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ABSTRACT

In four—dimensional variational data assimilation (4D VAR} technology, how to calculate the optimal
step size is always a very important and indeed difficult task, It is directly selated to the computational effi-
ciency. In this research, a new method is proposed to calculate the oplimal step size mote effectively. Both
nonlinear one—dimensional advection equation and two—dimensional inertial wave equation are used to test
and compare the influsace of different methods of the optimal step size calculations on the iteration steps, as
well as the simulation results of 4DVAR processes. It is in evidence that the different methods have different
influences, The calculating methad is very important to determining whether the iteration is convergent or
not and whether the convergence rate is large at small, If the calenlating method of optimal step size is prop-
erly determined as demonstrated in this paper, then it can greatly enlarge the convergence rate and further
greatly decrease the ileration steps. This research is meaningful since it not only makes an important im-
provement on 4D VAR theory, but also has useful practical application in improving the computational effi-

ciency and saving the computational time,
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1. Introduction

With highly developing of modern scientific technology and incessant updating of the
observational system, many kinds of new sources of observational data are readily obtained,
such as satellite data and radar data, It has been a critical problem to puzzle researchers to
effectively employ these data in numerical calculation, 4DVAR technique has gradually been
a very important tool in the main stream of numerical weather prediction, because it is of
strong capability of combining and extracting the useful information from all kinds of
observational data, The data are usually in a very complex form since it is observed with dif-
ferent approaches in different areas, and more importanily it is spaced in different time with
different precision.

The application of four—dimensional variational data assimifation in numerical forecast
and simulation was best demonstrated and developed by Lewis and Derber(1985}. Le Dimet
and Talagrand(1986), and Talagrand and Courtier{1987). Recently, it has become a popular
interesting topic in atmospheric research and oceanic research (cf. Derber, 1987; Navon et al,,
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1987; Chao et al., 1992; Zou et al., 1995; Fillon and Errico, 1997; and the reference therein),
In China, many interesting research works also have been implemented (cf. Gao et al, 1995;
Zhu, 1995; Chen et al., 1998: Wang et al,, 1999; and so on).

It is well known that an iterative process is needed in 4DVAR in order (o obtain the ini-
tial conditions in the optimized fashion. No matter the iterations are convergent or not, and
whether the convergence rate is large or not, they all depend on the proper determination of
the optimal step size. Furthermore, how to calculate the optimal step size, in one sense, has
been the crucial issue in the minimizing processes of 4DVAR algorithm. Though many papers
had studied the 4D VAR technique, few of them had even considered o determine the optimal
step size properly. And in fact, few practical methods had been given because of the great dif-
ficulty in such a research field, For instance, Gao et al. (1994) used the one—dimensional
searching method, but sometimes the method is insfficient. Derber (1987) provided in other
way a guess expression to roughly calculate the optimal step size in a quasi—geostrophic mod-
el, and the method had been used in same succeeding researches (Navon et al., 1992). Note
that Derber’s method was only a guess expression and there exist limits in applyihg. Wang &t
al. (1999) suggested a simple formula to design the optimal step size, which has relatively low
caleulation efficiency in some iterative processes, In this paper, we present a new method
based on the character of 4DVAR, to obtain the proper optimal step size, which greatly re-
leases the disadvantages mentioned above to a considerable extent. And numerical sensitivily
tests are implemented to check the efficiency and accuracy of this new method.

2. Derivation of the optimal step size

Supposing that Y{t) is the control variable of the model, the process to oblain the
optimal initial field can be realized by the steepest descent algorithms or the conjugate gra-
dient algorithms, such as

Y= Yo — o [V (1)

where v represents the iteration step, and J is the cost [unction in general. 7/ is the gradient
vector of the cost function J with respect to the initial field ¥'(z,). p is the optimal step size,
From Equation (1), the problem of calculating the initial field ¥ (t,) has been shifted into the
problem of calculating W7/ and p. Since %7/ can be obtained by integrating inversely the
adjoint model from the final time to the initial time, the remnant is to calculate the optimal
step size. The iteration convergence rate will greatly be determined by the design of optimal
step size. In this section, we give a detail discussion of the optimal step size from the point of
matheinatical view, and two calculating methods are introduced,

(I) The simplest calculation of the optimal step size is based on the Newion—Raphson

iteration through the expression p= % This method avoids the complex calculating process

and reduces much of computer resource so that the optimizing process ¢an be performed
effectively. The big problem in the Newton—Raphson iteration is that though the iteration is
convergent, the convergence processing is quite slow. Especially at the beginning when J is
very large and thus p is very small, the convergence rate is heavily decreased. In order to ac-
celerate the convergence. we might take the first modification in the method of
Newton—Raphson iteration through multiplying a proper constant coefficient with the gues-
sing value of the optimal step size from the Newton—Raphson method, However, the constant
coefficient is high artificially determined such that somewhat uncertain is inevitable. If we




No. 3 Wang Yunfeng, Wu Rongsheng, Wang Yuan et al, 435

want to reach the prescribed threshold of convergence in just fewer iteration steps as passible
as we can, we should find another effective and less—subjective method to obtain the proper
optimal step size,
(II) Supposing that S7J[Y(#,)] at v iteration step has been obtained by integrating inversely
the adjoint model, then the initial field at v+1 iteration step could be obtained from Equation
{1}if the optimal step size p* atv ileration step is calculable,

Introducing a guess value of optimal step size, denoting p°, at v iteration step, the guess
inttial field could be calculated as follows:

Y )= Y () ol 19T (2}

Note that for the first iteration step, we take p', = %; for the succeeding iteration steps,

1 w- |
ge=0 .

In time—forward integrating processes, forecasting model equations in the continuous
form should be writien in the discrete form, and the discrete model could be regarded as a
{inear or nonlinear algorithm of X transfer from one space to another space. When X acts an
the initial field ¥ {z, ), the succeeding model solutions ¥ {¢;) (i= 1,-+,#) at later times can be
obtained. 1t leads to

¥Ul= KT ()L, (3)
and
Y )= KT )L )

Equations (3} and (4) are also applicable at the other iteration steps for i=1,+++y.
If the algorithm of X acis on all terms of Equation (1) and Equation (2) respectively, we
have

Ky 'agl= XY G- o' (WY T, ()
and
KIY Hgl= KV ()= o [WY e 'Y (6)

In order ta estimate the optimal step size, it is assumed that for a very small pert_urbation, the
cortesponding medel solutions will vary linearly in the search direction (¢f, Derber, 1987},
While the calculating values of p' and p'. at each iteration step are used to derive the initial
fields, they can be taken account of canstant values, Substituting Equations (3) and (4) inte
Equations {5) and (6), we obtain

YU~ Y= p KV ( h (7
and
Yru—- v e )= ol KiIleY e O L (8)

Muliplying Equations (7) and (8) by the factor of [¥" (#,)— ¥.' ' {¢,)J7, respectively, results

in

Y e~ Y ey e)— vy = o KIer e Y ) - v e . @)
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and
FATRS SRR TR D SARN () UE <(Rv) 479 i V AR T R SARN (0 | N (1)
where superscript * 77 denotes transposition, To be sure that at v+1 iterative times, the rela-
tionship holds
Y= Y ) (n
We can get the following equation by substituting Eq. {11) into Eq. (9) and then comparing
with Equation (10):
o ) Y Y )= ¥ el
P -y Y- Y e

(12)

Equation (12} also can be rewritten as
. < duP)>

P )Y {13

where ®r,)= ¥Y'(t,)— ¥, 4t;) is the difference between the model solution ¥ (¢,) and the
observation ¥ (¢, ); whereas ®(s,)= ¥"(r,)— Y. () is the difference between the model
solution ¥ ' {z,) and the guess model solution ¥ ¥ '(7,), ¥ (z,) can be obtained by integrating
the forecasting model with the initial ficld ¥' (r,); on the other hand, ¥, ' (,] can be ob-
tained by integrating the forecast model with the guess initial field Y ' ¢,) Notation
“ < .>" denotes an inner product.

From Equation {13), the generalized expression of the proper optimal step size should be
asumofp” atall times with different weighting coefficient, namely

Y < B0, >
p=r' ZWFW,((,‘E))N—‘T((;:))T-

=1

(14)
where W is the weighting coefficient at each integrating step, which can be determined by

some optimal control methods (Hamming, 1989). Nevertheless. the simplest form can be giv-

en by % That is (o say. the weighting coefficients at all times are the same. Our research has

shown that even if the simplest form W, = % is 1aken, the satisfying results can be obtained
F)

(not shown). Two numerical tests will be used to verify the accuracy of (he derivations above.

3. Numerical results

Both nonlinear one—dimensional advection equation and two—dimensjonal inertial wave
equation are used to test and compare the influence of different methods of the optimal step
size calculations on the iteration steps, as well as the simulation results of ADVAR processes.

3.1 Nonlinear one—dimensional advection—diffusing equations

The nonlinear one—dimensional advection—diffusion equation is given as follows:
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Gu du_ @ Pu_
2 + u@x ix (.k(x}a = 5(x), 0< x<2, (15}

where the coefficient and the external forcing are given as k(x)=2x% 10" ? and S
= (.025cos(nx), respectively. The initial and boundary conditions of Equation (15) ate ex-
pressed as

w{x,0)= sin(2nx), (16)
A
L= L uzn=o, (17
ox ¢X
And its linear adjoint equation can be written as
Cew b’ fw @ ut
A e + ix  Ax (k(xl—ax 1= 0. (1)

To obtain the adjoint program code, there are usually iwo methods: direct method and
indirect method (Wang et al., 1999), In our test, the direct method is used. That is to say, the
adjoint program code is obtained by transposing the numerical mode! program code directly,
The solutions of Equation (15) under the conditions (16) and (17) are expressed as @@ =
w(iAx. pAs), which are expressed in discrete space, where = 0.1+ 40.p= 1.2, 60;Ax
= 0.05: and Ar= 0,01, It is worth noting that in such an ideal test, the solutions 7 = w(iAx,
pAt) are used as the prescribed observational data in corresponding integrating steps. The ini-
tial field at the first iieration is taken as zero value, which is of course far away from the true
state of Equation (16). Then we want {o see whether such misfit could be " repaired” by the as-
similation process. In this paper. several selected methods of cakulating the optimal step size
are used in the assimilation process to oblain the optimal initial fields, By comparing the cor-
responding results with the different methods in determination of the optimal step size, the
superiority of Equation {14) can be identified.

As shown in Fig, 1. the standardizing gradient norm || /|| {solid points) and the
standardizing cost function J (hellow points) vary with the iteration steps: In Fig. la Equa-
tion (14} is used to calculate the optimal step size; in Fig. 1b the optimal step size is calculated
by the method of Derber (1987): in Fig, 1c the one—dimensional searching method is used (af-
ter Gao and Chou, 1994),

It has been found that the descending of the standardizing gradient norm and the stand-
ardizing cost function in Fig, la are the fastest and that the ileration steps reaching the
convergent threshold are also the fewest, compared with the profiles in Figs. 1b and 1c. Such
comparison indicates that the proposed method (ie., Equation (14)) is more effective than the
method proposed by Derber (1987) and the one—dimensional searching method {Gao et al..
1994), Compared with Derber’s method, though the computing time in every iteration step is
the same, the iteration steps in our method are much fewer, and the total CPU cost in our
method is less expensive, too, On the other hand, it may be hard to say that our method takes
less computational expense in every iteration step. But one thing is obviously in certain that
the total compuling time in our method is much less than that in the one—dimensional search-
ing method. simply because the less iteration steps are required in our method.

3.2 Two-dimensional inertial ware equations

Taking the two—dimensional inertial wave equations as the test platform. the effects of
the optimal step size in two selected methods are tested by numerical experiments, The mertial
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Fig, 1. The assimilation results with different methods in determination of optimal step size (a)
When Equation (14) is used, the variations of the standardizing gradient norm || /||
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iterations
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(solid
points) and the standardizing cost function J (hollow points) with the iteration steps; (b) When
Devber’s method is used, the vaniations of the standardizing gradient norm {| 4| (solid points)

and the standardizing cost function J (hollow points}) with the iteration steps: (¢) When

{solid points} with the iteration steps (after Guo et al.. 1994),

one—dimensional searching method is used, the variations of standardizing gradient norm || 74|
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wave equations are expressed as

u _

& Jr=0, (19a)

£y

e + fu=0, (19b)
It the initial wind fields are given by u{., = 0and vf,:.,u = vy, meanwhile

the initia) phase @, is taken to be zero value, then the analytic solutions are
u™ = vysin(ft+ y), {20a)
v = yocos(ft+ g,), (20b)
In the time—forward integrating processes, the discrete method of Equation (20) used here is
followed from Pielke (1984),
RS VY E S Y OIS P Ve A (21)
Introducing the adjoint variables u* and v° for the corresponding variables « and v
respectively, the adjoint equations of {21a) and (21b) can thus be written as
éu’

St pT =0, (22a)
év’ . _
o u =10, (22b)

The adjoint program code is obtained through the same way as described in the advection
case. In our numerical experiments, there are respectively 81 and 76 grid points along x and
y directions with a grid size of 20 km in the horizontal and 9 grid points in the vertical, with a
grid size of 1 km. The initia! fields of w and v are uniformly distributed in the spatial space.
The time step size is taken to be 187.0 min with the integraling number of 336, Then the total
integrating time is 62832 min. The assimilation time interval is chosen as 10472 min, and there
are total 7 assimilation lime steps. For given imitial fields, the forecasting solutions of »; and
v;{i=1,2.++ 7} at each assimilation time step are obtained by calculating Equation {21}, At
the same time, by calculating Equations (20a} and (20b), we can obtain the analytical solu-
tions %™ and v!™ (i=1.2,--7) at the corresponding time step. Note that ¥, = 5 m /s and
w, =0 are taken in Equation (20). Regarding the valid analytical solutions as the prescribed
observational data, the cost function is thus defined as follows:

=3 Tl = ™+ - i) 23
where i=1,2,«.7.

The numerical experiments with different methods of determining ihe optimal step size
under three initial conditions are illustrated in Table 1. Firsily, the so—called standard initial
fields in Table | are described by u,., = 0 and v|,_, = v,, which indeed means that there

exists no perturbation with the amplitude of v, and the phase of ¢, . Secondly, supposing
that there exists an amplitude periurbation (v } in the standard initial fields, the original
amplitude v, is added by the perturbation value of v ,, = 0.1v,, meanwhile the others remain
unchanged. Thirdly, the phase perturbation (g, ) is supposed in the initial ficlds by adding a
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T

6 to the original phase of zero. Similarly, the others remain

perturbation value of ¢ per =
unchanged.

Table I, The numerical experiments with different methods of determining the cptimal step size under three initial

conditions
Stundard inital fields | A perturbation of amplitude A perturbation of phase
existing in the initial fields  |existing in the inivia] fields
_ 1
=g Casel Caseld Cases
S i”-‘ =< é)“’ J'd’![:‘ ]> M .
p=g PP Y TRT TR Case? Cased Caset

In Table 1. total six cases are designed to lest two methods of determining of optimal
time step under three initial conditions. The variational assimilation results for Case | are
shown in Fig. 2,

Since in Case | there are two control variables « and v, the optimizing processes of w(zy )
and vi¢,) should correspondingly require two components ¥,/ and W,/ of the gradient
/. where %7, J is the gradient of J according to the initial field u(z,), while ¥,/ is the gra-
dient of J according to the initial field v(r,). A new variable, A is defined, which equals
Ju®+ v? . And its root—mean—square error (RMSE) is denoted by 4 .. From Fig, 2 we
can find that the optimal step size increases gradually with the varying of iteration steps in the
range 0,0055 at the imitial state 10 0,011 at the final state. As a whole, the cost function J. the
component gradient norms | %7, JI and | v, JIl and the root—mean—square error A, all de-
crease gradually with the iteration steps. And their values at the final state are much less than
those at the initial state. All this shows clearly that the assimilation process is convergent and

it is feasible to calculate the optimal step size by using p= 7 However, the optumal step size is

very small at the beginning and even at the end. Moreover, the decreasing processes of
S, A, S and A, are all slow with the iteration steps. unfortunately. Judging from

this point, the method by p= 5 is not very satisfactory.

The assimilation results in Case 2 are shown in Fig. 3. in which Equation (14} is used to
determine the optimal time step.

As shown in Fig. 3. the optimai step size at first increases with the iteration steps, and
ranges from 0.14 to 0.18. After the optimal time step turns to be of negative value al the 5th
iteration step, it varies near around zero value for the succeeding iterations, It seetns that
somewhat self—adaptive capability exists in Equation (14) for calculation of the optimal step
size. Compared with Fig. 2, the method in Case 2 is much better than the one in Case | and its
iteralion convergence is much more fast. The cost function J, the component gradient norm
i 57, /Il and | 57. /i, as well as A, in Case 2 are also decreasing rapidly with the adding of
the iteration steps. The cost function of J and A, quickly reaches the minimum just when
the iteration steps approach to 3 about. Also for the component gradient norm | ¥/, I and
{ w7, /. they almost reach their minima when the iteration steps approach to 5. All of them
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have clearly indicated that Equation (14) is one of the very effective methods to the calcula-
tion of the optimal step size since it enlarges the assimilation iteration rate,

In fact, all of experiments listed in Table 1 have been done such as case3, cased, case5,
and case6, More inleresting, these cases have demonstrated when the perturbations exist in
the initial fields, Equation (14) is a very effective way to properly calculate the optimal step
size than other methods tested in the paper is.

Conclysively, the propar method of calculating the optimal step size is of great impor-
tance since it is deeply associated with the ileration convergence and its rate. And it is also
directly relative (o the feasibility of the algorithm,

5. Conclusion

Since the rapid development in weather numerical prediction, 4—~dimensional variational
dala assimilation fechnigue becomes very important, and while how to properly calculate the
oplimal step size is always a crucial issue, In this paper, a new method of calculating the
optimal step size is proposed based on the property of 4DVAR, Taking advantage of the
nonlinear one—dimensional advection—diffusing and the 2—dimensiona!l inertial wave equa-
tions, the different methods of calculaiing the optimal step size are used to study their influ-
ence on the iteration steps and the simulation results of 4DVAR,

In the case when one—dimensional advection—diffusing equation is used, we find that the
method adopled in this paper is more effective than that proposed by Derber (1987) or than
that of the one—dimensional searching method (Gao, et al., 1994), Since both the standard-
izing gradient norm and the standardizing cost function are decreasing much more faster than
those of other methods.

On the other hand, in the situation of the two—dimensional inertial wave equation case,
much more complicated sensitivities are conducted in order to illustrate the advantage of the
proposed method, Firstly, it is considered that the optimal step size is calculated by the sim-

plest way through p= % ie., Newtonian method. Morecver, supposing that no perturbations

existing in the imitial fields, we find that J. [, J] and | ¥, Jb. as well as
Apme(root—mean—square error of the numerical solutions v and v}are all gradually decreasing
with the adding of the assimilation iteration steps. That is to say, the assimilation iteration
process actually is in convergence. However, the iteration rate is very small, unfortunately.
Furthermore, supposed that there were some perturbations of the amplitude or the phase ex-
isting in the initial fields, the iterative convergence of /, [ w7, Jll, and [ %7, | became to be too

slow, Clearly, the optimal step size determined by p= % is not a satisfying method although it
is of simple calculation. Nevertheless, if the optinal step size is calculated through muhiplying
}7 with a proper coefficient, it can enlarge the iteration rate, The problem however is that to

obtain the proper coefficient is a highly artificial and delicate job, there exists a great varia-
tion and uncertain in the multiplying factor in different cases and at different iteration steps.
Such weakness is largely eliminated in the proposed method. Indeed, no matier perturbation
exists in the initial fields or not, the cost function J, the gradient norm | 7, /|, | v, I,
and A, all of them are decreased very fast with the adding of the assimilation iteration
steps. For instance, when the iteration steps take about 4 or 5, they are almost reaching their
minimum,
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Conclusively, it is very important to calculate the optimal step size properly taken inio
account of convergence of the assimilation iteration as well as the convergent efficiency. Us-
ing the proposed method to calculate the optimal step size, it can greatly improve the
algorithm efficiency and saving the calculating time, and thus has an especially practical
value, In the view of theoretical point, our research provides a less—subjective and economical
way to implement 4DVAR processes.
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