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ABSTRACT

A numerical model for the unsaturated flow equation with moisture content as prognostic va-
riable is established in order to simulate liguid moisture flow in an unsaturated zone with homoge-
neous soil. and different initial and boundary conditions. For an infiltration or evaporation prob-
lem, its numerical solution by using a finite difference method is very sensitive to its upper bounda-
ry condition and the related soil parameters, and using a traditional finite element method usnally
yields oscitlatory nen—physics profiles. However, we obiain a nonoscillatory solution and evade a
non—physics solution for the problem by using the mass—lumped finite element method. This kind
of boundary conditions is handled very well. Numerical simulations for certain soils show that the
numerical scheme can be used in simulation of liquid moisture flow for infiltration, evaporation,
re—distribution and their alternate appearances. It can be also applied to a high-resolution land
surface model.

Eey words: Unsaturated flow, Finite element, Mass lumping, Numerical simulation
1. Introduction

Unsaturated soil water flow is a flow where water is not full of soil hole, which is an im-
poriant form of flow in porous media. Prediction of an unsaturated flow is provided with sig-
nificance in many branches of science and engineering. These include atmospheric science, soil
science, agricultural engineering, environment engineering, and groundwater hydrology. Soil
water content is an important climate factor, and its seasonal change has an important influ-
ence on weather and climate at mid—high latitudes. Land surface parameterization which
stresses computation of soil content, is widely concerned (Ye et al., 1991; Dai et al., 1997;
Dickinson et al., 1993}, Hydraulic processes at surface and subsurface, such as precipitation,
evaporation, and evapotranspiration, seepage of surface water, and capillary elevation of
deep—level water, absorption in root zone and liquid moisture flow of groundwater, all can be
reduced to unsaturated flow problems (Lei et al, 1988; Bear, 1972; Celia et al., 19%0;
Rathfelder et al., 1994; Xie et al., 1998a). As a matter of fact, in all studies of the unsaturated
zone, the fluid motion is assumed to obey the classical Richards equation (Celia et al., 1990}.
This equation may be written in several forms with either moisture content & or press head A.
Because the equation is nonlinear, its analytical solution is impossible to obtain except for
special cases. Therefore numerical approximations are typicaily used to solve the
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unsaturated flow equation.

For an infiltration or evaporation problem, its numericai solution by using a finite differ-
ence method is very sensitive to its upper boundary condition and the related soil parameters,
By using a finite element method, this kind of boundary conditions can be handled very well
through reducing calculation of known flux by using variation. Unfortunately, using a tradi-
tional finite element method is entirely possible to yield non—physics oscillatory infiltration or
evaporation profiles.

In this paper, a numerical model for the unsaturated flow problem with moisture content
as prognostic variable is established in order to simulate liquid moisture flow in an unsaturat-
ed zone with homogeneous soil, and different initial and boundary conditions. We aobtain a
nonoscillatory solution and evade a non-physics solution for the problem by using the
mass—Iumped finite element method. This kind of infiltration and evaporation boundary
conditions is handled very well. Numerical simulations for certain soils show that the numeri-
cal scheme can be used in simulation of liquid moisture flow for infiltration, evaporation,
re—distribution and their alternate appearances. It can be also applied to a high—resolution
land surface model.

2. An unsaturated flow problem

2.1 A vertical infiltration and evaporation problem

Based on horizontal resolution of a general circulation model (1 to 5 longitude—latitudes
resolution), liquid moisture flow in soil along horizontal direction may be ignored. We con-
sider a one—dimensional unsaturated problem. Let z denote the vertical dimension, assumed
positive downward, and 6(z, ¢} be soil volumetric content at time 7 and at the distance z from
surface. We suppose that the infiltration or evaporation rate at surface dependent of time is
given, which is positive for infiltration and negative for evaporation. Moisture content at the
bottom of the domain Q is given dependent of time. Then by Darcy law and continuous prin-
ciple, we obtain the following unsaturated flow Richards equation:

%—%(n{ﬂ%)+%@=s, )
0(z,0)=8,(z), 0<z<L 2)
HL=p(t), 1>0 (3)

K@) - D(B)%g =g(), if 2=0, >0 | (4)

where B[L° / L] is soil moisture, D(0) the soil water diffusivity, K(@)[LT ~ ') the unsaturated
hydraulic conductivity, — §,{L> T~ '£ " *] absorption rate of root zone, and g{#) the infiltra-
tion or evaporation rate at upper boundary z = 0, see Lei et al. (1988), Bear (1972}, Celiz et al.
(1990), Haverkamp et al. (1977), Rathfelder et al. (1994). The presumed conditions (2)~(4) are
initial condition, lower boundary condition, upper boundary condition, respectively. The up-
per boundary condition has the following cases.

+ When g(7) > 0, (4) is equivalent to the case in which the known surface flux does not
exceed the infiltration intensity, and does not generate runoff.
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+ When the surface flux exceeds the infiltration intensity, and runoff generates, the
boundary condition (4} is substituted for

8 _
{K(B) K(H)EE g{f) when z=0 and t,>t>0, %)

H03=0, whea r2¢, .

here ¢ is the beginning time when it exceeds the infiltration strength, and is taken as the be-
ginning time of 6(0, 1) = 8, since 6 < @, (8, —saturated moisture content).

« When g(¢) € 0, the upper boundary condition (4) is equivalent to the case in which soil
at surface is evaporated at evaporation rate ¢(¢).

» When soil at surface is evaporated at evaporation rate g(r), and moisture content at
surface reaches the air—dried rate after time 7, , the boundary condition (4} is substituted for

_ 60 _ -
{K(B} D(G)Ez- =g(t) when z=0 and ¢, >:>0 , ©)

8(04)=0, when z=0 and r21¢, ,

here 7, is the beginning time when that reaches the air—dried rate, and is taken as the begin-
ning time of # =10, since 02 4,.

» When soil at surface keeps saturated, and is evaporated after time ¢, the boundary
condition (4) is substituted for

00)=0_ when z=0 and ¢,>t>0,

5

(7
{X(G}—D(G)-g—g=q(r) when z=0 and 121¢, , )

here ¢, is the beginning time when g(¢) < 0.
« When soil at surface keeps air—dried rate 8. and infiltrates after time ¢, , the bounda-

ry condition (4} is substituted for
{B(O,r)= 6, when z=0 and ¢, >t>0,

8
K(B)—D(H)gg=q(t) when z=0 and 7>7¢, , ®

here ¢, is the beginning time when g{r) > 0.
In most of land-surface models, the following fitting-relations are taken (¢.f. Campbell,
1974):

26+1
() =K, (56—) ,
W)=Y, (Bi)_b ) )

bK\P s+12
D(6)=——;i(91) .

9

k)
Here, K, >0, ¢, <0,0<8, <1.
2.2 Extremum principle

About the problems (1)-(4}, with the expression in (%), we can prove the following prop-
erties, which can be refered to Xie et al (1998c).
Property 1. If it evaporates at upper boundary z =0, i.e. #(r) <0, the source—sink §, =0,
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and the initial condition 8, (z) reaches its minimum at upper boundary z =0 and its maxi-
mum at lower boundary z=L, 8(r)=6,(L)is a constant independent of time z, then
for “#1,. 6z, £, ) in problems {1)-(4) reaches its minimum at z = ¢ and its maximum at z = L.
Property 2. If it infiltrates at upper boundary z = 0 with infiltration rate () > K(8,) at z=0,
the source—sink §, =0, and the initial condition £,(z) reaches its maximum at upper bound-
ary z=0 and its minimum ar lower boundary z = L, #{r) = 8,(L) is a constant independent of
time r, then for ¥ ¢;¥z, ;) in problems (1)-(4) reaches its maximum at z =0 and its mini-
mumatz=L.

These two properties show that the mathematical models {1)-{4) satisfy its extremum
principle, which coincides with physical properties,

3. A numerical model using a finite element approximation

As an example we consider the problems (1-4) and explain numerical simulation pro-
cesses of the model.

3.1 The second kind o fupper boundary condition

Let H}E Q) = {ve H' (Q), (L) =0}, here H' () is a Sobolev space, up to the first deriva-
tives of which are square integrable (Adams et al., 1975) on Q. Set 8(z, ¢) = 8(z,¢)} + f{t), and
homogenize the lower boundary condition. We have

6 _ & 80y _ 3K(O) _ 4B

s (D(B)a—z) S TS, Gosaxon .,
Bz,0)=0,(z)— B{0), 0<z<L ,

HL,=0, >0, {10}

K@) — D(G)S—g =g, 107, at z=0,
Bz, ) =0(z.00— ple) .
The equivalent variational formulation of the considered problem is as follows:

to find 6z )EHL(Q), Vie{6,T), such that TopeH (@),
a0 50 B PR RN
@ Ly . + P iz + - .
D o)+ (0@OL.22)= ~g ol +{ KOZLdz + (5,00~ F W)
where and from now on { « , * ) denotes the L* —inner product on Q (see Adams, 1975). Since

. . . . d . .
variation of f(r) is small relatively, so we omit the term (d_i:' q)) in the computation.

3.1.1 Semi—discrete finite element approximation

We first introduce finite element approximation in space direction. Divide the domain
Q=(0,Lysuchthat0=z; <z, <z, <+ <z,,, =L, wherez; and z,,, are the boundary
points of domain . Lete, = (z,,z,. )i =0, =, n) be n + 1 clements. Define a finite element
space V, © H(Q) such that ¥, ={v, is continuous in [0,1], v,le, is linear polynomial
for0<i<nandv,(L)=0}.

Let {@,} < ¥, be the finite element basic functions (Ciarlet, 1978), @ {z,) =46 ,(i.j=
0,+,n + 1). Since GV, 0(z, )= 3, X, (), (z) + B(1). Therefore, the matrix formulation

1=p
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of semi—discrete finite element approximation of the problem (10} or (11) may be written as
follows:

ax 1 ..
{[A]{XH[BI{E }— {F}, -
{X(0)} = (8,(z,) — (O}, By (z,) — BONT
where
[ﬂ:HJ,AU=beﬂﬂ_%d
0
[B]= [B”], B = r @z,
\]
(13}

de,
{Ft=IF,]1 a=—q@m+wﬂm+j}m5%¢—wm¢h
0

{X}=(X (1), (!))r ,
¢%

, )T, £ j=0,0n .

Equation (12) defines a set of ordinary differential equations with non-linear coefficients. To
get a numerical sclution of the problem, discretization for time variable should be introduced.

3.1.2 A i discreie scheme

A Finite difference scheme may be introduced to approximate the time derivatives in the
matrix equation, and then the Galerkin finite element—finite difference scheme of problem
(11} is obtained. Define for that purpose the following approximations:

dX} { }r+l\z _ {X}r

{ di At ' 14)
X}z+m/2 ~ m{X}r*—m + (1 _(U){X}’ )

where A/ is the time step and © a temporal weighting coefficient. By defining matrix equation

(12 at the half—time level {¢ + Ar / 2), and intreducing approximations in {14), the following

algebraic equation system results:

t+Ar __ t
[A]r+Al/'l(w{X}!+dl +(1_w){X}r)+[B]t+Ar/2{X} Iy {X} ={F}:+A1/2 .

And then
[P]P+AI/Z{X}J+A’ =[Q]I+AI/Z{X}: +{F}1+Ar/2 ] (-15)

where

- 1
(P]1= {41+ =(B],
at (16)

= (w— 1
[@]= (o~ DAl + 5 (8] .

When @ =1 an implicit in time finite difference scheme results, even through the various
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coefficients are evaluated at the half-time level. When w=1/2, on the other hand, a
time—centred, Crank—Nicolson type algorithm is obtained. To be able to solve equation (15},
one needs estimates of the coefficient X and D and then coefficient matrix [A], [B],[F] in
equation (16} and [P], [Q] in equation (15} at the half-time level. Since the mass—lumped fi-
nite element method is wsed in computation, and all elements in each row are summed up into
the main—diagonal element, oscillatory non—physics profiles are evaded. Because elements of
these matrix depend on the soil content, it is necessary to have an estimate of the moisture
content distribution # at the half—time level. For each new time step this distribution is ob-
tained through linear extrapolation from the old distributions as follows:

Af -
B:+Ar/2 =B’+2A: (af_al Ar) \ (17)
0

where Ar, and Ar, are old and new time increments, respectively. Expression (14} is a kind of
approximations, which may be improved by means of pre—estimate and correct iteration pro-

+ A

cesses. During each iteration the most recent distribution of 6 obtained by solving equa-

tion (15), is used to obtain a new estimate for the half—time level: §'*%/2 =%(9;+“’ +

Ar

g'). By using 8" *"?, a new moisture content 8 " may be obtained by solving equation

(15). The iterative process continues until a satisfactory degree of convergence is obtained.
The criterion of convergence, in its most general form, is given by: [6,*% —gi"* [ <

u o+ “z'
and relative etror criteria,

To compute moisture content distribution at a new time level, the first step is to estimate
4" %% soil content distribution at the haif-time step. If the time level is not the first one, it
can be pre—estimated through linear éxtrapolation according to (17). However, if the time
level is the first one, it cannot do like this since only initial distribution is known. In this case,
the initial distribution may be taken as the pre—estimated distribution at the first half time
level.

gLt | where & represents the iteration number, and g, , ¢, are the selected absolute

3.1.3 Discrete extremum principle

Since the physical problem and the mathematical models (1)-(4) satisfy the so—called
extremum properties {c.[. property 1 and property 2 in Section 2.2), it requires the discrete
problems (12) and (15) to satis{y the properties. We have the following theorem.

Theorem 1. By summing up all elements in each row of matrix B into the main—diagonal el-
ement, we get a matrix and still call it matrix 8. When the time step is small suitably, then the
matrixes P and @ in (15) satisfy that:

(i) P is positive definite matrix, and its non—diagonal elements are non—positive;

{ii) matrix P~ '@ is positive matrix, i.e. its elements are larger than or equal 1o Zero,

(i) each row of matrix P~ ' is Jess or equal to 1.

When w = | in {14) or (16}, the conclusion is true for arbitrary time step.

Hernce it shows that the discrete scheme by using the mass—lumped finite element method
satisfies extremum principle.

However, (i)-(iii) in the theorem do not hold in general for the matrixes P,Q in {(15) by
using a finite element method without the mass lumping. Theorem 1 in this case does not

4
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satisfy the extremum principle in general, and it usually generates a non-physics solution. We
omit the proof here.

3.2 The first boundary condition

Consider probiem (1) with initial condition (2}, low boundary condition {3} and the up-
per boundary condition 80,1} = a(r), Let Hy(Q) = {ve H' (Q),v(0) = (L) = 0}. Set

8(z,1) = @z, 1) + () Z “(‘)z +a(s) ,

and then homogenize the lower boundary condition. We have

2 p)) - & 2+, (,06Q % (0.T) ,
B0 =0, + B0 4 o0) o5,
J@(o:)—é(u)—o >0, (18)

K0y — D(G)— gl{r), re(0,7), at z=0,

00 _ a( 66) K (&) ﬁ’(r)za’(r)z_

0(z,0)=0{z.1)— B(t) :x(l) —ealt) .

Then the related equivalent variational formulation of the considered problem (18) is as fol-
lows:

‘to find  8(z,NEH,(Q), V1€{0,T), such that VeoeH, () ,

Py vt {19}
(a: ) (D(B)aﬂ 540) rK(B%?dz+(S,,q))— (a’(t)+£—;—(:—)z,qa) .

Since viriation of alz) and B{¢) is small relatively, so we assume &'(¢), §(¢) = 0 in the computa-
tion.

As in Section 3.1.1 we introduce finite element approximation in space direction. Define
a finite element space ¥, = H{(Q) such that ¥, = {v, is continuous in [0,1], v, le, is linear
polynomial for 0 €/ < n and v, (0} = v, (L)=0}.

Let {p,} =¥/, be the finitc element basic functions (Ciarlet, 1978}, o, (z,)=8,(i.j=
1, =+, n). Since GV, , we have

ﬁ(t) a(s)

Plz1) = ZX,. (Do, () + 25— +aln)

Therefore, the matrix formulation of a semij—discrete finite element approximation for the
problem (18} or (19) may be written as follows:

Lt + 18X b= tr)

{X(0)} = (90(20)_5_(92%“”20’...‘90(2'1)_ (O)Za(ﬂ)z" )r ’

(20}
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where
L
_ _ dy,; d‘P,
[4]1=1[4,] Al‘j_J; D(ﬂ}-g-z— dz dz ,
[B]1=1(8,]. B.-,-=r<o.4p,-dz,
o
2n

(Fi=IF] F. = (Srifp,»)*'r(a"i‘ﬁrzai zhpdz +rK(H)d£;ﬁdz ,
& o z
(X} =, (), =, X, (N7,

dx v rdX, dXx, L
oY= (G ) =L

Equation (20) defines a set of ordinary differential equations with non—linear coefficients.
The finite difference scheme {14) can be introduced to approximate the time derivatives in the
matrix equation (20), and then the Galerkin finite element—finite differential scheme of the
problem (18) or (19) is obtained as (15), which can be resolved similarly as in Section 3.1.3.
We can get similar results for the problem with the first kind of boundary condition.

3.3 Alterrative cases

In Section 2, we can see that in the alternative cases, how to determineg 7, in (5), (6), (7}
and (8), is very important, whick is the turning point time of the upper boundary condition.
At each time ¢, we determine the upper boundary condition in the next step ¢ + Ar according
to the following principle.

. (i} If the upper boundary condition is (5), 0(0,1) =0, and g(t + Arj> 0, then the first
kind of boundary condition 8(0,t) =8, is used in next step, £, =+ Ar.

(ii} If the upper boundary condition is (6), 0(0,1) < 8, and g(r + At} <0, then the first
kind of boundary condition 8(0,) = 8, is used in nexL step, r, = ¢ + Ar.

(iii) 1f the upper boundary condition is (7), 8(0,1) =0, and ¢(z + A7) <0, then the sec-

ond kind of boundary condition X(8) — D(ﬁ)z—g = ¢(t) is used in next step, 1, = ¢+ At.
(iv) If the upper boundary condition is (8), 8(0,£) = @, and g(¢ + At) > 0, then the second
kind of boundary condition K(§) — D(H)g = ¢() is used in next step, 7, =¢ + Ar.

4. Numerical simulation

The soil parameters K., ¥, , 8, and B for eleven soils were assighed in Clapp et al.

{1978), Cosby et at. (1984), Henderson—Selles et al. {1986), Wilson et al. (1985), Dickinson et
al. (1993).We give the parameters for the twelve soils as the following table according to
Dickinson et al. (1993).

4.1 The case for the eighth soil

The soil parameters for the eighth soil in (9) are as follows: §, =0.54, ¢, = — 200
(mm), X, =3.2% 10"° (mm /s), B=76,0, /0, =0.419, L =200 cm. In Section 4, we di-
vide the domain Q = {¢,200) into two hundred ¢lements.

LS Pl ot Sy i T V4
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Table 1. Soil parameters for 12 soils

soil type™.parameters #, - ¢, (mm) K, (mm/s) B B, /8,
1 0.33 3 0.2 3.5 0.088
2 0.36 3o .08 4.0 0.119
3 0.39 £l 0.0032 4.5 0.151
4 0.42 200 0013 5.0 0.266
5 0.45 200 8.9e-3 5.5 0.300
6 0.48 200 6.3e-3 6.0 0.332
7 0.51 200 4.5¢-3 68 0.378
8 0.54 200 3.2e-3 7.4 0419
g 0.57 200 2.2e-3 8.4 0.455
10 0.60 200 1.6e-3 9.2 0.487
11 0.63 200 1.1e-3 10.0 0.516
12 0.66 200 0.82-3 108 0.542

4.1.1 Stable infiltration and evaporation

We assume that a constant moisture content 0.226 was maintained at the lower end of
the column and a constant infiltration flux (1.0 x 10~ em / hour} was imposed at the soil sur-
face (z=0) during 450 hours since the beginning of infiltration. Assumed that after 450
hours, evaporation began at the evaporation rate 1.0 x 1072 ¢m / hour. The initial and
boundary conditions for infiltration and evaporation of water in the soil were

#(z,0) = 0.226, z€[0,200] ,
g() = i().lcm/hour, when 0< <450 hours , (22)
g= —0.01 cm / hour, when 450 < ¢< 1000 hours ,
6(200,6) = 0.226 .

The time step Af = 2.5 hour. Those dates were included into the program. The obtained soil
moisture profiles at each 25 hours from 1 to 450 hours, are presented in Fig. 1. Here the
abscissa denotes moisture content, the ordinate denotes depth (cm) from surface, and each
curve denotes a soil moisture profile at certain time. There are no oscillatory non—physics
profiles for the monotone infiliration problem. Fig. 2 presents infiltration and evaporation
profiles at each 125 hours period.

It may be seen from Fig. 1 and Fig. 2 that moisture content at surface increased from
0.226 to saturated moisture content rapidly during 125 hours since infiltration occurring. Af-
ter that time it changed a little and gradually closed to the saturated soil moisture,
When ¢ > 450 hours, soil at surface was evaporated at intensity 1.0 % 1072 ¢m / hour, i. e,
g = — 0.01 cm / hour, and moisture content at surface decreased rapidly. This coincides with
the case in practice.

4.1.2 Wave in fltration and evaporation

We assume that a constant moisture content was maintained at the lower end of the
column and a constant flux (1.0 x 107" cm / hour) was imposed at scil surface (z = 0) during
250 hours since the begining of infiltration. Assume that after 250 hours, wave infiltration and
evaporation began at rate g{#) = sing% em / hour. The initial and boundary conditions for in-

filtration of water in the soil were
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bed s ~
nowient
Fig. 1. Soil moisture profiles at each 25 hours. Fig. 2. Infiltration and evaporation.
»
§
iﬂ
-
- [} s
coent
Fig. 3. Wave infiltration and evaporation. Fig. 4. Wave infiltration and evaporation.

B(z,0) = 0.226, z€[0,200] ,
0.1 ¢cm / hour, when 0 <1t <250 hour
gle)= {

¢ = sinZ- cm/hour, when 250 < <1440 hour
§(200,1) = 0.226 .

t

30
The time step A7 = 2.5 hour. Those dates were included into the program. The obtained
soil moisture profiles at initial time and at each 125 hours period afterwards ar¢ presented in
Fig. 3. It may be seen from Fig. 3 that, when evaporation began, soil moisture at surface de-
creased. Because of the gravity flow, the front of soil moisture approaching to the lower
boundary moved forward. After 250 hours since the beginning of wave infiltration and evap-
oration, moisture content decreased a little. Fig. 4 gives the case when the initial condition in

(23)
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g £ 180 130 m
dE th L 100 150 0
pin em depth cm
Fig. 5. Soilmoisture profilesateach 10 hours for soil 1. Fig. §. Asin Fig. 5 but for soil 2.
as
b2
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E o211+
5 +
Son
o
4.14{*
aes 008
o W 7] P % ry —n o
depth cm depth em
Fig. 7. Asin Fig. 5 but for soil 3. Fig. 8. Asin Fig. 5 but forsoil 4.

.08
k. 100 120 200 o s " 00
depth ¢m depth cm
Fig. 9. Asin Fig. 5 but for soil 5. Fig- 10. Asin Fig. 5 but for soil 6.

(23) was substituted by 8(z, 0) = 0.226 + 0.314 / 200z, z€[0,200].
This shows that the numerical model can simulate infiltration, evaporation, and their al-
ternate appearances, and that the results coincided with practice cases.

4.2 The cases jor the twelve soils

Set L = 200 cm. For all the twelve soils, we assume that a constant moisture content 8,
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Vol. 16
o
nss
E] 100 1 m o]
dapth cm
Fig. 11. Asin Fig. 5 but for soil 7.
o
ol [ F3
£ 120 ;3 200 [ 100 38 20
depth em depth cm
Fig. 13. Asin Fig. 5 but for s0il 9. Fig. 14. Asin Fig. 5 but for soil 10.
[33 s
oy 02
) 198 L] » 15} 100 (L] m
depth ¢m

depth cm

Fig. 15. Asin Fig. § but for soil 11. Fig. 16. Asin Fig. 5 but for soil 12,

was maintained at the lower end of the column and a constant infiliration flux (1.0 x
10! ¢m / hour) was imposed at the soil surface (z = 0) during 250 hours since the beginning
of infiltration. Assumed that after 450 hours, evaporation began at the evaporaticn rate 1.0 X

1072 ¢m / hour. The initial and boundary conditions for infiltration and evaporation of water
in the soil were
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g(t)=10.1 ¢cm / hour, when 0<¢<250 hours , (24)

{G(z,()) =8,, z€[0,200] ,
£(200,) = 8,

The time step At = 1 hour. Those dates were included into the program. The obtained soil
moisture profiles at each 10 hours from 1 to 200 hours, are presented in Fig. 5-Fig. 16.

5. Conclusiens and discussions

A numerical model for the §—-form unsaturated flow problem by using the mass—lumped
finite element method is established in order to simulate liquid moisture flow in unsaturated
zone with homogeneous soil, and under different initial and boundary conditions. Infiltration
and evaporation boundary conditions are handled through reducing to calculation of known
boundary flux by using variation. Numerical results show that the model evades oscillatory
non-physics solutions by using the mass—lumped finite element method, and can be used in
simulation of liquid moisture flow for infiltration, evaporation, evapotranspiration, re—distri-
bution, and their alternate appearances. It can be also applied to land surface models.

We would fike to thank Professor Wang Bin for valuabile discussiotts.
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