordered motion toward the growing ice crystal edge. Some ions, depending on the
ionic species, are rapidly incorporated into the ice crystal lattice, while other ions are trans-
ported in the surface layer. Furthermore, there are ionizable molecules present, which may
dissociate adding ions to the surface. As a result, there develops in many cases an electric
multipole with two charges af opposite signs between the growing edge and the central area of
the ice crystal.

However, this electric multipole can only exist while ice crystal is growing. When growth
stops, the migration of ions will be sufficient to collapse the multipole.

The concept of quasi~liquid layer of ice is well established (Kuroda and Lacmann, 1982;
Kuroda, 1982). On the surface of ice crystals near 0°C, various observational techniques ver-
ify its existence. Stickel (1982) has shown that the surface layer exists and affects aggregation
of ice crystals down to at least —30°C.

Laboratory studies by Finnegan and Pitter (1988) have conclusively demonstrated that
the effects of differential ihcorporation of ionic substances into the ice crystal lattice give rise
to the electric multipoles in the growing ice crystals. Their results indicated a consistent pat-
tern in the orientations of ice crystals in aggregates. They noted that, for distilled, deionized
water cases, the predominant configuration was point—to—point junctions. For sedium chlo-
ride solutions, there was an increase in the proportion of T-—shaped aggregates. When
ammonium sulfate solutions were used, the T—shaped aggregates became the most frequently
observed junction configuration. Their results of ice crystal collection on the charged wire
with solutes present, which always showed ice crystal collection on the positive wires when
ammonium salts were used to generate the cloud, and on the negative wires when sodium
chloride was used, also supported the postulate of electric multipoles in growing ice crystals.

The Yellowstone Experiment {Cheng, 1967), when reanalyzed, provided additional evi-
dence for the importance of dissolved salis in the orientation of initial ice crystal aggregates.
The appearance of more T—shaped aggregates when silver iodide nuclei (2Agl-Nal) were
used, as opposed to when dry ice was used for nucleation, indicated that something about sil-
ver jodide # sodium iodide acted such that the initial aggregates were strongly oriented
point—to—center.

However, the work of Finnegan and Pitter does not answer the questions that concern
the magnitude of the electric multipoles in growing ice crystals, and how strong the resulting
electric fields are, since it was extremely difficult to conduct direct measurements.They attri-
buted such difficulty to the nature of the electric multipoles, namely, that they only exist in
growing ice erystals, and that the resulting electric fields are highly localized.

3. Analytical Derivation of Electric Fields

According to Finnegan and Pitter, the central area of the ice crystal possesses a net char-
ge of one sign, and the growing edges possess a net charge of the opposite sign and equal
magnitude, as a result of the developed electric multipole. We attempt to formulate this con-
cept by allowing specification of two opposite charges on the ice crystal. One part, the
polarity depending on the chemical ions present in the ice particle, is distributed en the crystal
surface to make the surface a constant petential. This virtually results in a charge distribution
such that most ions are present at the edges or tips of the crystal, due to the fact that the ice
crystal has been idealized by an oblate sphereid of axis ratio 0.05. The other part, of equal
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magnitude and opposite polarity, is characterized as a peint charge at the center of mass of
the ice crystal. Consequently, the electric behavior of the above physical model can be solved
mathematically.

The electric field due to surface charge satisfies the condition,

E =-Vo, 3)

where @, is the potential around the ice crystal. Taking this potential to be zero far from the
crystal, and assuming no background electric field from’electric charges outside the ice sphe-
roid, the electric potential satisfies Laplace’s equation,

Vi, =0. ()
The boundary conditions are given by the followings: on the surface of the spheroid,
¢=¢,. @, =0, =const , {5)
and at infinity,
E=¢, 0, =0 (6)
In oblate spheroidal coordinates, ¢ and #, Eq.(4) has a particular solution,
O, =c,sin” ' (1ghd) +c, 7
where the consiants ¢, and e, are obtained from the boundary conditions,
e =—®,[x/2—sin” b/ a )", ®
ey =(n/ 200, [/ 2—sin"‘b/a " (9)
From electrostatic theory,
¢, =0./C, (10}

where the capacity C for a thin oblate spheroid is given by the relation (se¢ Pruppacher and
Klett, 1978),
all—(/a)y]"’

- . 1
sin "Y1 —(b/a,)"1""?} ()

Therefore, the electrostatic potential on any & surface in the space due to the charge distribu-
tion on the crystal surface is

—gin”!
o, =2 [r/2=sin_ (ghd)l a2
Cir/2-sin” (b/a.)
Considering Eg.(3), the electric field is
Q. seché

_ 13
a*[1—(b/ a,) |sinh* & +cos’p)' > Cln/2—sin~' (b / a,)] e 13

E =

where ¢ is the unit vector in the ¢ direction.
The separated charge ¢, on a growing ice crystal is expressed as,

Q, =@/ Nnalblp/ p,)N,R,C,, (14)
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where p, s the density of ice at 0°C, and ¥, is Avogadro’s constant. The studies of freez-
ing potential (Workman and Reynolds, 1950; Gross, 1968; Cobb and Gross, 1969) have
measured the incorporation rate R, for chloride ion into ice, and have found that it is
approximately 2 part ions in 10° parts of water. C, is a neutralization factor representing
the balance between the incorporation rate of ions and the rate of charge migration or
recombination, since ice behaves as a protonic semiconductor (Hobbs, 1974).

The electric field around an ice crystal generated by a point charge at the center of mass
of the spheroid can be given in spherical coordinates as,

QC

E,==e , (15}
r

5

where e, is the unit vector in the radial direction, and r, is the center—to—center distance
between the aerosol particle and ice crystal.

Finally, the superposition of the above formulated terms yields a reasonable reproduc-
tion of the electric field due to the electric multipole,

E.=E, +E,. (18)
4. The Mathematical Models

The trajectories of hydrodynamically interacting particles can be computed based on ap-
proximate formulations for the equations of motion. This method is frequently characterized
by what is known as the superposition scheme, according to which each body is assumed to
move in a flow field generated by the other falling in isolation.

Langmuir (1948), Shafrir and Neiburger (1963), Neiburger (1967), and Shafrir and
Gal—Chen (1971) have successfully used the superposition method to compute the collision ef:
ficiencies of water drops. Beard and Grover (1974) and Grover and Beard (1975) similarly in-
vestigated aerosol scavenging by water droplets.

Investigations of ice crystal accretion have been conducted using the superposition meth-
od and nonspherical collecting bodies. Pitter and Pruppacher (1974), Pitter (1577) and Martin
et al, {1981) studied riming by thin ice crystals, idealized by oblate spheroids of axis ratio 0.05.
Schlamp et al. (1975) examined riming of ice columns and needles, idealized as circular cylin-
ders.

Recent studies by Wang and Pruppacher (1980), Wang (1985) and Miller and Wang
(1989) used an analytical flux model to investigale the scavenging of submicron aercsol parti-
cles by snowfall. This model considered the convective diffusion of aerosol particles less than
0.5 um near an ice crystal and computed the particle flux by solving a steady—state
ventilation—enhanced convective—diffusion equation. The mechanisms considered included
Brownian diffusion, thermo— and diffusio— phoresis as well as electrostatic forces, Effects due
to gravitation and inertial impaction were ignored for small aerosol particles.

The present study incorporates some fealures contained in the above two types of
models. Two complimentary models which compute scavenging efficiencies by ice crystals
have been formulated: 1) a trajectory model based on the superposition method for aerosol
particle sizes 1 pm and larger and 2) a drift velocity model for aerosol particle sizes smaller
than 1 gm. The combined trajectory and drift model therefore yields the scavenging efficien-
cies of aerosol particles of radii 0.05 to 10 pm by ice crystals.
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(1). Definitions and Relations

The collision efficiency E is defined as

2
ar;

Erag )=—,
ra.) r:(ar+r)2

(a7

where r,, measured perpendicular to the crystal fall axis aligned along g and sufficiently far
upstream of the crystal, is the largest horizontal offset a particle can have from the ice crystal
fall axis and still collide with the spheroid. In nondimensional form, Eq.(17) becomes

E(ra,)=Y. /(1 +P), (18)

where p=r /a, is the size ratio between the aerosol particle and ice crystal, and ¥, =r,
/ a_. Pitter and Pruppacher (1974) noted the noncoliisionfree region could be expressed by

Yo <Y<Y,

where ¥, denoted the inner critical offset. Thus, we can employ a more complete relation
to express the collision efficiency,

E(ra,)=(Y>— Y2 )/ (1+P). (19)

The collision kernel K{r,a_), which is the effective volume swept by the scavenging
body, can be computed from a knowledge of E{r,a,) and the following equation,

K(ra)=E(ra)n(a, + (U, -U,), (20)

where &/, and U, are the terminal velocities of the collector crystal and of the aerosol par-
ticle, respectively.

It is reasonable to assume that adhesive forces ensure that a particle remains at the sur-
face of an ice crystal once it has collided with it. This assumption is particularly justified at
temperatures between 0 and —10°C, at which temperature water molecules have an apprecia-
ble surface mobility and behave as if being part of a “pseudo—liquid” layer. It also fellows
from Finnegan and Pitter (1988) that a liquid-like layer is required to dissolve salts and initi-
ate electric multipoles in growing ice crystals, as noted earlier. With this assumption, the colli-
sion efficiency is then identical with the collection efficiency, and the collision kernel is identi-
cal with the collection kernel.

The scavenging coefficient /A, which is the loss rate of aerosol particles per unit volume
of air by virtue of scavenging, is defined by the relation,

A= —(1/nXdn/ df) 1)

where n is the number concentration of aerosol particles. The scavenging coefficient is also
related to the scavenging kernel by the equation,

o

AN =j Kir,a YN(D )dD, , (22)
0

where N(D_} is the differential number concentration of ice crystals with equivalent diame-

ter between D, and D, +4D_. For a given precipitation rate, R, and an ice crystal size

distribution, the ice crystal number concentration can be solved from the relation,
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R =(1r/6)J. DU, (D N(D,)AD,. 23
. .

The scavenging problem is therefore basically one of determining the collection kernel
K(r,a,). Fora monodisperse ice crystal size distribution of one crystal habit, one can have
the simple result that,

A =K{ra ND,) . (24
(2). The wrajeciory mode!

Particle trajectery models are based on Newton’s second law of motion. Essentially, a
trajectory model involves numerical integration of the equations of motion to determine the
trajectory of the aerosol particle relative to ice crystal. The equation of motion for the aerosol
particles is written as

m,dV/di=F, +F,+F,, (25)

where m, = (4/ 3mr’ pr is the mass of aerosol particle, F, is the bucyancy— corrected
gravitational force,
Fo=mglp, —p,)/ o (26)

where g is the gravitational acceleration, p, is the bulk density of the aerosol particle and
p, isthe air density.

The drag force, F,;. is due to the flow resistance to a body’s motion within it, The resist-
ance to the inertia of an assumed spherical object is expressed as

F,;'—__()ﬁ’?,"(V—U)/C.m s (27)

where 5, is the dynamic air viscosity, and ¥ is air motion experienced by the aercsol par-
ticles determined by solving the full Navier—Stokes equations of motion for each ice crystal.
The Stokes—Cunningham slip correction factor has been defined by Junge (1963} as
C, =10+aK,, withax=126+040exp(—1.1/K,). The Knudsen number, X, =4/r
is the ratio of the free path length of molecules, A, to the aerosol particle radius, r.

The electrostatic force, F,, on a particle near the ice crystal is

F, =0, L, (28)

where £ can be cither the electric field generated by the crystal surface K|, or the electric
field due to electric multipole £, , as discussed previously. @, is the charge on aerosol par-
ticles.

For aerosol particles, the equilibrium charges may be determined from theoretical con-
sideration of an energy distribution according to Boltzmann’s law or considerations of
recombination coefficients. However, Junge (1963) reviewed these theories and noted the lack
of sufficient information to verify them. Grover and Beard (1975) indicated that corona
breakdown of a perfectly spherical particle in the atmosphere occurs for 107 statcoulombs
of charge and that over §9.9% of 1 um particles contain charges of magnitudes of less than 5
x 10~ statcoulombs. Data compiled by Takahashi (1973) indicated that the aerosol particle
charge may be represented as -
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0, =g, 29)

where @, isine.s. u. and r isin cm. The constant ¢ ranges from 0.2 to 2.0, with the latter
corresponding to the mean value in thunderstorm conditions. In the present study, the aerosol
particles were modeled with either one electronic charge or a net charge given in Eq.(29) with
g=20.

The equation of motion for aerosol particles can be furiher nondimensionalized by the
relations (superscript * denotes dimensionless quantity),

vt =vsu., (30)
T =tU./a, . 3y

Therefore, Eq.(25) is written in nondimensional form as
dV/di=[p, —p,)/ 8" / Np —(V=U)/ N, +(3a,)/ (4 p, UL)Q, E, (32)

where N, = Ul /a g is the Froude number for the acrosol particle, g *  is a unit vector in

the direction of gravity, and
N, = p, UL /M,a, %24/ CpNp,), (33

is the inertia parameter, or Siokes number for the ice crystal.

As formulated, Eq.(32} includes effects of inertial, gravitational, hydrodynamic and
electrostatic forces on the trajectories of the aerosol particles. Although the nonlinear effects
of two body interactions were not treated, this method has been found accurate when the axis
ratio of the two particles is significantly less than unity (Grover, 1980), Furthermore, the flow
fields around the aerosol particles have been omitted from this model since they have negligi-
ble effect on the crystal velocity.

(3} The drift velocity mode!

The drift velocity model is a simplification of the superposition mode! which is applicable
to aerosol particles less than 1 pm radius. In Eq.(25) the acrosol particle acceleration arises
from an imbalance of external forces. If the aerosol mass is extremely small, the acceleration
becomes so large as to almost instantaneously balance the external forces. Mathematically,
this can be achieved by setting the left—hand side of Eq.(25) te zero and solving for ¥,

V,=U+(6m,r/C.) '(F, +F,), (34)

where ¥, is known as the average response 1o the impressed forces, which is also termed as

drift velocity.
The particle mobility is defined (see Pruppacher and Klett, 1978) as

B=C,, /(6m,r) . (35)

On combining Egs.{34) and (35), we can obtain an intimate connection between the drift ve-
locity and the particle mobility,

Vy=U+BF, +F,) . (36)
Similarily, this equation can be nondimensiontized by using Eq.(30),
V,=U+B/ U/ ' (o, —p)8" + 0, E] . 67

From the numerical solutions of Eqs.(32) and (37), the trajectory can be computed for
aerosol particle of various sizes moving around the oblate spheriod of ice of varicus sizes.
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Collision can occur as front or rear captures. Rear capture may occur when there are ed-
dies present and when e¢lectrostatic forces exhibit weakly net atiractive forces. When eddies
are present, a collision i3 said to occur once an aerosol particle is trapped in a circulating eddy
in the wake of the ice crystal. The value of ¥, is found by choosing an initial offset
¥, =(Y, +¥,)/2 (¥, isinitially zero, and ¥, is initially one ice crysial radius), and in-
tegraling in time for the resultant trajectory. The initial trajectory is chosen to always miss,
and the subsequent initial offset is determined by bisecting the offset value, i.e., for a miss
¥,=Y, forahit, ¥, =¥, i isthe particular iteration. A grazing collision occurs when
(Y,—Y\)/ Y, <e¢, where ¢=10"" isthe collision tolerance.

In order to ensure that the vertical separation between the ice crystal and aerosol particle
has a negligible effect on the collision efficiency, the initial vertical separation was chosen to
be sufficiently large {15 ice crystal radii in the present study) such that any additional increase
in initial vertical separation changes the collision efficiency by <0.1%. This represents the sit-
uation as it is found in an atmospheric cloud free of turbulence (Martin et al., 1981).

It was found that the integration scheme used to solve Egs.(32) and (37), and hence the
colleclion efficiency, was very crucial to the accuracy and stability of the trajectories. As a re-
sult, it was determined to use Hamming’s predictor—corrector—modifier method, a
non—self-starting method, with the Runge—Kutta method to start the integration. Both the
Hamming and Runge—Kutta schemes are of fourth—order accuracy, and both contain error
controls. If the estimated error incurred in one step exceeded a specified value, the step size
was halved, reducing the error by a factor of 32. If later the error was diminished significantly,
the step size was doubled as feasible until it reach its initial size.

1. CASES INVESTIGATED

The present models were applied to a variety of cases to survey the effects of aerosol par-
ticle size and ice hydrometer density, size and charge on scavenging efficiency.

Essentially, two series of investigations were performed with ice crystals of different bulk
densities. The first series investigated ice crystals of bulk density 0.92 g/ cm® and Reynolds
numbers 2, 5, 10, and 20. The second series investigated ice of bulk density 0.1 g/ cm’ and
the same Reynolds numbers. The field studies of natural ice crystal by Locatelli and Hobbs
{1974) indicated that the bulk density of 0.1 g/ cm® is typically found in snowflake agegre-
gates. Although the ice crystals considered in the present study are much smaller than those
observed by Locatelli and Hobbs, the second series resembles the ice hydrometer behavior as
it is to some extent for natural snowflakes, The first series, on the other hand, pertains to sim-
ple, unrimed and unaggregated ice particles.

For each of these cases, ice crystals were modeled for two electrostatic conditions. In the
first, representing the net charge case, they were assigned a nel electric charge as given by
Eq.(29), with the surface charge distributed so as to make the surface equipotential. In the
second, representing the electric multipole case, there is no net charge, but two components of
equal magnitude and opposite sign, with an internal charge distribution as specified in section
2.3. In order to visualize the importance of the strength of glectric multipole on the aerosol
scavenging, it is useful to examine the trajectories of aerosol particles relative to ice crystal at
different ionic charpe neutralization. In the present study, the collision efficiency was comput
for ionic charge neutralizations of 99.9% and 99.99%.

The present study was not oriented toward investigating in detail the nature of scaveng:
ing for aerosol particles greater then 10 um, since the electric forces have a negligible effect on




No.2 Richard L. Pitter and Renyi Zhang 185

scavenging efficiency for such large aerosol particles. However, a limited number of investiga-
tions were conducled to examine the effect of net electric charges on the efficiency with which
aerosol particles of radii larger than 10 um are collected by ice crystals, with the intention to
examine the validation of the present model and to compare it with published models.

Model I was evaluated for platelike ice crystal of bulk density 0.92 g/ cm®. The aerosol
particles considered have radii of 1.0<r<(60.0 ym. The ice crystal plates have Reynoids num-
bers of 5, 10, and 20. In addition, the present study also investigated the interaction of
uncharged aerosol particles and ice hydrometers for comparison.

In all cases, ice crystals are represented as oblate spheroids of axis ratio 0.05. The aerosol
particles considered to be spheres with a bulk density of 1.0 g/ em®. The ice crystals were as-
sumed to fall at the atmospheric environmental conditions of —10°C and 700 hPa.

In order to obtain the aerosol particle trajectories, it is necessary to know the drag
coefficient £,, for the ice crystals. The results for oblate spheroids were those numerically
determined by Pitter et al. (1973). It is also necessary to know the size and terminal velocity of
an oblate spheroid of given Reynolds pumber and drag coefficient. These results can be de-
rived from the vertical component of Eq. (25) for the case of an oblate spheroid falling at ter-
minal velocity in an infinite, undisturbed environment, and only including buoyancy men-
tioned previously

a, =[W:C, N3, /3%ARp, —p, )], (38)
U, =v,Np /{2a,pa) . 39

Table | relates the Reynolds number &, , drag coefficient Cp,, radiuse, and termi-
nal velocity U, of cblate spheroid of density of 0.92 g / cm’ in atmosphere of —10°C, 700
hPa.

Table 1. Reyaolds Number, Drag Coefficient, Radius and Terminal Velocity for Simple [oe Crystal Plates of
Density of 0.92 g / cm® in Atmosphere of —10°C and 700 hPa

Reynolds number Drag coefficient Crystal radius Tenpinal velocity
Nge Cp a_ {pm) U, {tm/s)
2 12.67 147 12.25
5 ’ 6.17 .« 213 21.14
10 EX-1) 239 1111
20 2.63 404 44.59

Table 2, Comparison between Computed and Observed Termina) Velocities of Simple Ice Crystai Plates

Terminal velocity observed

. Terminal velocity compiited for si hex )
Crystal rad; s for oblate spheroids of ice of ice cr‘;'rsz.rl:lzllzajik:fv‘;u? 972)
2 (km (8 / a,)=0.05 700 hPa, —10°C (em / ) 1000 1Pa. 10C (2 pem £ )
147 12.25 12
213 21.14 21
289 3111 i

404 44,59 42
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In Table 2, comparison is made between the theoretically predicted fall velocity, available
for 700 hPa and —10°C, and the fall velocity experimentally measured by Kajikawa (1972) for
1000 hPa and —10°C, Considering the difference in pressure, the two data sets appear to be in
good agreement and thus justify further our idealization of simple hexagonal ice crystal plates
by thin oblate spheroid of ice. .

The net electric charge of ice crystals computed from Eq.(29) and the separated charge
given by Eq.(14) for electric multipole without neutralization are listed as functions of ice
crystal sizes in Table 3. It appears from field observations (Magono and Kikuchi, 1961; Isono
" et al., 1966; Burrows and Hobbs, 1970; Kikuchi, 1973; and Magono and Iwabuchi, 1979) that
platelike crystals are predominantly negatively charged. In contrast, in partially glaciated
clouds, the aerosol particles may carry either positive or negative electric charges. However, in
the present study, only collisional interactions between an ice crystal and aerosol particle of
opposite charge sign are considered. Due to the strongly opposing electric forces, it is obvious
that the collision efficiency for ice crystals and aerosol particles of like charge sign is very
small. Similarly, only the case with opposite charge signs between that of the aerosol particle
and that of surface charge on the ice crystal arising from the internal charge distribution is
evaluated in this study.

Table 3. Net Electric Charge and Computed Growing Crystal Charge Separation due to Electric Multipole for
Simple Ice Crystal Plates of Bulk Density 0.92 g/ om?

Crystal radius Computed charge separation Net crystal charge
a, {pm} {esu) {esu)
147 3.85 -43x107
213 11.70 -9.1x 107
289 29.26 -1.7x 107
404 79.80 -3.3%x107

Table 4. Reynolds Number, Drag Coefficient, Radius and Terminal Velocity for Simple Ice Crystal Plates of
Density of 0.1 g# ¢m? in Atmosphere of —16°C and 700 hPa

Reynolds oumber Drag coefficient Crystal radius Terminal velocity
Ng. Cp a. (um) U, (em./s)
2 12.67 310 - 5.83
5 6.17 449 10.07
10 387 610 14.83
20 2.63 852 21.14

Table 5. Net Electric Charge and Computed Growing Crystal Charge Separation due to Electric Multipole for
Simple Tee Crystal Plates of Bulk Density 0.1 g/ cm®

Crystal radius Computed charge separation Wet crystal charge
4, (um) (esu) (esu)
310 3.92 —1.92x 107
449 11.92 —4,03% 10~
610 29.91 —7.45% 107

852 31.33 —145% 107
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Fig.1. Modified streamfunciion versus polar angle for ice crystal Reynolds pumber Re = 2. The
numbers correspond to radial distances to the spheroidal surface.

IV. RESULTS AND DISCUSSIONS
1. Simple Ice Crystal Scavenging
(1) Thunderstorm ice crystal scavenging

Figure 2 presents the resulis for the efficiency with which electrically charged simple ice
crystal plates and oppositely charged aerosol particles collide with each other, along with the
results for the efficiency with which uncharged simple ice crystal plates collide with uncharged
aerosol particles, in air at 700 hPa and —10°C. These resulis were obtained by evaluating
model [ for agrosol particles of radius 1 <r <60 um. [ce ctystal Reynolds numbers of 5, 10
and 20, corresponding ice crystal sizes of 213, 289 and 404 um, were investigated. The dotted
lines identify results for aitractive electrostatic force cases. Solid lines denote the numerical re-
sults for uncharged boedies.

It is seen from Fig. 2 that, for elecirically uncharged aerosol particles and crystals, the col-
lision efficiency rapidly increases with increasing aerosol size up to a broad maximum beyond
which the coliision efficiency rapidly decreases to zero. It is noted that there exist a small
aerosol size cutoff and a large aerosol size cutoff for uncharged bodies, dependent on the ice
crystal Reynolds number investigated. For Reynolds number of 10 as an example, the cutoffs
are located at 6 and 46 um. These cutoffs were also previously noted by Pitter and Pruppacher
(1974) and Martin et al. (1981). The small aerosol size cutoff is due 1o the fact that a small
aerosol particle has little inertia and tends to escape being captured by following the
streamline. This has been verified by the field observations of Wilkins and Auer (1970),
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Harimaya (1975) and Kikuchi and Uyeda (1979), who found that drops smaller than 5 um are
rarely found on rimed ice crystal plates collected in natural clouds. The large aerosol size
cutoff is due to the combined action of hydrodynamic forces, viscous drag and gravitation
settling. The large acrosol particles accelerate to the terminal velocity of the ice crystal plates,
thus allowing the long interaction time so that the aerosol particle can accelerate and subse-
quently cross streamline away from the ice crystal by virtue of its drag force.

The present results indicate that electrostatic charges on ice particles in convective clouds
increase the collision efficiency over that for uncharged case, when oppositely charged aerosol
particles and ice crystals interact. Such electrical effect on ice crystal scavenging is particularly
notable for ice crystals of smaller Reynolds numbers, which have smaller collecting areas and
low terminal velocities.

When attractive electric forces are considered, the small aeroscl size cutoff vanishes for
all cases investigated. Essentially, small aerosol particles are able to accelerate towards the ice
crystal because of the electric forces. However, the action of electric field does not noticeably
affect the large aerosol cutoff size, since large acrosol particles have greater inertia and thus
smaller acceleration due to the electric forces,

A comparison of the present results for interaction between uncharged and charged bod-
ies with the results previously computed by Martin et al. (1981} shows slight differences both
in the collision efficiency and in the acrosol size cutoff. For all cases investigated, the collision
efficiencies presented in this study are somewhat lower than the results of Martin et al. This
difference may be attributed to the different collision criteria or to the different vertical sepa-
rations specified in each study. The initial vertical separation used in this study is considerably
larger than that of Martin et al., and as a result, the collection efficiency is more representive
of an aerosol particle approaching from infinity.
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Fig.3. 0.1 gm aerosol trajectories about an ice crystal with N, =2 for the case of uncharged bodies.

Furthermore, In confrast to the studies of Martin et al., who showed that sufficiently
small, electrically charged aerosol particles may be only captured in the front of electrically
charged ice crystal plates, the present study indicates that, for the aerosol and crystal sizes
considered, both front and rear captures of aerosol particles take place.

Figure 3 shows trajectories that 0.1 ym aerosol particles move about an ice crystal with
Reynolds number N, =2 for the case of uncharged bodies. It is noted that inertial
impaction is negligible for such small aerosol particles.

The results for interaction between electrically charged ice crystals and electrically char-
ged aerosol particles of radius less than 10 ym are shown in Figure 4, by evaluating model I
and 11 for ice crystal Reynolds number 2, 5, 10 and 20. In this figure gravitational, diffusive,
and electrical forces are considéred. Two regimes are readily apparent in this figore. The first,
for r < 0.3 pm, is characterized by decreasing scavenging efficiency with increasing aerosol
size. The second, for > 0.3 um, is characterized by the opposite behavior. The decrease in
efficiency with increasing aerosol size for r <0.3 pm is due to the fact that the dirfi velocity
(i.2.. mobility) of smaller aerosol particles in the electric field is much larger than that of large
aerosol pasticles, thus allowing the smaller aerosol particles to experience larger average devi-
ations from the streamlines, and consequently increasing the probability of collision with the
ice crystal. In this case, as the aerosol size increases, the corresponding particle mobility, B,
decreases, while the aerosol particle charge remains one electron. The observed increase in ef-
ficiency with increasing aerosel particle size for r > 0.3 um is due to the fact that the aerosol
particle charge is specified to be size~dependent as given in Eq.(29), and due to the increasing
role of inertial impaction.

Figure 4 also shows that, for aerosol particles smaller than about 6 um, the collision effi-
ciency increases as the ice crystal Reynolds number (i.e., the size of the collector) decreases,
This increase is particularly noticeable for aerosol particles near 0.03 um. Since aerosol
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diffusive impaction dominates the collection process, and since the larger Reynolds number
corresponds to larger ice crystal terminal velocity, thus allowing less time for interaction be-
tween the two particles, the above—mentioned behavior is expected,

The present results for submicron ice crystal scavenging with attracting electrical forces
between the interacting bodies are consistent with the low scavenging efficiency obtained
theoretically by Miller and Wang (1989), who took account of thermo— aad diffusio—
phoresis as well as electrostatic forces. We noticed that, at present, nc published numerical
studies are able to match those observed high scavenging efficiencies as indicated earlier. The
strong nel charges, what are considered to be the average charges on ice crystals in thunder-
storms, were required for even modest collision efficiencies. In addition, some experimental
data have shown that orographic winter storms were capable of vigorous scavenging, al-
though such storms lacked the electrification that thunderstorms possess. Therefore, there
might exist some other mechanisms which are effective for submicron ice crystal scavenging.

(2) Aerosol scavenging by ice crystals due fo electric muitipoles

Some calculations were performed to simulate the effect of internal charge distributions
in ice crystals on scavenging of aerosol particles. It was assumed that there is no net chatge on
the ice crystal, but rather two components of charge of equal magnitude and opposite sign.
One component was distributed on the crystal surface, in the same manner as an equipotential
surface charge noted previously. The other was characterized as a point charge at the center
of mass of crystal. The combination of Model I and Il provides scavenging efficiencies for
aerosol particles of radius 0.05 <r <10.0 um by plate ice crystals with associated Reynolds
numbers ranging from 2 to 20.
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Fig.5. Collision for ice erystals of bulk density 0.92 g/em® and Nz, =2. Solid line: net charge
model: dot—dashed line: eletrostatic multipole with 39.9% neutralization; dotted line: electrostatic
multipole with 93.99% neutralization,

Figure 5 presents the scavenging efficiencies for ice crystals of Reynolds number 2, com-
paring the result of a net charge on crystal surface (solid line) with those arising from electric
multipoles, The upper, dot—dashed curve is corputed by assuming that chloride jons are in-
corporated into ice at 2 parts in 10° parts of water, and that 99.9% of the electric charge as-
sociated with the chloride jons are neutralized at any moment. The lower, dotted curve as-
sumes the same, except that 99.9% of the electric charge associated with the chlaride {ons are
neutralized. Similarly, Figs. 6 to 8 present the results for ice crystals of Reynolds numbers 5,
10, and 20, respectively.

Figs. 5 to 8 indicate that the presence of electric multipoles may significantly affect the
capture of aerosol particles by ice crystals, particulary in the aerosol range of 0.1=sr<10
um, namely, in the Greenfield Gap. For aerosol particles of r > 1.0 um, the effects of electric
multipoles are small because inertia dominates the capture process. For aerosol particles of
r<0.1 pm, the electric effects are small since the capture process is dominated by aerosol
diffusion {i.c., extremely large particle mobility). It is seen that the smaller the size of ice crys-
tal plate, i.e. the smaller the Reynolds aumber is and hence the less the strength of the flow
field around the crystal becomes, the stronger the action of electric multipoles is. As the
Reynolds number increases to 20, the charge distribution effect is minimal for aerosol parti-
cles larger than a few micrometer radii, but still strongly pronounced for submicron aerosol
particles. The disappearance of the effects of electric multipoles for aerosol particles of r > 10

pm and ice crystal Reynolds number greates thaa 10 is not surprising, since the capture pro-
cesses are completely dominated by inertia impaction for large ice crystals and large aerosol

particles.
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Figs. 5 to 8 show that the strength of electric multipoles influences the efficiency with
which aerosol particles collide with ice crystals. For aerosol particles of 0.1 €+ < 1.0 gm,a
change from 99.99% to 99.9% of ionic charge neutralization causes an increase in the effi-
ciency of about one order of magnitude. This implies that the scavenging effect may be
strongly dependent on the crystal growth rate and on the concentrations and species of avail-
able ions presented in the crystal. Ice crystals growing rapidly by vapor diffusion are, there-
fore, able to act as efficient aerosol scavengers.

Figs.S to 8 indicate that aeroscl particles less than | um are subject to increasing collision
efficiencies for decreasing ice crystal N, , while aerosol particles greater than 2.0 ym exhibit
the opposite behavior. Since smaller ice crystal Reynolds number means longer interaction
time between aerosol particles and crystal hydrometers, and consequently the aerosol diffu-
sion is more effective the smaller the collector, the above mentioned behavior is expected. The
observed predominani minimum in the collision efficiency for aerosol particles of radius be-
tween 0.1 um and 1.0 ym may occur as the combined effect of aeroscl mobility and the sum of
the radially directed forces (i.e., the gravitational and electric forces} approach minimum.
This result is consistent with the “Greenfield gap”™, with the aerosol collision efficiency at-
taining its minimum value at around 0.2 ym in radius.

2. Aerosol Scavenging by Low Density Ice Crystals

Several calculations were carcied out using a low density for ice particle. The crystal den-
sity was decreased from 0.92 g/ cm’ to 0.1 g/ cm’. Although the configuration of electrical
multipoles in ice crystal aggregates may be more complicated than that of simple ice crystal
plates, it was still assumed that the characteristics of electrical multipeles discussed in section
3.3 is hold true for the low density ice crystals. Models [ and II were evaluated for ice crystal
Reynolds numbers 2 to 20 and aerosol particle radii of 0.05 <7 £ 10.0 um,
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The strongly attracting effect due to electric multipole is also evident by the analysis of
the aerosol trajectories during close interaction with the ice erystal. The different charge sce-
narios is portrayed by plotting the trajectories of four identical cases with different crystal
charges. Figure 9 shows comparative (rajectories for an 0.05 pm radius aerosol particle
around an ice crystal of Reynolds number 10. The trajectory that yields no collisions is for
uncharged ice crystal and aerosol particle, with only the inertial force involved, The trajecto-
ries with rear captures, the one close to the rim and the one far from the rim, indicating that
they are very close to the critical trajectory, are for the electric multipole with 99.99% charge
neutralization and the net charge case, respectively. The inner trajectory is for the case of an
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internal charge distribution on the ice crystal with a 99.9% recombination factor. It yields
capture of the aerosol particle on the front side of the ice crystal. From this direct
comparison, it is seen that the existence of electric multipoles strongly affects aerosol particle
trajeclories in its immediate vicinity, and hence the scavenging efficiency. The cause of the
dramatic deviation of the aerosol particle from its streamline for the case of electric multipoles
must be attributed to the fact that the attracting force is strong enough to move the particle
toward the crystal as the aersol particle approaches the crystal. In all cases, the aerosol parti-
cle was considered to have either no net char ge or one electron of charge.

Figure 10 presents various aerosol trajectories moving around an ice crystal for the case
of electrical multipole and ionic recombination factor 99.99 percent. The ice crystal is 147 ym
in radius (Reynolds number 2), while the aerosol radius is 0.1 ym. The trajectories were com-
puted by specifying the initial horizontal acrosol offsets at equal intervals. It is noted that the
distribution of captured aerosol particles are non—uniform on the crystal surface, with more
aerosol particles captured close to the rim. This may be explained by the joint action of the
deflected air flow beneath the ice crystal and the greater surface charge density at crystal edge.
This resnlt is consistent with the cloud chamber work of Prodi (1976) and the theoretical work
by Martin et al. (1980}

Figure 11 explicitly illustraies the scavenging coefficient dependence on Reynolds num-
ber for the case of electric multipoles. The scavenging coefficient has units of inverse time, and
represents the inverse of the time it takes the ice crystal population to reduce the acrosol con-
centration to 1/ e of its original concentration. The ice crystal number concentrations were
assumed to be the same for all crystal sizes considered, thus allowing comparison of scaveng-
ing coefficients for various sizes of ice crystals. This ice crystal number concentration was de-
rived by assuming that, at certain level, a precipitation rate of 1 mm ./ hr was caused by
monodisperse ice crystals of radius 404 ym (Reynolds number 20). For all cases, the electric
rmultipoles were considered with 99.9 percent charge recombination. It is seen that the exist-
ence of electric multipoles cause a rapid removal of aerosol particles from the atmosphere.
For example, for Reynolds number 20 and aerosol size range of 0.05 <r < 10 um, the values
of computed scavenging coefficients are 7x 107*<A <§x 107 s™'. Asa result, the acrosol
resident time due to snow scavenging is between 0.4 and 0.035 hours. The results show that
larger ice crystals are more effective scavengers than smaller ice crystals, and that larger ice
crystals are more effective scavengers, in term of scavenging coefficient, than liquid water
drops. The higher scavenging effect for larger ice crystals can be attributed to the fact that the
collecting area and terminal velocity increase as a result of increasing ice crystal size. It is also
noted that for a given ice crystal size the variation of scavenging coefficient with aerosol size
resembles that of scavenging efficiency.

The results from electrical multipoles with 99.9% and 99.99% charge recombination fac-
tors are compared with those from the net charge model. The most significant feature of the
calculated results is that, for aerosol particle size larger than a few micremeters, the scaveng-
ing efficiences drop rapidly with increasing aerosol size for the electric multipoles with
99 999 neutrakization, and subsquently approach zero, due to the lack of sufficient electrical
action and small differential terminal velocilies between the ice crystal and aerosol particle.
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Fig.11. Scavenging coefficients for the case of electric multipole with 99.9% charge neutralization.
Solid line: ¥ ,, =2, dot—dashed line: N, = 5; dashed line: &, = 10; dotted line: Vg, =20.

A comparison of the aerosol scavenging efficiency by ice crystals of density 0.1 g/ cm’
with those of bulk density 0.92 g/ c¢m® indicates that, for the case of electric multipoles, the
low density crystals are less efficient scavengers than those of high density ice crystals, al-
though the scavenging efficiency is still strongly pronounced for electric multipoles with
99.9%, nentralization. It is also noted that, for all Reynolds numbers investigated, the effects
of crystal net charges increase for low density ice crystals.
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Fig.12. Collision efficiencies for ice crystals of bulk density 0.1 g/ cm’ and Reynolds number
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These findings can be interpreted as that the role of the ice crystal internal charge distri-
bution in aerosol scavenging is primarily limited to scavenging by simple ice crystals. As ag-
gregates form and grow, the charge distribution effect becomes minimal, while the net charge
effect increases. ’

Y. SUMMARY

A combined numerical model was developed and utilized to incorporate inertial,
hydrodynamic, gravitational and electrostatic forces, including forces arising from an internal
electric charge distribution in the ice crystals, lo determine aerosol trajectories and scavenging
by simple ice crystal plates and snowflakes.

“Two numerical models were used. Scavenging of aerosol particles from | to 10 ym was
studied using a trajectory model based on Newton's second law of motion. Scavenging of
smaller aerosol particles was studied using drift velocity medel based on the concept of parti-
cle mobility. A model to estimate the effects of electric multipoles, as postulated by Finnegan
and Pitter {1988) was also developed to survey the effects that differential ion incorporation
into the ice crystal lattice might have on scavenging efficiency.

In the modeled thunderstorm cases, the resulis of the numerical models indicate that, for
larger aerosol particles (r > 5 ), the effects of attractive electrostatic forces generally in-
crease the crystal scavenging efficiency. It was found that inertial impaction is usually the
dominant mechanism if the acrosol particle Stokes number exceeds a critical value. The action
of combined electrostatic deposition and inertial impaction causes the small aerosol size
cutoff to vanish. However, for submicron aerosol particles, particularly those in the region of
0.1<r<10 pm, the net charge model yiclds only lower scavenging efficiencies.
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The numerical simulations of aerosol trajectories and scavenging by ice crystals with an
internal charge distribution have shown remarkable ability to reconcile the previously widely
diverging results of many investigators. The study suggested that the aerosol scavenging effi-
ciency by snow crystals may depend on the ionic species present in ice crystals, their concen-
trations and ice crystal growth rates. The computations with stronger electrical multipoles,
which are postulated lo exist when ice crystals contain dilute concentrations of ionizable
inorganic salts and are growing rapidly by vapor diffusion, yielded results consistent with
higher scavenging efficiencies found experimentally, and heretofore unexplained
mechanistically. When the cases of electric multipole with less strength were investigated, the
results yield one or more order of magnitudes lower scavenging efficiencies.
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This study alse provided some indications of the variation in scavenging ability of ice
crystals as they grow and aggregate. The results showed that larger ice crystals are overall
more efficient scavengers than small ice particles. For larger ice crystals of bulk density 0.92
g/ cm’ (about 800 ym in diameter), the effects of electric multipoles are minimal for aerosol
particles larger than a few micrometer radius. The investigations for a low ice crystal density
indicated that the effects of internal charge distributions on aerosol scavenging diminish,
while the effects of net charges on ice crystals increase.

Finally, the present results for ice crystal scavenging of aerosol particles may also be in-
terpreted as an evidence in support of the formation of internal charge distribution in growing
atmospheric ice crystals. Further study is suvggested to estimate the approximate
characterization of freezing potential, by matching the numerical resulis with experimental re-
sults and adjusting the recombination factor. Some later laboratory experiments are also ex-
pected to investigate the scavenging behavior of growing ice crystals containing dilute concen-
trations of ionizable salts, in order to verify the predicted scavenging results by the present
studies.
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