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ABSTRACT

The th:ee—dir;mcnsiunal nonlincar quasi—geostrophic potential vorticity equation is reduced to a lincar form in
the stream function in spherical coordinates for the permanent wave solutions consisting of zonal wavenumbers from
0 to # and r, vertical components with a given degree a. This equation is solved by treating the coefficient of the
Coriolis parameter square in the equation as the eigenvalue both for sinusoidal and hypetbolic variations in vertical
direction. It is found that these solutions can represent the observed long term flow patterns at the surface and aloft
over the globe closely. In addition, the sinusoidal vertical solutions with large cigenvalie G are trapped in low
latituide, and the scales of these trapped modes are longer than 10 deg. fat. even for the top layer of the ocean and
hence they are much larger than that given by the cquatorial f—plane solutions. Therefore such baroclinic disturb-
ances in the ocean can easily interact with those in the atmosphere.

Solutions of the shallow water potential vorticity equation are treated in a similar manner but with the effective
depth H= RT / g taken gs limited within a small racge for the atmosphere.

The propagation of the flow energy of the wave packet consisting of more than one degree is found to be aloag
the great circle around the globe both for barotropic and for baroclinic flows in the atmosphere.

Key words: Finite amplitude potential vorticity solution, General circulation, Global scale energy dispersion
1. INTRODUCTION

The study of the propagation of permanent waves for purely horizontal and
nondivergent flows was initiated by Rossby (1939), who obtained solutions of the linearized
vorticity equation under the influence of a variable Coriolis parameter f for an atmosphere of
infinite extent in meridional direction, and Haurwitz {1940) extended the results to the
nonlinear vorticity equation over the spherical earth. Later on, Ertel (1943) extended the re-
sults further by allowing superposition of solutions of different wavenumbers in zonal direc-
tion, which appears to be extraordinary in view of the nonlinearity of the vorticity equation.

The study was extended further by this author (Kuo, 1959) to three-dimensional
baroclinic solutions of the potential vorticity equation for the stably stratified atmosphere,
which showed that more realistic flow patterns can be obtained by superposition of such solu-
tions with different zonal and vertical wavenumbers. The present paper is a continuation of
this research, where I sha!l extend the three—dimensional baroclinic solutions of the problem
more in a systematic manner. [n addition, [ shall investigate the dispersion relation for these
three—dimensional global scale disturbances.

II. THE QUASI-GEQSTROPHIC POTENTIAL VORTICITY EQUATION FOR ADIABATIC AND
INVISCID FLOW

The quasi—geostrophic potential vorticity equation for inviscid and adiabatic flow is
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Dg+h _g (1)

Dy

where ¢ is the relative potential vorticity and is given by (see Kuo, 1959):

romry L8 pop
§=Vy Rép[roép]’ (1a)

whete Ty = To8, '(86, / 8p). In accordance with the equation of motion, we take the
quasi—geostrophic approximation as given by

dp’ = fdy'. (1b)
so that we have
2 4
iy L8[ p oY .
7= Lo 2L ta®)

and in (1) D / Dt operates on the v’ parts of ¢° only.
For convenience, I use Z =In(p, / p) as the vertical coordinate, where p, is the mean
value of the sea level pressure. We then have
¢ =V Wz ~ 209 )/ S, ' (1¢)

where §=N"H? is the stratification factor, A’ = (1+5; /85)/2and the subscript Z de-

notes partial differentiation.
We set

wrzai 'ﬁei’z, q1=qei.'z (ld)
and write g and D/ Dr in spherical coordinates in terms of i, where we have
u=—ay’,, v=ay’, / cosp,
{=[v; — (ucosg),]/ acosg = V5,

and therefore

%?+m¢1=0, @
g=Vig+ Ly, | (22)
D/Dt=a%+drl%—¢,,%, 2b)
V§=—a%(1—n2)t% +1—_‘?%, (2c)

where A is the longitude, ¢ is latitude and y =sing. As has been mentioned above, D / D¢ op-
erates on the y paris of g only in (2), hence in spherical coordinates this equation is given by

D g2, A D, e - .
S Vi + T, — 279 + 20, =0, @)
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1. GLOBAL SCALE BAROTROPIC AND BAROCLINIC PERMANENT-WAVE SOLUTIONS OF THE
POTENTIAL VORTICITY EQUATION

We take the disturbance as moving with the angular speed o in the direction of increasing
longitude A as a whole s that we have § / 6 = —ad / §4 and

y=v¥{i—arnz), g¢=qld-atn2). (3a,b)
Eq. (2"} then reduces to
vilg, +20)— (¥, +a)g; =0. “)
We set
y=v" —an, - Ga)
g =Py )—20m, (5b)

where P( ") is an arbitrary function of ¢ * . Eq. (4) then reduces to
¥ AP, — ¢ 4P, =0, (4")

which implies that the nonlinear terms of (4) cancel each other when P is any arbitrary func-
tion of " . For simplicity, we take P = — my* , where u is a positive constant. The relations
(2°) and (5b) then vield the following equation for y:

Viv+a07a’w’ / Sipzz — A9+ = — (pa +20). ©

We represent i by the sum of the function (1 — at,n,Z) which satisfies the homogeneous
part of this equation, and the particular solution ¥, given by

= — (pat+ 20w
vr ®-2 - 2
This solution represents a solid rotation with angular velocity

)

Hence we have

= M . {7c)
u

The condition for the vertical variation of ' at the flat surface corresponding to the vanishing

of the vertical velocity Z is

o /62 + 1y =0. 3
Thus in the troposphere we can write ' as
W =97 (L—aty).R(2), ' 6]
with R(Z) given by
R(Z)=cos )m.Z - :—;s_inynz, {9a)
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where y is given by the following expression in terms of the eigenvalue G for the vertical mode
¢ for a give zonal wavenumber m and total wavenumber square u = n(n + 1):

2 2 M .2

v =G A 10
Here 7 can either be real or imaginary, with the former corresponding to sinusoidal variation
with Z and positive G and the latter corresponding to exponential vertical variation and nega-
tive &. Thus, we write ¥ as given by

WONZY= T Y A, W ¥ Ry, (Z)cosrmid — t) —%’;—"}’1 . (1)
m=r=0
with R, =1, G,, =0 for the barotropic nondivergent mode, and R(Z} given by {9a) for

the rth baroclinic medes for each m, while g, () is given by the following equation

é 2 alﬁ':r [ m2 2:| m
(=== +|a- -G =0. 12
Uﬂ( L 6’7 f“ l—ﬂz mr ¥l "!‘rnr ( )

Thus, for the barctropic and nondivergent mode yr is given by the associated Legendre's

function P (4). This solution is obtained by Ertel (1943) and it is more general than
Haurwitz's (1940) Rossby wave solution as it includes ail zonal wavenumbers from 0 to # with
arbitrary amplitudes. The function P7 has (n—m) / 2 zeros between #=0 and 5 =1 for even
(n—m), and (n—m—1) / 2 zeros for odd (z~m) in this range.

To obtain the solutions for the baroclinic modes, we multiply (12) by {1-#% and set
g = V(11— #°)"“?. This equation then becomes

V,, —2m*tanky * V, + [—mim + 1) — G * tank” ylsech’ y + ¥ =0, (12*)

where y is the Mercator coordinate and is given by
1
y =W+ /(1 -] (12a)

1 = sing = tanhy.
We take fixed g =n(n + 1) and seek G as the eigenvalue of the problem for given » and m.
The conditions for ¥ are that it is even or odd at y=0 and vanishes as y—oo except for m=1.
Here the solutions of the problem are obtained numerically by the iterative reduction method
developed by the author (see Kuo, 1978) with the p~oo condition replaced by ¥ ~exp{ — o/(y
— Y)) for ¥=15.0 and with sufficient number of grid points to guarantee accuracy.

IV. EIGENVALUES AND EIGENFUNCTIONS OF THE SOLUTIONS OF (12)

Unlike the early work on this problem {Kuo, 1959) where u is allowed to take non—inte-
ger values, here [ shall restrict p to integer values of the form g = n(# + 1) for positive integer
n in order to include the nondivergent barotropic modes as part of the 3D solution. Further,
both positive and negative values of G are considered as permissible, with the former repre-
senting sinusoidal and the latter transcendental vertical variations of R(Z). The positive
eigenvalues obtained for different values of u and m are listed in Table 1A, which includes
both the global modes denoled by r, and the odd and even modes confined in the equatorial
region, which are denoted by ( and E respectively. Only the eigenvalues of the one—and
two—cell trapped modes are given for most of g greater than 240,
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Table 1. Eigenvalues & of the Global Baroclinic Modes of the 3D Potential Vorticity Equation for Different Valnes
of Zonal Wavenumber m, Vertical Index r and Global Index g = a{n + I). The eigen Fonction ¥ is even or
odd according to mi+¥ is even or odd. Each m / r panel is for a given p arranged in order of . A, ForG>0
and g= 12, 20,30,56,90, 110,132, 182,240, 306, 380,462, with trapped solutions represented by O and E for
odd and even modes, and with the subscript stands for the pumber of eells in the meridional direction. Yal-
ues of G greater than 1000 are written in decimal form with exponent E, For 4= 182, 240 and 380, only the G
value for the onc cell and two cells trapped modes are given.
r/m 0 1 2 3 4 5 6 ? 3
2 104
3 22.16 n=3
E, 170.0 142.3 76.6
1 1427 17.23
2 24.68 n=4
0, 5347 47.04 28.50
E, 444,00 403.00 285.00
2 18.53 20.18 26.11
3 30.62 41.89
4 47.56 n=3
0, 11290 104,55 80.76 44.56 —_—
E, 970.00 £98.00 737.00 478.00 207.00
2 26.83 27.64 30.60
3 4622 50.60
4 60.60
0, 83.47 7198 62.32 36.50 n=7
E, 144.42 138.00 119.50 90.10 49.60
0, 372.00 358.00 317.60 254.30 174.90
E, 327E4 316E4 .284E4 230E4 167E4
2 35.00 35.66 37.60 41.01 47.20
3 62.97 65.15 1.7 8310
4 83,14 91.25 109.00
5 100.59 124.50 n=9
[ 130.00
0, 193.93 188.28 171.54 144.00 106.19
E, 354.20 345,70 319.00 277.00 221.60
o, 93900 | 91800 | 85400 | 75300 | 622.00
E, .B38E4 B21E4 .TT0E4 G79E4 S64E4
1 39.04 31375 41.35 44.35 49.13 57,10
2 71.51 7294 77.83 87.00 103.00
3 138.04 101,27 114,43 138.80 n=10
4 184.51 131.56 164.25
0, 281.38 275.17 256.47 226.00 184.37 132.61 117
E, 521.40 512.14 480.00 430,00 365.00 284.00 194.50 58.90
0, 140E4 1374 129E4 J1TE4 .100E4
E, 125E5 I23E5 15ES .105SES (091ES
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Continued Table 14

rim 0 1 2 3 4 5 6 3

2 43.15 4393 45.22 47.87 51.80 5811 67.86

3 79.52 80.91 84.97 92.41 10465 | 12529

4 150.70 | 181.86 | 122.45 | 140.58 | 17200 a=11

5 187.18 § 25100 | 16629 | 20830

6 25625 | 389.62 | 23495

0, 39691 | 389.62 | 368.59 | 33425 | 28762 | 22975 | 162.01

£ 74338 | 73028 | 69300 | 63500 | 55600 | 46341 | 356.00

el 200E4 | .197E4 | .1B8E4 | .I73F4 | .1S3E4

E, ARES | .176BS | 170Es | .1s6Es | .138Es

0, 73400 | 72450 | 69770 | 65370 | 593.70

E; A39E4 | .137E4 | .I33E4 | .125E4 | .114E4 n=13

0, AI8E4 | 374E4 | 361B4 | MIE4 | 313E4

E, 343E5 | 334E5 | 323E5 | .304E5 | .283ES

0, A26B4 | .124E4 | .121E4 | .11SE4 { .10RE4

E, 40E4 | J238E4 | 231E4 | 22RE4 | .207E4 n=15%

0, 656E4 | 651E4 | 6ME4 | .606E4 | .S70E4

E, 596E5 | .S8SE5 | .S72ES | .543ES | .513ES

2 69.70 71.20 72.00 73.50 75.50 78.20

3 1300 | 13150 { 13350 | 13700 | 14190 | 14890

4 18400 | 18570 | 189.30 | 19590 | 20540 | 21930

5 23060 | 23330 | 240,10 | 25200 | 26970 | 29500

6 32580 | 313.20 | 28800 | 309.60 | 341.00

0, 51200 | 50690 | 49170 | 466.50 | 431.30

E, 64840 | 64280 | 62600 | 59850 | 560.00 n=17

0, 869.00 | 86200 | B41.60 | 808.00 | 761.60

E, J26E4 | 125E4 | .122E4 | .117E4 | .I11E4

0, 202E4 | 20tE4 | .196E4 | .1B9E4 | .I80E4

E, 3S9E4 | .J86E4 | 37TE4 | .365E4 | .J47E4

0, J07E5 | .J06ES | .104E5 | .100ES | .096ES

E, S66E5 | 95IE5 | 935ES | .908E5 | .B38ES

0, J10E4 | JO0BE4 | I0IE4 | .294E4 | 283E4

E, 599E4 | .S90E4 | .S85E4 | .569E4 | .S47E4

0, J64E5 | .164E5 | .161ES | .ISTES | .IS1ES a=19

E, AS0E6 | .149E6 | .146E6 | .141E6 | .L36E6

4 90.20 92.80 93.50 94.60 96.20 98.20

5 16620 | 16850 ) 17000 | 17260 | 17620 | 181.00

3 23590 | 23800 | 240.70 | 24520 | 25770 | 260.60

7 29890 | 30100 | 30550 | 31290 | 31370 | 33860

8 43980 | 407.20 | 36470 | 37700 | 39460 | 338.70
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Continved Table 14
r/m 0 1 2 3 4 5 6 7 3
0, 73870 | 73360 | 718.50 | 693.50 | 658.60
E, 38430 | 878.80 | 86290 | 836.50 | B800.00 n=21
0, 110E4 | .109E4 | .107E4 | .104E4 | .100E4
E, (1414 | _141E4 | .138E4 | .135E4 | .130E4
0, J192E4 | _191H4 | .188E4 | .iB4E4 | .177E4
E, 281E4 | .280E4 | 276B4 | 269E4 | .260F4
0, ASTEA | 455E4 | 44BE4 | 43BE4 | .424E4
E, 884E4 | 8S0E4 | .86RE4 | .B48E4 | .820E4
0, 244E5 | 243BS | .239ES | 234E5 | 227ES
E, 222E6 | 222B6 | .218B6 | .213E6 | .208E6
B. For G' =—G>0, p=12,20,30,56,90,132
v/ m 0 1 2 3 4 5 6 7 8
0 16.70 17.41 20.50 25.53
1 38.94 40.50 1322 56.23
2 68.00 67.36 74.50 78.10
3 98.38 0330 | 10402 | 12320
4 14040 | 13737 | 149.20 | 14945
1 20.83 21.31 23.48 28.00 36,93
2 47.35 48.07 51.65 56.9% 74.00
3 79.12 80.00 83.58 9271 100,65
4 11682 | 11694 | 12268 | 12813 | 15154
5 15826 | 16056 | 16328 | 17638 | 18212
1 55.47 56.00 58.78 64.00 72.50 93.00 — — -
2 91.50 92.16 96.00 101.57 | 114.10 | 12555
3 13286 | 13400 | 13723 | 14500 | 15437 | 182.8§
4 18030 | 17586 | 185.00 | 191.22 | 20800 | 216.50 —_
5 23105 | 23300 | 23569 | 24600 | 25473 | 288.75 — —_ —
1 71.59 71.70 74.06 78.00 84.20 93,91 10874 | 14126 —
2 11592 | 11607 | 11880 | 12377 | 13157 | 14273 | 16180 | 18236
3 16554 | 16557 | 168.83 [ 17487 | 18323 | 19690 | 213.18 | 251.56 _—
4 21940 | 22039 | 22300 | 23030 | 23870 | 25160 | 27608 | 29533
5 28085 | 28100 | 28423 | 29200 | 30119 | 31800 | 33420 | 37550 —
1 87.56 87.35 89.21 92.37 97.34 10451 | 1475 | 12078 | 15188
2 13996 | 13963 | 14190 | 14610 | 15270 [ 16125 | 17364 | 19075 | 217.00
3 19778 | 197.18 | 20000 | 20489 | 21216 | 22270 | 23625 | 25580 | 28036
4 25885 | 260.10 | 26090 | 26650 | 27460 | 28806 | 303.08 | 32320 | 353.20
5 32963 | 32825 | 33168 | 337.39 | 34640 | 35900 | 37465 | 397.00 | 42275
1 10330 | 10266 | 10420 | 107.20 | 11103 | 11678 | 12473 | 13540 | 150.28
2 16090 | 16280 | 16495 | 16841 | 17376 | 18L13 | 19095 | 20430 | 22L.70
3 22063 | 22844 | 23081 | 23505 | 24136 | 24997 | 26150 | 27637 | 296.10
4 30120 § 29924 | 300174 | 30684 | 313.81 | 32359 | 33250 | 35283 | 37000
5 37764 | 37562 | 378.43 | 38359 | 39147 | 40189 | 41587 | 43330 | 45598
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The negative eigenvalues obtained are given in Table 1B as G~ = — . The eigen func-
tions corresponding to these eigenvalues all extend to high latitudes and hence not trapped to
[ow latitude.

The variations of the eigen functions for y=132,a=11, m=0,2,4,6,8 and G=0 are rep-
resented in the top panel of Fig. 1, and the middle panel represents that of the baroclinic solu-
tions with positive G and r=1, while the eigen functions of the G<0, r=1 modes are
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Fig. 1. Eiglenfnnclions Yo for p=132, m=0,24,6,8. Top: r=0, G;=0; middle: r=1, 6>
bottom: r=1, G<0.
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ilfustrated in the boitom panel of this diagram. These functions are all normalized with the
maximum amplitude of the function set to unity.

The eigen functions of the odd and even one—cell trapped modes for p= 56, m=0to 4 are
illustrated in Fig. 2. It is seen that these functions are almost the same for different values of
m. This is also true for other values of u. On the other hand, the width of the trapped cell is
larger for smaller u, as can be seen from Figs 3 and 4, which show the eigen functions of the
odd and even one—and two—cell trapped modes for m=1, u=30,90,182, 306 and 462. Notice
that the width of all these cells are larger than 10 deg. lat. even for the largest u, which are
considered as representative of the flow in the tropical ocean. Thus, according to the potential
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Fig. 2. Eigenfunciions of even and odd one cell trapped solutions for p= 56, m=0,1,2,3,4.
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Fig. 3. Eigenfunctions of even and odd trapped solutions for m =0, g = 30,90,182 and 462. a, one celi; b, two cell.

vorticity equation, the scale of the baroclinic disturbances in the tropical oceans in meridional -
direction is similar to those in the atmosphere, and much larger than that given by the equa-
torial f—plane solution (see Kuo,1989). Therefore such baroclinic disturbances in the two me-
dia are quite easy to influence each other in the tropical region as their scales of variations are
similar.

The reason for the presents of the trapped baroclinic modes of the potential vorticity
equation can be seen from Eq. (12), which shows that the influence of the baroclinic term
Gn*y with positive G is to reduce the effective value of x — mi(m + 1) and hence large G will
make the eigen function confined to low latitude.

The vertical functions exp (1'Z) * R(Z) for p=132, m=0, r=3,5,72, G >0 are illus-
trated in the lower panel in Fig. 4 while the upper panel gives that for g =20, m =0, with
negative G.

We mention that the potential vorticity equation for the shallow water system, which
corresponds to that of the large scale flow with V independent of height but possesses diver-
gence, is also represented by Eq. (12) except here we have G, = A a’ 7 C? oand C? =gH,
hence G is a constant for a given C. Thus, for this case it is natural to take p = u(n,m){ # n{n
+ 1)) as the eigenvalue. However, in order to generate a more general solution involving
more zonal wavenumber components as in (11) (with R(Z)exp(A’Z)= 1}, weset p=n(n + 1)




No.4 H.L. Kuo 197

(]

2

0.0 (31 10 15 0 25 30
4
Fig. 4. Yariations of vertical function with Z for m=0. top: p=20, r=1,3,5, G<0; botiom;
p=132,r=35T7and 2, G>0.

+ Ap and treat G, as the eigenvalue, but only for a small range of & corresponding to a
small range of gH. These cigenvalues are given in Table 1C for the atmosphere with
gH=RT.

C. Eigenvalue G = 40*a* / €* of shallow water potential vorticity equation for atmosphers with 9.7 < G < 14.0 and
fixed u . With g=afn + 1)+ 5 for n>3 end g=17.5 for n=3. The function {{r,m,p} is even for even ntm and odd
for odd n+m.

u nSom 0 1 2 3 4 5
17.5 3 10.058 12.138

25 4 10.060 10.208 12.642

35 5 9.705 10.800 1[.472

47 6 9,723 10.144 10.800 12.819

77 8 10,000 10.300 10.800 11.584 13.000

95 9 10.049 10.400 10.794 11.650 12.500 14.000

115 10 10.200 10.650 11.100 11.421 12.064 13.410
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V. COMPOSITE SOLUTIONS OF THE POTENTIAL VORTICITY EQUATION

We have oblained solutions of the potential vorticity equalion for a number of different
values of p, each including a number of zonal wavenumber m—components with chosen
coefficients, which we consider as representative of the long term mean flow or some com-
monly occurring large scale flow patiern in the upper troposphere. The flow fields given by
these solutions at the tropopause level for p=12,20,30 and 132 are illustrated in Figs. 5ato 9
and they are given by the following expression

PO p) =, (@) + 4.323 ¢ . (@)sin(mA), (13)
where ¥, (@) is the stream function for the mean zonal flow. Specifically we have

P, = 7.55¢r300 + 32.25¢,,, + 19.1:,{/3_0=3 —6.6sing, m =3, (13a)
G =0, G = —3894 G, = —9888, G, = —2555.

Yoy = 2307545, +42.94¢, 4, + 24.184r,45 — 4.555ing, m=4,] (13b})
Gy = — 2083, Gp=—79.12 Gy = —15826, G, = —36.93
G, = —4807

Vio = 14.2824 5, +40.635¢ 5o, + 27850, ~ SOsing, m=4, (13c)

Goo =0, Gg = —5547 G, = — 13286, G, = —72.50.
Brm = 1032000 + 3.2660 5, — 2224015 + +6.59368,, 4, — 702050,

—4.0sing, m=43, (13d)
Go =0, Gy =79.52 Gy = 187.18, Gy =39691, Gy, =43.15,
G, = 10465, Gy =470.04,
where the values of ,,, are based on the normalized u,,,,. Here Fig. 5b is for the simple n=3,
m=1, r="0 solution to illustrate the flow which brings cold air directly from the other side of
the pole to low latitude in winter.

Fig. 5a. Streamline pattern given by composile solution with mi=0and 3, g=12.
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Fig. 6. Streamline pattern of g= 20, m=0 and 4 composite solution.
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To show that this type of solutions of the potential vorticity equation can actually repre-
sent the long term mean flow in the upper troposphere, we reproduced the observed mean
flow in the upper troposphere, we reproduced the observed mean flow field obtained by
Palmen and Newton (1969) in Fig. 10a and that of the more disturbed state in Fig. 10b. On
comparing the flow pattern in Fig. 6 with that in Fig. 10a we see that they are quite similar to
each other. Further, the flow pattern in Fig. 7 is also quite similar to part of that in Fig. 10b.

Fig. 8. Streamline pattern of g = 30, m =4 selution.
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Fig. Y. Streamline patiern of g = 132, m=0,4 and 3 solution.

In addition, Fig. 11 shows the flow field given by the following solution of the potential
vorticity equation
P(x,y) = 6.824 1195 + 10,00y, — ;5 )6in(40) (14}
with Gy =79.52, G, =104.65, G, =287.62.

Here the coefficients are based on the normalized ., and the second term in (14) is taken as
occupying only a half of the quadrant. This solution represénts a permanent vortex enbedded
in a shearing mean zonal flow, similar to that of the redspont in the Juvian atmosphere.
We also obtained new versions of the composite mean zonal velocity US for p=12, 20,
30 and 56 which are somewhat closer to the observed-mean zonal velocity field than that giv-
en by ¥, in (13a—c). They are given by the following expressions in terms of the normalized
Y
US\; =26.0u;; — 18,553, +7.543,; + 2.5u35 +3.3 cos
Gy =0, Gp=—3894, G, =—9888, G, =2.16 (15a)
USyp =2.5uy; + 2.5u,; +0.75u,; +20.0u,, — 18.5u, 5 +0.875 cose
Gy = —208, Gg = —T79.12, Ggy = —15826, Gy =14.27, G5 =53.47.(15b)
USy = 7.143u5, + 7.5us, + 2.5u,; + 10,045, — 10.0uss + 2.5 cose
Gy =0, Gy =—5547, Ggu = —132.86, Gy =30.62, Gy =1129 (15c}
US55 = 10uy, —3.2941,, —4.568u,; + 15uy, + 5.766u;, +7.25 cosp ,
Gy =46.22, Gy, =8347, Gg =3720, G =0, Gys= —T159. (15d)

The variations of these mean zonal velocities at the surface and the tropopause level with lati-
tude are represented in Figs. 12a and b by the curves labelled u,, and u,,. It is seen that the
mean zonal velocities in Fig. 12a are close to the observed annual mean zonal velocity distri-
bution at these levels, except the easterly flow in the tropics is somewhat too high at the
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Fig. 10. 500 hPa flow patiern given by Palmen from observational data. top: Circumpolar four
wave pattern; bottom; highly disturbed situation.

tropopause level and the vertical shear of the westerly around 60° is too low. Evidently, more
realistic mean zonal flow distributions can be obtained by solutions including more different 4
values. However, then the solutions will not be strictly steady when other zonal wavenumber
components are included.

V1. PROPAGATION OF FLOW ENERGY OF WAVE PACKET CONSISTING OF MORE THAN ONE
DEGREE 1 AND ZONAL WAVENUMBER m

It should be pointed out that for the rapidly changing fields we must use solutions which
include more different values of y as there is no nonlinear interaction between the various
components of the system for a single u. With more than one g, nonlinear interactions will
then take place between the various Fourier components of different p.
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Fig. 11 Composiie selwtion For g = 1320 ar= 0, &y, = 79,52 with isolated vortes.
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Fig. 12, Mean zonal velocity given by composite selution, a, top: = |2, bottom, g =20 b, 1op:

#=730, bottom: u=56.

Instead of actually integrating the potential vorticity equation as an initial value
problem, let us consider the propagation of the enregy of a wave packet consisting of zonal
wavenumbers around m and degrees around », with corresponding g = n(r + 1). From the so-
lutions obtained above we find that the frequency o for the Fourier component  is given by
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,,=m=mu;ll@ﬂ_—£]m , {16}

where o is the solid rotation part of the zonal flow. Now, in the present system, the zonal
wavenumber is m and the wavenumber ! in meridional direction is na—m’, where m'=m for
barotropic flow and m"=m tr /2 or m =m % (r + 1)/ 2 for baroclinic flow, with the for-
mer for even modes with even m or odd modes with odd m, and the latter for odd modes with
even m and even modes with odd m, where r is the eigenvalue index. Here the plus sign is for
positive & and minus sign for minns G. Therefore we have

pg=nn+D=(+m¥Wi+m +1)=L +m* +2m' i +1+m'. {17)

From (16) we find that the group angular velocities in zonal and meridional directions are
given by

%, =80/ 0m=a+mda/dudy/ dm, (18a)
o, =00/ 3l =mda/ dp.du/ bl (18b)

Further, we have
du/om=2m" +2+1=2n+1=28u/ 8L (18¢)

Therefore the angular group velocity vector relative to the mean angular velocity « is giv-
en by

@, =(2n+ Déa/ su(l + J). (19)

Hence the flow—energy is propagating along the great circles around the globe relative to the
mean angular velocity «. This property has been shown by Hoskins, Simons and Andrews
(1977) from theoretical barotropic Rossby wave analysis and demonstrated by Horel and
Wallace {1981) by observational data. Here we have shown that it holds for both the
barotropic and the baroclinic solutions of the potential vorticity equation.
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