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ABSTRACT

Theoretical argumentation for so—called suitable spatial condition is conducted by the aid of homolopy
framework to demonstrate that the proposed boundary condition does guarantee that the over—specification
boundary condition resulting from an adjoint model on a limiled—area is no longer an issue, and yet pre.
serve its well-poseness and optimal character in the boundary setting. The ill-poseness of over—specified
spatial boundary condition is ir a sense, inevitable from an adjoint mode] since data assimilation processes
have 10 adapt prescribed observatians that used to be over—specified at the spatial boundaries of the mod
eling domain.

In the view of pragmatic implement, the theoretical framework of our propased condition for spatial
houndaries indeed can be reduced Lo the hybrid formulation of nudging filter, radiation condition raking ac-
count of ambient forcing, together with Dirichlet kind of compatible boundary condition to the observations
prescribed in data assimilation procedure. All of these treatments, no doubt, are very familiar to mesoscale

madelers,
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L, Introduction

Many devastaling weather events occurring in the regions are of mesoscale characters.
The numerical weather prediction (NWP) on limited—area domain is essentially required in or-
der to simulate such complex Jocal weather and climate systems, The accuracy of NWP de-
pends not only on the exact representation of dynamic and physical processes in the atmos-
phere but also ¢ritically on the initial-boundary conditions employed for integrating the moed-
el. Just at this point, quarter—space variational data assimilation (4dVAR} has been intro-
duced in order to determine the initial state of NWP model, so that the corresponding solu-
tion is closer, in a sense, to the observations available over the assimilation period. The
measurement of difference between observations and model solutions leads to solving the
optimization problem, intended at determining the initial values of the model that optimize
some property of NWP output, It turns out that, with the present NWP models and comput-
ers, the only practical way to conduct variational assimilation is dependent on appropriate
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using of the so—called adjoint model (Lewis and Derber, 1985: Rostating et al., 1993).

The implementation of the adjoint medel over the global domain has been so far very
successful (Talagrand, 1997). The success is simply because the periodic boundary condition
used here is well-posed condition in any sense (Couraut and Hilbert, 1962). However, such pe-
riodic condition in real simulations and / or predictions over the limited—area of interest is
just out of our consideration, since the condition closes the modeling demain off its ambient,
On the other hand, the adjoint model defined over limited—area, in fact, still meets many diffi-
culties; among others, how to set well—posed spatial boundary conditions has been rarely dis-
cussed in detail. Most of the researchers ignored the additional problems related to the necessi-
ty of specifying appropriate spatial boundary conditions, particularly the setting of lateral
boundary conditions for limited—area model, which were either high arbitrarily designed or to-
tally by pragmatic approach,

Inevitably, the prescribed observation has to be introduced into the adjoint model. The
obvious solution for the boundary condition of adjoint model is directly to define the ambient
variables from observations on the boundaries, However, such boundary definition neverthe-
less lead to the so—called over—specification problem (Hill, 1968, Chen, 1973, Kar and Turco,
1993) at the boundaries. The problem of over—specified boundary conditions is simply creat-
ed by the over—definition of values ol ambient variables at the boundaries so that the num-
bers of boundary conditions is exceeding the right numbers of well-posed boundary condi-
tiens required for the model, The problem becomes furiber complicated by the requirement of
additional boundary conditions in numerical calculation using a finite difference method ic..
computational boundary conditions, due to the order—inconsistency between the difference
equations and the corresponding differential equations, The over—specified conditions there-
fore result in the extraneous solution,

On the other hand, the over—specification is not totally of the negative impact: at least 1t
reduces the complicacy of boundary treatment so that ail of possibly ill-posed boundary con-
ditions, such as the down—specificalion conditions (numbers of boundary conditions 1s less
than the right numbers required for well—posed boundary conditions: (Chen, 1973)) are all
simplified to the single — over—specified problem at the boundaries. Such simplification may
have profound importance because any kind of well—posed conditions in primitive equations
model of NWP is nearly impossible 1o conduct, That is either due to the introduction of
hydrostatic approximation (Oliger and Sundstrdm, 1978), or that even for some end—lo—end
non-hydrostatic model of NWP, the possible well-posed conditions are indeed too complex
and oo expensive to specify in practice,

Clearly, the task now is to seek a suitable boundary condition under the circumstances of
prescribed observations so that the over—specified conditions or any ill-posed condition re-
sulting from computational and theoretical aspects of the primitive equations of NWP are no
longer an issue for an adjoint model,

2. Theoretical background

Consider that a limited—area NWP medel s defined as a four dimensional domain D
=0x Ix T, where Q= Q{)éQ, Q= {rr< r,} is the horizontal domain and its lateral
boundary is denoted by ¢ Q. Tts temporal domain is 7= {ry, ¢ ] that is integrated from
initial state to the required step: the vertical coordinate is expressed by /= [0.1], which pres-
ents a normalized coordinate, like sigma coordinate or other terrain—following coordmates fa-
miliar 1o metecrclogists. For futher convenience, we denote I'= ¢Qx /< T, that is a general
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expression of time—dependent spatial boundary condition.
Generally, NWP over a limited—area is expressed as:
BY — Fv) i p=Bx1xT. ()

where F(Y) represents local forces tending to change ¥ and % is the Lagrangian derivative.

Obviously, the initial condition is
Yla, =Yin) at Qx 1 (2)

The appropriate solutions of Eq.(1) can be obtained under the condition of Eq.(2), as well as
by imposing suitable spatial boundary conditions for the limited—area domain. For the
computational model of quarter—space assimilation problem, the time—dependent boundary
condition is readily prescribed from valid four—dimensional data source, e.g., radar, satellite,
etc.. therefore

Yig=Yir,.t) at T=aQx [x T, 3)

where r, is the position just at the boundaries of ¢ £, and ¥ is the prescribed observation
as the analogy of ¥ and it is to be specified in the whole domain of D= Q% Ix T, The
well—poseness of such prescribed spatial boundary condition to tangent equation and its corre-
sponding adjoint equation appearing in typical 4dVAR problem is still at this stage totally
unknown. What we know is that Eq.(3) is the over—specified boundary condition to Eq.(I}
{Chen. 1973 and Oliger and Sundstrdm, 1978); and what we now understand the situation is
that we do not have any cheice but just face such over—specification resulting from general
4DVAR process. Those boundary problems will be discussed in the following section,

For the initial condition of Eq,(2), based on the optimizing principle of functional, the up-

dated and indeed the optimal initial condition ¥; should be given by

*

Yo=Y " u)=Y" ) p" V' {4)

where 1, = 0 is al initial time, v is iteration step and p is convergent speed. V7J represents the
gradient of J with respect to the initial condition Y (¢, ). Eq. (4) is derived from the foilowing
functional:

J= JW(r,r)[Y(r,r)— YiraW dedr, (5)

2]

b | —

by seeking an approximate solution of ¥, in Eq.(4) so that the gradient of J approaches to
zero subjected to the initial condition ¥ (). J presents the cost function which measures the
misfit between the prescribed observations ¥ (r.1) and model solutions ¥ (r,7). W (r,7) is the we
ighting coefficient and might be expanded by W (r.1)= X ¥, (t)A, (). For the sake of simplifi-
cation, assume that ¥, ()= 1 here, then W {x./) is renamed as A(r)= LA, (r).

In order 1o search the gradient of J. the optimal value ¥; can be obtained by Eq. (4),
the first—order variation 8. resulting from the variation 8Y {#,) of ¥ (r,) is firstly required.

aJ= J-A(r){Y(r.r)— Y (r,0l8Y drdt. ®

n

Given the initial condition Y (#4) and iis perturbation 0¥ (r,), we have the perturbation
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8J.On the other hand, the first—order perturbation 3Y ¢an be derived from the integration of

linearized perturbation of equation (1), starting from the initial condition 6¥ (1, ). That is:
D3y _ _, .
T Fr)ay, (7

where F'(7) is the linear Jacobian operator obtained by differentiating F{z) with respect to ¥,
The perturbation &/ in Eq.(6) is thus censtrained by Eq.(7). Since the equation (7) (namely
TLM, ie. tangent linear model) is linear, its solution at a given time ¢, depends lineatly on
the initial condition at time ¢,,, which can be expressed as

SY(r,)= Lit,.1,08Y(1,), )

where L{z,,t,) is called the resolvent of Eq.(7) between time ¢, and ¢y, Substituting Eq. (8) in-
to the corresponding time—discrete form of equation (6), we get

SJX ()= L < ALY ()=~ P, DL, 28T (0 )>

=0

=Y < L™, 1) MY TN )NOY (1))> . "
Since we have the relation /= < yJ, Y > | thus

VIF (e )= Y L7 (0. 0)AIY (1) P2, (10)

Clearly L ™ (1,.,7,) is the adjoint of L(7,.7,) and it should be written in

Y[ (tp)= L7 (e, 1,38Y " (1)), (11)
where §Y * (¢,)= AlY(r,)— Y’(zf)], and Eq. (11) indeed represents the resolvent form of fol-
lowing equation:

_Déy’
Dr

=FT(dY . (12)

Obviously Eq. (12) is the adjoint equation of Eq. (7), therefore ¥ * is the adjoint of 4¥, and
F'* {t) represents the adjoint of F/(z). By using Eq.(11), now Eq. (10} can be expressed as

VI (D= L L, AT ()= Pl N= 287, (). (13)

Eq. (13) implies Y7J(Y (,)). obtained through a single backward integration of adjoint Eq,
(12) in the reverse period of [¢, .2, ): and at each time step, the misfit, i.e, dY " (z,)= A[Y (z,)
— Yz, is inserted.

3. Boundary condition specification

To find a suitable boundary conditions for adjoint model, we firstly seek a suitable weak
form of Eq. (1), Taking the prescribed observation ¥ into account, it follows that

2}::

o = U~ AFY+ AGSY) in D=Qx Ix T, (14)
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Such re—formulation of Eq.(1} is clearly based on homotopy framework (Moore et al,
1994), G(3Y) is in arbitrary function form and represents the ambient forcing due to the exist-
ence of the prescribed observations, and [is unit matrix, Obvicusly, A is the blending
coefficient in homotopy framework. More clearly, see Eq.(14) in another way

BY - Fn- MR- GOV in D=0x IX T, (15)
This familiar formulation tells us that the rhs of last term in Eq. (15) actually represents the
Newionian cooling and generally represents non—linear nudging in mathematical form, This
understanding of A(r) leads to the following definition
lr=r"

{A(r):

T/a
#

nt* c
lry~— r.l

AR=1. >,
“Alr)=0 . otherwise

{16)

where r, is the position just at the boundaries of 7Q, r, is located in the interior domain of
Q. Clearly, I'r, — r.[ represents the distance from the boundary point to a certain interior
point, The superscript ol » in Eq.(16) represents the order of smoothness, higher order of » it
takes. the smoother variations in A{#) is from the boundaries to the interior, In the simplest
situation as we discussed here, it might take n= 1.

Clearly from the expression of A, Eq.(15) has no differeace with its original form of
DY

T F(¥) in the interior, since A=0 can be ordered by taking !lr, — r .|| as a narrow zong

Y

{actually, the buffering zone). On the other hand, A= | held at the boundary r= v, thenﬁ

= G(3Y); therefore its corresponding TLM is of the form RDC)_IY— = G'8Y at the boundary.
Furthermore, becanse of the existence of prescribed boundary condition of Eq.(3), ie,

Ylq= Yir, 1) atl= 8Qx Ix T, therefore §Y|. = (¥— ¥)l. = 0 must hold at the bound-

ary, Tt thus leads % = (. In order to suit such boundary setting for TLM, the arbitrary
r
function of G(§Y)is simply chosen to be G= — (¥ — ¥). a linear form that satisfics the
aforementioned boundary condition. Then %}:- = ( is required, The mathematic expres-
T
sion for those argumentations is straightly addressed in the following two groups of equations
%%: (I= AF(Y)= A(Y - ¥) in D,
M=oar. (17)
and
%= (I— AYF'SY — AY in D,
DY _
D 0atT, {18)

The formulae of Eq.(18) can be directly derived through making the linear perturbations
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of Eq.{17). It is worth noting while the physical interpretation for Eq.(17) and Eq.{18) is that
they are weak form of Eq.(1) and Eq.(7), so that the ambient forcing defined on the whole do-
main D from the observation in typical 4DVAR problem can be taken into account, then the
forcing in the spatial scale is escalated (c¢f. Eq.(16)) from the interior domain 1o the boundary
where the model variable ¥ is needed to equal the observation ¥ {cf. Eq.(3)). An important
advantage can be found in Eq.(17)} and Eq.(18), the over—specified boundary condition is re-
laxed to be no longer an issue because thal or| ¢ and Dorl 0, together
Drir Dt ¢
with ¥| = Y(r,, 1), is the exact boundary condition in well—poseness to respectively satisfy
%’: (I~ AJFY)— A(Y — ¥) and &ry = (I— A)F'SY — ASY. provided that A= always
holds well at the boundary,

We now consider the adjoint variable 8Y * defined over the entire domain D, but its
boundary condition has been not yet specified at this siage. In order to derive the suitable
boundary condition for adjoint equation in the boundary over—specification circumstances,
we firstly specify the first—order boundary variation of cost function as dJl; =

J‘A(r)[Y(r,r% Y(r,)l8Y drdr: secondly we multiply Eq.(18) by 87 . integrating over the
d

boundary I', and subtracting the result from &/ . This leads to the following expression for
dJ at the boundary

coy ’”"”]ay drt, (19}

8| = JA(r)[Y(r 1) Yl 6Y drdi— J

T T

on L(i‘dY) _ Doy
ir D

where and performing the integration by parts and rearranging terms

lead to

31l = [B2L s MoKy (= P drds

r

_ J - [( FYSY ") e s, (20)

qaNe r

We can first observe that the first term on the rhs. of Eq.(20), which is an integral over F= £Q
X % T, becomes zero if Y 7 is chosen as to verify the fellowing inhomopeneous partial
differential equation

DEY

D + ACNY(r)— Y(r0)l= 0, along I'=éQx Ix T, (21)

The other two terms on rhs of Eq.{20) can be eliminated by imposing ¥ * to zero along T,
Le.

Y =0 along T=¢éQx IxX T, (22)
the condition Eq. (22) together with the condition of Eq, {21) ensure that §J|. = 0, so that

the optimal character during the forward and backward integration is properly retained.
Furthermore, both Eq.(21) and Eq.(22) can be consolidated in the form
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Doy’
Dr

=0, along I'=¢cQx [x T, (231

In fact, since Y~ = A[Y (.1)~ Y{(r.))| and 8Y * |- = 0 along the boundary are always held

in the backward integrating process, the second term on the left side of Eq.(21) is thus reduced
10 be zero, To test whether Eq.(23) is a suitable boundary condition in well—poseness for the
adjoint model. the original form of the adjoint equation Eq.(12) is written in the homotapy
framework, a similar way that we did for TLM

_bey’

D1 (I— AF"8Y" — ASY" iIn D, (24)

It is important to note while A=0 in the interior domain or A= I at the boundary, then Eq.
(24) has no difference with the original adjoint equation of Eq,(12), and has no difference with
the boundary condition Eq.(23), respectively. Therefore, the condition Eq. (23) satisfies Eq.
(24). In other words, it is one kind of well—posed condition being sought.

4. Numerical representation of boundary condition

I ) . - s *
Consider that the aforementioned boundary conditions DT()IY- = 0 (cf. Eq, (18)). D(DYt

= 0 (c¢f Eq. (23)) for TLM and adjoint model, respectively. Without loss of generalily, it can
be recast and therefore mapped in its one—dimensional characteristic scalar form

00 4 22y, (25)
&r ‘x

where dp represents the perturbation of arbitrary scale variable ¢ and C is the phase speed of
deo. Clearly, it is one kind of Sommerleld’s radiation boundary condition (Sommerfeld, 1964).
The value of ¢ is numerically determined, The numerical scheme of Miller and Thorpe (1981)
is suggested. It is worth noting while the numerical expression of € in Miller and Thorpe’s
method is based on the idea of “ Mloating wave speed” (Orlanski, 1976}, therefore the fix value
of € is step by step in iteration relaxed 10 non—constant value, The necessary non—linear fea-
ture is thus retained. of course in the view of numerical method.
The above equation can be arranged by using dp= »— @, so that

o 0 _cle_ % (26)

cr ot fx  (x )
where ¢ represenis the prescribed observation, The boundary condition is thus rewritien in
the special circumstances under ambient forcing in order to validate it through comparing
with Carpenter’s 1981's well-recognized boundary condition, We should note that
Carpenter’s modification has extended the original Sommerfeld’s radiation boundary condi-
tion in which it fundamentally restrains the prescribed information transmitted into the interi-
or of domain. He was probably the first author who made a clear~cut verdict for using the ra-
diation condition under ambient forcing. The boundary condition equation Eq,(26) is actually
of the same form with his definjtion.
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5. Conclusion

This paper discusses the over—specified boundary problems in adjoint model. I1n fact, the
over—specified boyndary conditions are always employed in the current adjoint and its ac-
companied TLM equations since the observation data has been prescribed readily over the
outer and / or interior of model domain of interest.

To alleviate the ili-poseness of over—specification, the basic treatment of boundary condi-
tions is actually designed following a homotopy approach, We first seek homotopy form of
original NWP, TLM and adjoint model, so that the suitable boundary conditions in
well—poseness can be derived from and viz. the homotopy solutions, Furthermore, Such solu-
tions can return back to the original formulation of the correspending models in the interior
domain. This treatment of boundary conditions become available simply because the exist-
ence of model analogue ¥ for the model solution ¥,

The proposed spatial boundary conditions can be indeed reduced to the modified radia-
tion boundary conditions considering outer forcing came from the observations, Such bounda-
ry conditions guarantee the possible over—specified conditions is ne longer an issue in the
adjoint model as well as TLM model in a limited—area domain,

In practice, the proposed treatment of the boundary setting is quite familiar to atmos-
pheric modelers. It can be schemed into three steps: (1) specify the prescribed observation at
the boundaries that is just one kind of Dirichlet boundary cordition, as well as specify the pre-
scribed observation over the whole interior domain of interest in addition; it implies that it for-
bids 10 extrapolate the prognostic variable value from interior to the boundaries: (2) specify
the radiation boundary condition i.e, Eq. (26} taking account for prescribed observations —
one kind of Neumann condition: {3) take one kind of non—linear nudging filter, such as
Eq.(16). All of these boundary settings, and the corresponding numerical schemes perhaps in
different extensions or variabilities are well documented for long time in some famous
mesoscale models, like MM3S (Penn State / NCAR Mesoscale Modeling System), ARPS (Ad-
vanced Regional Prediction System, Universily of Oklahoma), etc, But those existing codes
are necessarily reordered to suit the boundary formulation proposed in this paper,
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