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ABSTRACT

By employing Arnol’d’s method (snergy—Casimir), this paper has studied the nonlinear stability of the two—layer
generalized Phillips” model for which the top and bottom surfaces are either rigid or free, and obtained some
nonlinear stability criteria. In addition, some linear stability criteria arc obtained by normal mode method. The re-
sults reveal the influences of the free surface parameter on the stability of atmospheric and oceanic motions.
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I. INTRODUCTION

The instability of atmmospheric and oceanic motions is a classical and important problem.
One universal way is normal mode method (Rayleigh, 1880; Kuo, 1949; Lin, 1955, etc.). But it
is only linear theory. In recent years, Arnol'd’s method (energy—Casmir) is successfully ap-
plied to investigate the nonlinear stability of various atmospheric motions. (McIntyre and
Shepherd, 1987; Shepherd, 1988; Zeng, 1989; Mu and Shepherd, 1994; Mu et al, 1994, etc.).

To investigate the baroclinic instability of motions, Phillips (1954) presented a simple and
illuminating two—layer model for which the velocities in each layer are constants, but the ve-
locity shear is nonzero. Pedlosky (1963) showed the linear stability theory of this model. Mu
et al.(1994) studied the nonlinear stability of the multilayer quasigeostrophic model, and
gained the nonlinear stability criteria of the classical Phillips’ model, which are applicable to
finite~amplitude disturbances, and the structure of disturbances unnecessary being the
single—wave form. But their work only studies the case that the top and bottom surfaces are
rigid.

This paper studied the Phillips’ model where the top and bottom surfaces are cither rigid
or free (hereafter called the generalized Phillips’ model), and obtained its nonlinear stability
criteria. And also we derived its linear stability criteria by normal mode method. The results
reveal the nonlinear property of the shortwave cut—off phenomenon, the minimal critical
shear phenomenon, etc. in the linear theory. Finally, we introduced a free surface parameter
to discuss the influences of the free surface approximation on the stability of atmospheric and
oceanic motions.

The paper is organized as follows: in Section 2, a generalized two—layer quasigeostrophic
model is suggested; in Section 3 the linear stability of the model is studied, and the influences
of the free surface parameter are discussed; the nonlinear stability criteria of this model are
derived in Section 4. Finally, the main results of this paper are summerized in Section 5.

1I. THE MODEL

The governing equations for the two—layer quasigeostrophic motion are the conservation
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of potential vorticity (Pedlosky, 1979; Zeng, 1989):

ap,
- TO®.P)=0, i=12 (@n
P, =V0, —d LT, ® +f,(xy) (2.2)

where @, P, are the stream function and potential vorticity in the ith layer respectively, 4,
the height of the ith layer, 2(f,g)=/,g, —f,8, the two—dimensional Jacobian, %/ the
two—dimensional Laplace operator, and

Hh=f=fi+8 en

where f; is (constant) Coriclis parameter, and
T_[ﬁ@51+gﬂ) ~foe") ]
—fETY fie +eih)

where g, is the buoyancy jump across the interface between the ith and (7 + 1)th layer, and if
the top (or bottom) surface is rigid, then g, T=p (g5 ' =0); and when the top (or bottom}

(2.4)

surface is free g, ' > 0 (g, ' > 0). For convenience, withonut loss of generality, we just consid-
er the case that the top surface is free, ie., g, ! > 0, while the bottom surface is rigid, i.e., g5 '
={. And define
a=g; ' /g 2.5)
as the free surface parameter,
The horizontal domain D under consideration is a periodic channel
D={—nL<x<&rnl,—-FY<y<7T} 2.6)

The boundary conditions are the usual ones of no normal flow and conservation of circu-
lation in each layer, namely

aa%y:_m:o, %{jil% dx|y=_,,,,,} =0, i=12 @7
Suppose that (®,,P,)=(¥,,0,) is a steady solution to (2.1)-(2.4). For the generalized
Phillips model, U, = —%:L, i=1,2 are constants. A disturbance superimposed on the
steady basic state is defined according to
D =—Uy+ty,, P,=0Q,+yg,; (2.8a)
with
7. =y, —d,.“ir,.,.w, , i=12 (2.8b)

III. LINEAR THEORY (NORMAL MODE METHOD)

Substituting (2.8) into (2.1y~(2.4) and neglecting the quadratic terms in {2.1) yield
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oq; g, 8y, Om, _ L

e tUsy T Ty =0 i=12 (3.1)

01 =V, —Fi{(l+ 2, — ) , (3.2a)

a4, = v‘g'f’z —F gy —wy) (3.2b)

dx,

5—y=ﬂ+F,((l+a)Ul~—U2) (3.3a)

on,

a—y=ﬁ_F2(U1_U2) (3.3v)
where

Fo=d g, ), i=12. {(3.3c)
The boundary conditions of the disturbance are

&y,

SL=0, y=%¥ (3.42)

a (&,

—_— —_ ax = + j =

a;J WA=l y=EY, =12 (3.4b)

Normal mode solutions to (3.1) and (3.4) may be sought in the form,
W, = A, cos(l, y)e* 0 (3.5)
where A is the disturbance amplitude in the ith layer (constant), and

=GR/ Y, = G6)

Substituting (3.5) into (3.1), we get two coupled algebraic equations for 4, and 4,, ie.
A e~ UMK+ F 0+l + B+ F {1 +0U, —U,)l—Ay(c—U)F, =0  (3.7a)
Azlle —U, XK + Fy)+ f— Fo(U, —U))— A4, (e —U,)F, =0, (3.70)
where X is the total wavenumber
K=K+ . (3.8)

Nontrivial solutions for A, and A4, are possible only if the determinant of the
coefficients of 4, and A4, in (3.7) vanishes. This condition leads directly to a quadratic equa-
tion for ¢:

ao'c2+a1-c+a2=0, (3.9}
where ¢ = ¢, +ic;,and
ao =K' +{(1 +0)F, + F))K* +aF | F, , (3.10a)
a, = —(U; + UK + 28~ +a)F U, = 2U, F,)K*
+BF, (1 +a)+ F,)—aF F, U, , (3.10b)
ay =U UL K +(BU, —2U)+ F, U (U, —2U})
+ULF, + F K + B + BF U, — U (F, +F.)) , (3.10c)

where U, = U, — U, is the velocity shear.
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The selutions to (3.9) are

a +\}af—4a0 "a,

€= _2a0 - 2a, @11y
It follows that the sufficient and necessary condition for instability is ¢, #0 i.e.
a —4a, »a, <0 (3.12a)
or equivalently,
UK K —4F F,)+2U, K (F, — F,))f+ f*(F, + F,)" — 2eF, U, U, K*
+ (& FF UL —2aF, F, U, U, +2a8F, U, )K" (3.12b)

—2aF, U, (afF, + B(F, — Fy)—alU F| F, —2F F,U)K’ +* FiFi U}
—2F, F,[* F U, +alU,(F, — F,}— 2aF  U,]B
+ (& F] +20F, (F, — F,)f <0
By defining nondimensional variables as follows (an asterisk denotes a dimensional
quantity):
(" )=Lixy), (@ 7 )=Uwy),
B =W/LH . F' =Q/LYHF, : (3.13)
Ul =ul,, U, =UU,, U =UU,.
We can derive the nondimensional expression of {3.12b), that is the same as the inequality
(3.12b) in form. In the special case that £, = F, = F, we neglect terms O(x%). Then, (3.12b)
reduces 1o
UPKYK —4F)Y + 4F' B° — 20FU U, K* — 20F(FU, U, + BU,)K*
+ 4P U, U K —2F 2(U, —U,)f<0 . (3.14)

U/ (8/Fa)

12
0 ok 1h i) 2b K3 /(FiFa)

Fig. 1. The curves of marginal stability when F, = F, with various a.
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Fig. 2. The curves of marginal stability when F, / F, = 0.2 with various «.
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Fig. 3. The imaginary part of cas a funclion of wave number in the case F =F, for
U, =28/ F, variousa.

Fig.1 shows U, , the critical value of U, required for instability, as a function of &, The
minimum critical shear is as follows
(Uc )min = .8 AF
or
U, din = —B/ F—al, (3.15

Fig.2 shows the marginally stable curves for various a, when F, / F, = 5. From Fig.2 we
can see that when the free surface parameter o increases, regardless of the sign of the vertical
shear U/, the unstable domain moves in the direction of small wavenumber (i.e. long wave di-
rection). When the shear U, >0, because of the rigid condition in bottom surface, the
minimal critical shear value does not change; when the shear 7, < 0, the absolute value of the
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Fig. 4. The real part of ¢ as & funciion of wave number when &/, =28 F, witha=0andx=105

minimal critical shear increases with the increase of o, which is also ¢lear from the formula.

In the case of F, =F, and U, =2f/ F the imaginary part of ¢ as a function of wave
number for various « is shown in Fig.3, which demonstrates that with the increase of a, the
unstable domain moves in the direction of small wave number {i.¢. long wave direction), and
that the most unstable wavelength increase with the increase of a. Especially, for the typical

large—scale atmospheric motions, f, ~107%", H~10" m, g, ~6 ms *, L~10° m, the
most unstable wavelengths for different a are as follows

FSP x=0 =01 a=0.25 2=0.5
MUW (km) 5635 6281 6702 6969

FSP—Free Surface Parameter, MUW——Most Unstable Wavelength

Fig.4 shows ¢, as a function of X* for various a, for F; = F,, which exhibits the effect

of the free surface parameter on the phase velocity.
The classical Phillips model (i. e. the top and bottom surfaces are all rigid) corresponds 1o
the case @ = 0; and in this case the expression {3.12b) reduces to (7.11.31) of Pedlosky (1979).
In the case that the bottom surface is free, following the above discussions, we can get
similar results. The detailed expressions are omitted for simplicity.

IV. NONLINEAR STABILITY CRITERIA

To investigate the nonlinear stability of the generalized Phillips” model, we first establish

a nonlinear stability criterion. Assume that there exists a constant y and functions ¥} (+),
such that

Y Hw=¥Q), =12 .1

Corresponding to the hypothesis of Arnol’'d’s second theorem, we suppose that there ex-
ist constants C; and C,,, i = 1,2, such that
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4y
40,

0<C,; < — S0y <x, i=12 . 4.2)

Noting conservation of the zonal momentum

M= JJD {.il d,yP; }dxdy . (4.3)

then similar to the proof for Criterion 3.1 of Liu and Mu (1994}, we can show
Criterion 4.1. Suppose that the basic state ('F;,Q, } satisfies (4.1) and (4.2 and that

it F, NEF,
nT TR —_R_
M= 4.4)
\fFle A+ {l+u}F,
& % T r

is positive definite, then it is nonlinearly stable.
The above notation R =A% +(F, + F, + «F;)A+F F, and 1 is the lowest positive
eigenvalue of the following problem

Yie+iu=0, in D
L 45
Xly=1r, —xL Uy

which can be easily solved as i=n/ ¥,
Obviously, M Is positive definite if and only if

A+ F
Cy——¢ = >0, (4.62)
i+ (1+a)F .
12 _—'R—l' >0, (4.6b)
A+ F. it(1+w)F, . FF,
(€~ WC——— x> (4.60)
For the generalized Phillips’ model, because I/, and U, are constants, it is clear that
¥+ =-Uy, {4.7a)
¥, +ypy=G—U . 4.76)
Q, =[B+F (U, +aU)l tfp » (4.8a)
Q, =[B-F, U +f . (4.8b)

So we consider the stability of the generalized Phillips’ model in the following four cases.
Case 1. p+F (U, +alf)=0.

In this case, we choose y = U/, . Then, the basic state (,,0, ) satisfies {4.2) with
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1

Cy=c, Ci =F1 +F, +aF, U,/ U, ° 4.9
where ¢ is an arbitrary constant, (4.6} becomes
i _A+(1+o)F, >0 4.10
F, +F, +eF, U, 7 U, R ’ (4.102)
which is equivalent to
aF U (4]
Az»%A—F,Fz—Fz—aF%—(l+a)Ff-uU1 >0 . (4.10b)

On the other hand, when ¢ is chosen to be sufficiently large, (4.6a) and {4.6c) may be satisfied.
Hence, by Criterion 4.1, when {(4.10) holds, the basic state is nonlinearly stable.
Case 2. B—F, U, =0.
Similar to Casel,we choose  y=U, and
U, 1
=ﬁ+F1 v, =F| +F,

C, Cy=c @.11)

Then, one sufficient condition for the nonlinear stability of the basic state is
aF, U, ) aF | Fy U,
U, U,

AL —F,(F, +F,)— >0, 4.12)

Case 3. B+ F (U, +ald |\ WB—F,U,}>0 ie

—% —al, <U, <—F% 4.13)

By (4.7) and {4.8), for any y=min({/,, U, ), the basic state satisfies (4.2). We can choase
y— — ¢, such that C,, and ', may be arbitrarily large, which makes (4.6a—c) be satisfied.
By Criterion 4.1, (4.13) is a sufficient condition for the nonlinear stability of the basic state.

In this case, the potential vorticity gradients of the basic state 40, / dy and d@, 7 dy
being the same sign, it follows from the finite—amplitude generalized Charney—Stern theorem
{c.f. Shepherd, 1988) that the basic state is nonlinearly stable. This fact explains why no re-
striction on 4 akin to (4.10) and (4.12). Finally, (4.13) is the same as the expression (3.15) in
form, and reveals the nonlinear property of the minimal critical shear phenomenon.

Case 4. B+F U, +al NB—F,U,)<0 ie

U, < -4 _ oy U, or U, >—£~ . {4.14a,b)
2

The basic state satisfies (4.2) with
v, -y U, —7

“FiRw +a0) © e F-FU. (4.15)

C]k

where 7 is chosen to satisfy min(U/|, U,) <y <max({/,, U/,). Substituting (4.15) into (4.6},
and eliminating y in {4.6a) and (4.6b) yield
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af, U
Pr@r -2y B e F, vaF)
U, U,
ﬂU.
—2F F, — F\Fyl >0 . (4.16)
U\f

For {4.6¢), expressing the left hand side in terms of powers of y yvields a quadratic inequality
for 7. There exists y such that the inequality holds if and only if its discriminant is positive, i.e.

UPA(AE —aF, Fy)+ 2U B(F, — F,)A+ (F, + F,)* 8°
—2aF, U U, +(@* FLUS = 24F, Fy U, U, + 2afF, U, )A*
—2aF, U (aBF, + B(F, — Fy)—aU, F\F, —2F, F, U )A
+a@ FPFUY —2F, Fy[0* F, U, +aU(F, — F,)—2aF U8
+(@ F +aF (F —F,0 <0 .

Then, by Criterion 4.1, {4.16) and (4.17) are one sufficient condition for the nonlinear stability
of the basic state.

To sum up, the basic state for the generalized Phillips’ model is nonlinearly stable if one
of the following conditions is satisfied:

i U, =-—f§/F —al, and (4.10) holds
(i U,=p/F, and (4.12) holds
Gy —p/F, —al, <U, <B/F,

) U, < ——I{’— —aU, or U, >8/F, and (4.16) and (4.17) holds.
1

If we set K* = i in {3.12b), then (3.12b) is exactly the opposite of (4.17). Since 1 is just
the minimum wavenumber, (4.17) corresponds to the marginally stable curve, and reveals the
nonlinear property of the shortwave cut—off phenomencn.

Although the linear and nonlinear stability criteria of the generalized Phillips’ model are
exactly the same in form, their theoretical contents are different. The former are derived from
the linearized equation and applicable to infinitesimal disturbances, while the latter are de-
rived from the fully nonlinear equation and applicable to finite—amplitude disturbances.

Finally, we discuss the influence of the free surface parameter on the instability of at-
mospheric and oceanic motions.

For aceans, according to the typical density—depth profile in large—scale oceanic motions
{Pedlosky, 1979), a = O(10~ *). From the stability criteria {i)~(iv), it is clear that terms with «
are three orders of magnitudes less than ones without a. So, for large~scale oceanic motions
the influences of the fres surface parameter may be ignored; but for atmospheric motions,
& =0(10""), it shows that the influences of the free surface parameter can not be ignored
here (Lindzen et al. (1968) obtained similar conclusion by studying the oscillations in atmos-
phere).

V. SUMMARY

By applying the results of Mu et al.(1994) and Liu (1994) and considering the conserva-
tion of the zonal momentum (or impulse), the nonlinear stability has been studied for the
two~layer generalized Phillips’ model, and nonlinear criteria have been obtained. Meanwhile,
the linear stability criteria have also been derived by classical normal mode method for this
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model. By comparing the above results the nonlinear property of the shortwave cut—off phe-
nomenon and the minimum critical shear phenomenon have been revealed. The influences of
free surface parameter o have been discussed. It is shown that when the free surface parameter
& increases, then (i) the unstable domain moves in the direction of small wavenumber (i.e.
longwave direction); (ii) the absolute value of the minimum critical shear inceases; (iii) the
maximum growth rate diminishes. And the effect of the free surface parameter « on the phase
velocity has been given in Fig. 4.

For the typical large—scale oceans the influences of the free surface parameter & may be
ignored wifh %= 010 ?); but for the large—scale atmosphere, it can not be ignored with
=010 )
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