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ABSTRACT

The trends and fluctuations of observed and CMIP5-simulatedyearly mean surface air temperature over China were
analyzed. In general, the historical simulations replicate the observed increase of temperature, but the multi-modelensemble
(MME) mean does not accurately reproduce the drastic interannual fluctuations. The correlation coefficient of the MME mean
with the observations over all runs and all models was 0.77, which was larger than the largest value (0.65) from any single
model ensemble. The results showed that winter temperatures are increasing at a higher rate than summer temperatures,
and that winter temperatures exhibit stronger interannualvariations. It was also found that the models underestimatethe
differences between winter and summer rates. The ensemble empirical mode decomposition technique was used to obtain
six intrinsic mode functions (IMFs) for the modeled temperature and observations. The periods of the first two IMFs of the
MME mean were 3.2 and 7.2, which represented the cycle of 2–7-yr oscillations. The periods of the third and fourth IMFs
were 14.7 and 35.2, which reflected a multi-decadal oscillation of climate change. The corresponding periods of the firstfour
IMFs were 2.69, 7.24, 16.15 and 52.5 in the observed data. Themodels overestimate the period of low frequency oscillation
of temperature, but underestimate the period of high frequency variation. The warming rates from different representative
concentration pathways (RCPs) were calculated, and the results showed that the temperature will increase by approximately
0.9◦C, 2.4◦C, 3.2◦C and 6.1◦C in the next century under the RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios, respectively.
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1. Introduction

Over the last century, the global mean surface air tem-
perature (SAT) has increased by 0.74◦C± 0.18◦C (IPCC,
2007), and the mean increase in China has been 0.79◦C, at
a rate of 0.08◦C (10 yr)−1 (Tang and Ren, 2005; Li et al.,
2010). In the latter half of the century (1951–2001), the
mean rate of increase over China is estimated to have been
0.22◦C (10 yr)−1 (Ren et al., 2005).

It is important to understand how SAT will change over
the next century so that informed decisions can be made relat-
ing to economic development and greenhouse gas emissions.
Global climate models are the primary tool for estimating
the impact of anthropogenic climate change. Zhou and Yu
(2006) analyzed the comparative skills of 19 different cou-
pled climate models by attempting to reproduce historical
SAT over China in the 20th century. However, uncertainties
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in global models are a limiting factor in the estimation of
air temperature, in particular on local scales. Nevertheless,
a new generation of more complex models running future
scenarios for the recently published Intergovernmental Panel
on Climate Change Fifth Assessment Report (IPCC AR5) is
widely expected to provide more certain projections. Further-
more, the fifth phase of the Coupled Model Intercomparison
Project (CMIP5) provided a new set of coordinated climate
model experiments (Taylor et al., 2012) in a multi-model con-
text, enabling researchers to examine climatic predictability
of air temperature changes for future scenarios based on sim-
ilar forces. The coordinated experiments, in which many dif-
ferent climate models run a set of scenarios, are regarded as
benchmarks for producing climate projections. CMIP5 uses
historical runs (from the mid-1800s to 2005) to evaluate a
model’s performance against present climate and observed
climate change, and uses four Representative Concentration
Pathways (RCPs) for future climate scenarios. These RCPs
begin in 2006 and continue to the end of the present century.
The RCPs are labeled RCP2.6, RCP4.5, RCP6 and RCP8.5,
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according to the approximate target radiative forcing in the
year 2100 (Meinshausen et al., 2011). For example, RCP4.5
identifies a concentration pathway that approximately results
in a radiative forcing of 4.5 W m−2 in the year 2100, relative
to pre-industrial conditions.

The temperature changes in multi-model CMIP5 simula-
tions have been investigated in many studies, such as Diffen-
baugh and Giorgi (2012), Jia and DelSole (2012), Sakaguchi
et al. (2012); Xu and Xu (2012a, 2012b), and Yao et al.
(2012). Similarly, there have been many investigations into
forecasted temperature change over China based on CMIP3
datasets, for example by Xu et al. (2007), Xu et al. (2009a).

In the present paper, the estimated temperature changes
from historical simulations and prediction simulations under
different forcing pathways over China are analyzed, to in-
vestigate and compare model performance on different time
scales. The study focuses mainly on the closeness of simula-
tions to observations, annual or decadal fluctuations, warm-
ing rates, and seasonal characteristics.

2. Data and methods

2.1. Data

The monthly mean SAT (denoted by the variable “tas”)
data were obtained from the CMIP5 website. The data con-
tain more than 50 model runs made by more than 20 mod-
els, and comprise historical simulations and forecasts using

the scenarios of RCP2.6, RCP4.5, RCP6.0 and RCP8.5. The
models are listed in Table 1. Among all the models, BNU-
ESM, FGOALS2-s, BCC-CSM1.1 are developed by insti-
tutes in China. The models BNU-ESM, CanESM2, CESM,
MIROC-ESM, NorESM-M, MPI-ESM-LR, and FIO-ESM
are Earth system models, and the others are generally global
climate models or coupled atmospheric and oceanic general
circulation models (e.g., HADGEM2-AO). The resolutions of
the data vary between 1.0◦

×1.0◦ and 3.0◦×3.0◦ for different
models.

Despite there being some inconsistencies between models
(e.g., some of the required simulations are not available for
all models and some models are run as an ensemble), we ac-
quired as much data as possible for the present study. To com-
pare with the SAT in CMIP5 simulations, the Climatic Re-
search Unit (CRU) TS (time-series) 3.10 near-surface temper-
ature data (Jones and Moberg, 2003; Simmons et al., 2004),
produced by the British Atmospheric Data Center from 1900
to 2009, are used as a proxy for observed SAT. The resolu-
tion of the CRU data is 0.5◦×0.5◦. Xu et al. (2009b) and Wu
and Gao (2013) recently developed new temperature datasets
over China, which are claimed to be of high quality. How-
ever, these new datasets cover a period from 1961 to 2009,
which is not long enough for use in the present study.

Annual time series of mean SAT over the land region of
China were calculated from the CMIP5 simulations and CRU
data. The temperature value of each year is a weighted mean
across all grid points in China, where the weight of each grid

Table 1. The models producing CMIP5 simulations

Model Name Model Center Resolution (lon×lat)

Australian Community Climate and Earth System Sim-
ulator 1.0 (ACCESS1.0)

The Centre for Australian Weather and Climate Re-
search

192×145

Beijing Normal University –Earth System Model College of Global Change and Earth System Science,
Beijing Normal University

128×64

The Second Generation Canadian Earth System Model
(CanESM2)

Canadian Centre for Climate Modelling and Analysis 128×64

Community Climate System Model version 4 (CCSM4) National Center for Atmospheric Research 288×192
Flexible Globa1 Ocean-Atmosphere-Land System

Model spectral version 2 (FGOALS–s2)
State Key Laboratory of Numerical Modeling for At-

mospheric Sciences and Geophysical Fluid Dy-
namics, Institute of Atmospheric Physics§Chinese
Academy of Sciences

128×108

Institute of Numerica1 Mathematics Climate Model
version 4 (INMCM4)

Institute of Numerical Mathematics Russian Academy
of Sciences

180×120

Model for Interdisciplinary Research on Climate ver-
sion 5 (MIROC5)

Japan Agency for Marine-EaCh Science and Technol-
ogy (JAMSTEC), Atmosphere and Ocean Research
Institute§The University of Tokyo(AORI), and Na-
tional Institute for Environmental Studies(NIES)

256×128

Mode1 for Interdisciplinary Research on Climate-Earth
System (MIROC-ESM)

Japan Agency for Marine-EaCh Science and Technol-
ogy (JAMSTEC), Atmosphere and Ocean Research
Institute§The University of Tokyo(AORI), and Na-
tional Institute for Environmental Studies(NIES)

128×64

Meteorological Research Institute Coupled General
Circulation Model version 3 (MRI-CGCM3)

Meteorological Research Institute, Japan Meteorologi-
cal Agency

320×160

The Norwegian Earth System Model with Intermediate
Resolution(NorESM1-M)

Norwegian Climate Centre 144×96

The Beijing Climate Center Climate model version 1.1
(BCC-CSM 1.1)

The Beijing Climate Center 128×64

Hadley Centre Global Environmental Model version 2
-atmosphere –ocean (HADGEM2-AO)

Met Office Hardley Center 192×145
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point is determined by its land area.

2.2. Methods

The special technique of ensemble empirical mode de-
composition (EEMD) (Huang and Wu, 2008; Wu and Huang,
2009) was used for data analysis. EEMD is an improve-
ment over the empirical mode decomposition (EMD) method
(Huang et al., 1998). It is similar to the windowed Fourier
transformation or wavelet transformation, but is more suit-
able for analyzing nonlinear and non-stationary time series.
The EMD/EEMD method has been widely used in geophys-
ical applications (Qian et al., 2011a, 2011b; Franzke, 2012;
Li et al., 2012; Qin et al., 2012; Zhu et al., 2012). Unlike
wavelet transformation, which obtains coefficients at all fre-
quencies in a whole scale range (for continuous wavelet trans-
formation) or at frequencies with equal intervals (for discrete
wavelet transformation), EEMD decomposes the time series
into a number of intrinsic mode functions (IMFs). The IMFs
correspond to clearly separable and definable timescales that
are empirically and adaptively decomposed according to the

scale properties in the raw series. When processing a time se-
ries, the EEMD method produces several IMFs. Each IMF is
a new series, which has the same length as the raw time series.
The first IMF is the mode with the highest frequency and sub-
sequent IMFs represent increasingly lower frequencies until
the last IMF, which is the residual and demonstrates the main
trend of the raw data.

In the present paper, each yearly mean SAT series over
the whole China region was processed by EEMD, to allow us
to investigate the differences between multiple CMIP5 simu-
lations.

3. Results and discussion

3.1. Direct comparison of the historical experiments

3.1.1. Trend of temperature change

The ensemble mean SAT over all the simulations was cal-
culated. From Fig. 1a, it is clear that the model-simulated
temperature captures the main temperature fluctuations, but

(a)

(b)

(c)

Fig. 1. Comparison of CMIP5-simulated temperature anomalies withthose from CRU data.
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the amplitudes are small when compared to observations.
The CRU data show three distinct periods: 1900–50, 1950–
70 and 1970 to present. The temperature increases in both the
first period (1900–50) and the third period (1970 to present),
but decreases in the second period (1950–70). Note that the
third period spans more than 40 years, which is longer than
the second period. Furthermore, in this last period, the tem-
perature over China is extraordinarily higher than at any other
time, particularly in recent years. The CMIP5 model simu-
lations also exhibit this trend, but do not accurately predict
the slope of the post-1970s increase. On a shorter time scale,
the cold periods of 1900–20, 1950–60, 1967–70 and 1984 are
very significant in the CRU data. While the simulated ensem-
ble means have corresponding cold periods, the high peaks or
deep troughs in observations are not well represented, and so
the high frequency fluctuations are not well modeled. Some
of the models do appear to be able to accurately forecast the
extreme nature of some cold periods, but not the correct time.

According to the CRU temperature in Fig. 1b, the
summer-high temperature peaks in the 20 years following
1990 appear somewhat comparable to the peaks in the 1940s.
This suggests that the increase in summer temperatures is not
as significant as annual temperatures. In the CMIP5 simula-
tions, despite some deep drops over very short time periods,
the increasing temperature trend is much stronger after 1990
than it is in the 1940s. This means that the comparatively
weak warming increasing trend in June–July–August (JJA) is
not well modeled.

For winter temperature, the CMIP5 simulations display
similar trends as summer temperatures, except that the win-
ter fluctuations seem larger than summer and annual fluctu-
ations. The simulated fluctuations are not comparable to the
very large fluctuations in the CRU data.

3.1.2. Correlation coefficients of yearly series

To quantify the performance of the simulations from dif-
ferent models, the correlation coefficients(R) of the yearly
SAT series (1901–2005) of each model with the CRU temper-
ature were calculated, with the results shown in Table 2. The
R values of annual series range from 0.19 to 0.69 and have
a mean value of 0.50. The HadGEM2-AO, INMCM4 and

MIROC5 models yielded the smallestR values of approxi-
mately 0.4. TheRvalues larger than 0.6 were produced by the
single run of BNU-ESM (0.62), three runs of CCSM4 (0.63–
0.65), one run of CSIRO-Mk (0.62), two runs of FGOALS
(0.61, 0.68) and two runs of BCC-CSM1.1 (0.61, 0.64). It
is worth noting that the runs of those models developed by
institutes in China gave the comparatively largerRvalues.

When the ensemble mean of a single model was consid-
ered, theR values were larger than almost all of the single
runs. The overall ensemble mean over all runs and all models
obtained a correlation of 0.77, which was overwhelmingly
larger than any value from single model ensembles.

The correlation coefficients for JJA and December–
January–February (DJF) indicated that both their values were
smaller than that calculated from the annual series. TheRval-
ues for the ensemble from all runs and models were 0.57 and
0.46 for JJA and DJF, respectively.

3.1.3. Seasonal characteristics

According to some previous studies, the warming trend
is more significant for winter temperatures than for summer
temperatures. This phenomenon is also present in the CRU
data (see Fig. 1). Comparing JJA, DJF and the whole year
(Figs. 1a–c), the highest to lowest warming rates in CMIP5
model-simulated SAT are in DJF (winter), the whole year,
and then JJA (summer). However, this difference in warm-
ing rates is not as obvious in the CMIP5 simulations. When
comparing the amplitude of fluctuations of summer, winter
and annual temperatures, it is clear that the interannual fluc-
tuation of winter temperature is stronger than for summer or
annual temperature. This is the case for both the CRU tem-
perature (see Fig. 1) and the CMIP5 simulations.

3.1.4. Historical warming rates

The warming rates between 1956 and 2005 were esti-
mated for each single run and for the ensemble mean. Ren
et al. (2005) reported the mean temperature warming rate
over China between 1951 and 2001 to be 0.22◦C (10 yr)−1,
while Li et al. (2010) found a rate of 0.26◦C (10 yr)−1

±

0.032◦C (10 yr)−1 over the period 1954–2006. In a recent
study by the present authors, records from more than 570

Table 2. Warming rates and correlation coefficients between model runs and CRU temperature series.

Model
Number 50-yr trends 100-yr trends R range from MeanR from Rensemble
of runs [◦C (10 yr)−1] [◦C (10 yr)−1] single runs multiple runs mean

MME — 0.17 0.07 — — 0.773
CCSM4 6 0.24 0.11 0.52–0.65 0.6 0.710
CSIRO Mk-3.6.0 10 0.14 0.03 0.38–0.62 0.485 0.682
MRI-CGCM3 5 0.10 0.07 0.38–0.44 0.40 0.533
BCC-CSM1.1 3 0.18 0.09 0.56–0.64 0.60 0.714
CESM1-CAM5 3 0.17 0.04 0.44–0.55 0.50 0.633
FGOALS 3 0.32 0.18 0.55–0.68 0.62 0.682
MIROC-ESM 3 0.13 0.05 0.42–0.56 0.47 0.656
MIROC5 4 0.08 0.01 0.19–0.40 0.29 0.415
NorESM 3 0.17 0.06 0.42–0.57 0.51 0.658
HadGEM2-AO 1 0.15 0.00 — 0.38 —
CanESM2 1 0.26 0.05 — 0.57 —
ACCESS1.0 1 0.22 0.02 — 0.52 —
BNU-ESM 1 0.31 0.13 — 0.62 —
CESM1-BGC 1 0.23 0.10 — 0.55 —
INMCM4 1 0.13 0.07 — 0.41 —
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weather stations between 1962–2011 were used to obtain a
rate of 0.284±0.142◦C (10 yr)−1.

In the present study, we found an average warming rate of
0.173◦C (10 yr)−1

± 0.075◦C (10 yr)−1 for all of the single
runs of CMIP5 and a warming rate of 0.248◦C (10 yr)−1 from
the CRU data. No model run resulted in a negative warming
rate. For the overall ensemble mean of all runs and all mod-
els, the warming rate was estimated to be 0.173◦C (10 yr)−1,
which was equal to the average of all the single runs. Con-
sidering individual models, the highest rates were obtained
by FGOALS [0.32◦C (10 yr)−1] and CCSM4 [0.24◦C (10
yr)−1]. The next highest rates were obtained by CESM1-
CAM5, bcc-csm and NorESM with values of approximately
0.17◦C (10 yr)−1, which was close to the value of the over-
all ensemble mean. The lowest warming rates were obtained
by MIROC5, with a value of 0.08◦C (10 yr)−1. The warming
rates obtained from CMIP5 simulations were small compared
to those from the observations, and we believe that this is due
to the underestimation of the amplitudes of fluctuations.

The warming rates obtained from the overall ensemble
mean were 0.163◦C (10 yr)−1 and 0.204◦C (10 yr)−1 for JJA
and DJF, respectively, which were both smaller than the val-
ues of 0.2◦C (10 yr)−1 and 0.39◦C (10 yr)−1 obtained in a
recent study by the present authors. The ensemble means of
the models CCSM4, BNU-ESM, FGOALS, CanESM2 and
bcc-csm1 obtained larger warming rates than the observed
0.2◦C (10 yr)−1 in JJA. In DJF, only the runs by ACCESS1
and CanESM2 were able to obtain warming rates larger than
the observed 0.39◦C (10 yr)−1. The FGOALS model ob-
tained comparatively large warming rates in DJF, but only
one of three runs attained the observed warming rate of
0.39◦C (10 yr)−1. In summary, the majority of models un-
derestimate the observed warming rates of the past 50 years.

In the past 100 years (1906–2006), considering all
seasons, the warming rates obtained by the overall en-

semble mean temperature of the CMIP5 simulations was
0.64◦C (100 yr)−1. This was smaller than the global
warming rate of 0.74◦C (100 yr)−1 estimated by the IPCC
(2007). The warming rates in JJA and DJF were estimated as
0.55◦C (100 yr)−1 and 0.80◦C (100 yr)−1, respectively. Out
of 50 individual model runs, 12 obtained 100-yr warming
rates larger than 1.0◦C (100 yr)−1. Those runs were produced
by FGOALS, BNU-ESM, CCSM4 and bcc-csm. Three runs
gave negative warming rates, but the magnitudes were very
close to zero.

3.2. EEMD decompositions for historical experiments

3.2.1. Periods of different IMFs

The EEMD method is able to decompose raw series into
IMFs with different periods. The periods are empirically de-
termined according to the properties in the raw data; there-
fore, each IMF may not correspond to a fixed cycle length.
In this study, each single run and ensemble mean from each
model were processed using the EEMD algorithm. The pe-
riod between 1901 and 2005 was selected. Each set of CMIP5
simulation data produced six IMFs, where the sixth IMF was
the main temperature trend. Table 3 shows the details of the
IMFs obtained from the simulations of 15 CMIP5 models.
The first to the fifth IMF correspond to approximate periods
at 3.16, 7.17, 14.70, 35.25 and 79.30 years. The standard de-
viation of these periods are 0.19, 0.73, 1.95, 8.33 and 19.70
years, respectively. The periods of IMF1 for all models are in
the range of 2.84–3.5 years, and those of IMF2 are 5.83–8.4
years. The corresponding periods of the CRU data are 2.69
and 7.24. The periods of the third and fourth IMFs of the
models are in the range of 11.67–19.09 and 26.25–52.5 re-
spectively, corresponding to periods of 16.15 and 52.5 from
the CRU data. It is known that the periods of the IMFs de-
composed by the EEMD algorithm are not completely sta-

Table 3. Mean cycles of the IMFs, standard deviations of the IMF series and the increase of temperature between 1901 and 2005. Note
that the standard deviations are calculated for each IMF. The increasing temperature from 1901 to 2005 is calculated by subtracting the first
value from the last value.

Cycles of IMFs Standard deviations of IMFs
Increasing

temperature
IMF1 IMF2 IMF3 IMF4 IMF1 IMF2 IMF3 IMF4 IMF5 (from IMF6)

CRU 2.69 7.24 16.15 52.50 0.16 0.09 0.08 0.10 0.12 0.97
ACCESS1.0 3.04 6.77 17.50 26.25 0.23 0.12 0.10 0.08 0.10 0.73
BNU-ESM 3.50 7.24 12.35 26.25 0.29 0.14 0.11 0.09 0.14 1.66
CCSM4 3.23 7.78 14.00 30.00 0.15 0.11 0.06 0.06 0.20 1.71
CESM1 2.84 8.40 16.15 30.00 0.22 0.16 0.10 0.08 0.09 1.38
CESM1-CAM5 2.96 7.78 13.13 35.00 0.13 0.10 0.08 0.05 0.16 0.76
CSIRO-Mk3.6.0 3.28 8.40 15.00 52.50 0.06 0.06 0.04 0.08 0.14 0.51
CanESM2 3.44 5.83 14.00 42.00 0.23 0.09 0.09 0.06 0.23 1.33
FGOALS2-s 3.23 6.18 16.15 30.00 0.19 0.10 0.08 0.07 0.14 2.26
HadGEM2-AO 2.92 7.00 13.13 42.00 0.24 0.15 0.10 0.16 0.33 0.55
MIROC-ESM 3.13 7.24 15.00 35.00 0.13 0.08 0.05 0.09 0.13 0.75
MIROC5 3.39 6.77 19.09 35.00 0.12 0.08 0.05 0.07 0.14 0.28
MRI-CGCM3 3.04 6.36 14.00 35.00 0.13 0.07 0.06 0.06 0.13 0.99
NorESM1-M 3.04 7.50 13.13 52.50 0.14 0.09 0.05 0.05 0.12 0.78
BCC-CSM1.1 3.33 6.77 11.67 30.00 0.14 0.10 0.07 0.04 0.16 1.52
INMCM4 3.04 7.50 16.15 26.25 0.26 0.15 0.13 0.06 0.06 1.00
Mean of models 3.16 7.17 14.70 35.25 0.18 0.11 0.08 0.07 0.15 1.08
Range of models 2.84–3.5 5.83–8.4 11.67–19.09 26.25–52.5 0.06–0.29 0.06–0.16 0.04–0.13 0.04–0.16 0.06–0.33 0.28–2.26
MME 2.96 7.50 19.09 42.00 0.07 0.06 0.04 0.05 0.16 1.08
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tionary. In fact, they are only stationary within a narrow
range. Only the average values for each IMF of each model
are presented. The periods of the first and second IMFs rep-
resent temperature oscillations of 2–7 years, and the periods
of the third and fourth IMFs represent a multi-decadal os-
cillation of climate change. Most models are able to catch
these frequency characteristics to some extent, but the ma-
jorities underestimate high frequency oscillations and over-
estimate one of the low frequency oscillations. The periods
of the fourth and fifth IMFs vary widely across the models,
but they correspond to very low frequencies that are hard to
determine with a limited amount of data.

The standard deviation of an IMF can indicate the inten-

sity of its signal. In descending order of standard deviations,
the IMFs of the CRU data are 1, 5, 4, 2, 3 (see Table 3). The
IMFs exhibit differing relative intensities for differentmod-
els, but the first and fifth IMFs generally have the strongest
intensities, while the third and fourth are the weakest. In sum-
mary, the CRU data also exhibit stronger high frequency sig-
nals of 2–3 years and weaker multi-decadal signals.

3.2.2. Trend from historical experiments

Figures 2 and 3 display the second to fifth IMFs from
different models. Clearly, the IMFs from the majority of the
models are consistent with the IMFs of the CRU temperature.

The second order IMFs are better represented by the mod-

Fig. 2. The IMFs obtained from seven models of the CMIP5 simulations.
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Fig. 3. The IMFs obtained from eight models of the CMIP5 simulations.

els than the third order IMFs. When only the second order
IMFs are considered, the period from 1970 to 2005 is better
represented than the period before 1970.

Comparing the fourth order IMFs over the last 30 years,
the CRU series shows an increasing trend instead of the
wave cycle that the majority of models suggest. Never-
theless, some models do simulate such a trend, such as
CSIRO-MK, MIROC-ESM, and NorESM1-M. The CCSM4,
CESM1-BGC, BNU-ESM, MRI-CGCM3, FGOALs and in-
mcm4 models show a strong wave cycle. However, other
models exhibit weak cycles and a comparatively high tem-
perature in the last 30 years, which corresponds somewhat to

the increasing trend of the last three decades.
All of the models except for inmcm4 have a fifth order

IMF that simulates a single wave cycle spanning the entire
105 years. The FGOALs model exhibits a single wave cycle,
but with an amplitude far larger than that from other models
and from the CRU temperature data. This exceptionally large
amplitude does not occur in the other order IMFs of the same
model.

The residuals of EEMD show an increasing trend for
all models, but with different magnitudes. Among all the
models, six have a rate larger than the CRU temperature.
The historical warming suggested by the models between
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1901 and 2005 was obtained directly from the sixth IMF
(the residual) by subtracting the value at 1901 from the
value at 2005 (see the last column in Table 3). The value
obtained from the overall ensemble mean is close to the
warming of 0.97◦C calculated from the CRU temperature
data. Ordering the models by temperature increase, from
high to low, we get: FGOALS, CCSM4, BNU-ESM, BCC-
CSM1.1, CESM1, CanESM2, INMCM4, MRI-CGCM3,

NorESM1-M, CESM1-CAM5, MIROC-ESM, ACCESS1.0,
HadGEM2-AO, CSIRO-Mk3.6.0 and MIROC5. The tem-
perature increase calculated from the CRU data falls in the
middle of these values. The increases calculated from MRI-
CGCM3 and inmcm4 are closest to the value calculated from
the CRU data. This result is not consistent with the directly
estimated warming rates, which as previously discussed, un-
derestimated the increase.

Fig. 4. SAT anomalies (relative to the mean of 2006–15) obtained from the model simulations under different RCPs.
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3.3. The warming rates for RCP experiments

As shown in Fig. 4, the simulated SAT trends for each
RCP have specific properties. For RCP2.6, the significant in-
crease in temperature continues until 2030, where it peaks.
After 2030, the temperature becomes stable and begins to
slowly decrease or increase for different simulations. For
RCP4.5, the significant temperature increase continues un-
til approximately 2060, and is followed by a slower increase
that continues until the end of the century. For RCP6.0, the
increasing rate in the second half of the century is larger than
that in the first half of the century. This high increasing rate
decreases slightly near the end of the century. For RCP8.5,
the warming rate remains high over the whole century.

Table 4 displays the ensemble mean warming rates of the
four RCPs for the periods 2006–55, 2006–2100 and 2006–
2300. They forecast that the temperature in this century could
increase by approximately 0.9◦C, 2.4◦C, 3.2◦C and 6.1◦C for
the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios, respec-
tively.

Under the scenario of RCP2.6, the largest warming rate
of 0.26◦C (10 yr)−1

±0.11◦C (10 yr)−1 was obtained for the
period 2006–55. For the periods 2006–2100 and 2006–2300,
the warming rates under RCP2.6 were close to 0.09◦C (10
yr)−1 and¨0.01◦C (10 yr)−1. This means the scenario of
RCP2.6 mostly influences the climate over the first half of the
century. Similarly, the results for RCP4.5 forecast that there
will be significant warming over the next 50 years, which
will continue for 100 to 300 years, but with slowly decreas-
ing warming rates.

However, the warming rates of RCP6.0 and RCP8.5 for
2006–55 are smaller than the period from 2006 until the end
of this century. This indicates that the highest peak of warm-
ing rate will occur in the second half of the century. It is also
clear that the warming rates in summer are slightly lower than
in winter.

Table 5 displays the different warming rates for each
model. The largest increasing rates were obtained by
MIROC5, FGOALS, and HadGEM2-AO, and were near or
larger than 0.8◦C (10 yr)−1 in the long-term period to 2100.

The Earth system models (BNU-ESM, CanESM2, MIROC-
ESM, NorESM1-M) obtained medium warming rates in the
range of 0.5◦C (10 yr)−1–0.7◦C (10 yr)−1 (to 2100), but it
is not clear whether these complex Earth system models pro-
duce more accurate predictions. Note that FIO-ESM obtained
a low warming rate of 0.44◦C (10 yr)−1 (to 2100).

As discussed in previous sections, the majority of mod-
els underestimate the historical warming rate. If this is an
indication of the accuracy of the different models, then the
warming rates should be close to the results of models such as
FGOALS. This suggests that the best forecast of the temper-
ature increase over this century, for the four RCPs, should be
larger than 3◦C, 4◦C, 5◦C and 7◦C. However, the models con-
tain many uncertainties. The models CCSM4 and BNU-ESM
exhibit larger warming rates in the last 50 years than other
models, but they forecast a comparatively small increase for
future scenarios. The model MIROC5 simulates very low his-
torical warming rates, but gives very large increases under
RCP8.5. Nevertheless, models such as FGOALS and BNU-
ESM appear to give consistent results.

4. Conclusion
The performances of a number of different CMIP5 mod-

els in terms of their simulations of SAT over China were ana-
lyzed by examining their closeness to observed historical val-
ues. The study focused on the trend of fluctuations, seasonal
characteristics and warming rates.

In general, the CMIP5 historical simulations captured the
increase in temperature, particularly in the last 30 years,but
the interannual fluctuations in the simulated grand ensem-
ble mean were not as drastic as observed in the CRU data.
The correlation coefficients between simulations and obser-
vations (CRU data) ranged from 0.194 to 0.688 with a mean
of 0.5. The models HadGEM2-AO, inmcm4, and MIROC5
produced the smallest correlations (approximately 0.4). The
models BNU-ESM, CCSM4, CSIRO-Mk, FGOALS and
BCC-CSM1-1 exhibited the largest correlations with obser-
vations, with some runs resulting in correlation coefficients
larger than 0.6. The simulations made by those models de-

Table 4. The mean and standard deviation of warming rates [units:◦C (10 yr)−1] over all runs and all models for different time periods.

Period Whole year JJA DJF

2006–55 RCP26 0.26±0.11 0.24±0.11 0.26±0.14
RCP45 0.36±0.10 0.36±0.11 0.38±0.12
RCP60 0.26±0.08 0.27±0.10 0.28±0.09
RCP85 0.51±0.11 0.53±0.13 0.54±0.13

2006–2100 RCP26 0.09±0.08 0.08±0.08 0.09±0.09
RCP45 0.24±0.09 0.24±0.09 0.25±0.10
RCP60 0.32±0.10 0.32±0.10 0.34±0.10
RCP85 0.61±0.11 0.59±0.21 0.67±0.16

2006–2300 RCP26* −0.014 −0.02 −0.014
RCP45 0.07±0.02 0.065±0.015 0.07±0.03
RCP60 0.14 0.13 0.14
RCP85 0.48±0.16 0.41±0.13 0.51±0.17

*The runs were too few to calculate the standard deviations.



466 AN ANALYSIS OF CMIP5 SIMULATED TEMPERATURE OVER CHINA VOLUME 31

Table 5. The warming rates [units:◦C (10 yr)−1] from a single run or the ensemble mean of each model for 2006–55.

Model
2006–55 2006–2100

RCP26 RCP45 RCP6 RCP85 RCP26 RCP45 RCP6 RCP85

ACCESS1-0 0.39 0.64 0.35 0.75
bcc-csm1-1 0.22 0.31 0.27 0.41 0.59 0.29 0.30 0.52
BNU-ESM 0.23 0.29 0.54 0.80 0.25 0.66
CCSM4 0.15 0.26 0.23 0.41 0.35 0.19 0.28 0.52
CESM1-BGC 0.26 0.45 0.21 0.55
CESM1-CAM5 0.3 0.37 0.32 0.49 0.15 0.29 0.40 0.62
CNRM-CM5 0.25 0.31 0.38 0.17 0.25 0.51
CSIRO-Mk 0.31 0.25 0.51 0.14 0.36 0.66
CanESM2 0.31 0.4 0.59 0.11 0.29 0.68
FGOALS2 0.18 0.44 0.68 −0.39 0.14 0.80
FIO-ESM 0.19 0.15 0.33 −0.18 0.48 0.14 0.44
GFDL-CM3 0.51 0.58 0.41 0.7 0.23 0.43 0.46 0.76
GISS-E2-R 0.22 0.42 0.12 0.27 0.43
HadGEM2-AO 0.39 0.4 0.23 0.58 0.16 0.35 0.42 0.77
Inmcm4 0.21 0.28 0.19 0.49
IPSL-CM5A-LR 0.35 0.46 0.33 0.65 0.12 0.32 0.38 0.76
MIROC-ESM 0.43 0.56 0.48 0.55 0.19 0.39 0.53 0.59
MIROC5 0.34 0.45 0.28 0.75 0.14 0.38 0.37 0.85
MPI-ESM-LR 0.19 0.3 0.48 0.27 0.21 0.51
MRI-CGCM3 0.17 0.3 0.24 0.39 0.16 0.20 0.28 0.54
NorESM1-M 0.23 0.37 0.27 0.53 0.11 0.27 0.34 0.58

veloped at institutes in China produced comparatively larger
correlation values. The comparison also highlighted that the
correlation coefficient of the ensemble mean of each model
is usually larger than that from a single run. Furthermore, the
overall ensemble mean over all runs from all models obtained
a correlation value of 0.77, which was overwhelming larger
than any value from a single model. This characteristic in-
dicates that no model is consistently more accurate than any
other single model.

The CMIP5 simulations also reflected the characteristic
of a larger increasing rate of winter temperature than that of
summer temperature, but the contrast between summer and
winter was not as significant as seen in the historical observa-
tions. The simulations also reflected the stronger interannual
fluctuations of winter temperature than that of summer tem-
perature.

The values of the CMIP5-modeled warming rates over
the past 50 and 100 years highlighted a tendency to underes-
timate, although almost no negative trends appeared. Only
a small number of models, such as ACCESS1, CanESM2
and FGOALS, obtained warming rates similar to the observed
rate of 0.39◦C (10 yr)−1, as estimated in other previous stud-
ies by the present authors.

The technique of EEMD was used for processing the
modeled and observed temperature series into six IMFs (the
sixth order IMF being the residual) that corresponded to dif-
ferent periods. In general, the same order IMFs from different
simulations displayed similar characteristics for similar time
scales. The correlation coefficients between the same ordered
IMFs of simulations and observations were also compared.
The residuals from all the models accurately reflected the in-
creasing trend and the sinusoidal IMF5 cycles. It is clear that

the main temperature fluctuations of the last century com-
prised of two fluctuations of IMF5 and the residual.

The multi-model ensemble mean temperature series ob-
tained a correlation coefficient larger than that from single
models, but its IMFs did not produce better correlations than
the single models. No model was able to accurately simulate
all the IMFs of the observed temperature series.

The increase of SAT in the last 50 years from the sixth or-
der IMF (the residual) was estimated by subtracting the first
value from the last value. However, these values indicated the
observed increase lies in the middle of the values predicted
by the models, which is contrary to the results obtained by
regression. The result from direct regression appears more
consistent than the result from IMF residuals. However, it is
not clear which one is more representative of reality because
both techniques contain uncertainties.

The warming rates of simulations under different RCPs
were calculated. For the RCP2.6 and RCP4.5 scenarios, the
significant increase of temperature continues to 2030 and
2060, and is then followed by a lower rate of increase. For
RCP6.0, the increasing rate in the second half of the century
is larger than that in the first half, and decreases slightly near
the end of the century. For RCP8.5, the increasing rate re-
mains high throughout the century. The future warming rates
estimated from these RCPs in summer are slightly smaller
than in winter, and are consistent with the increase of annual
temperature.
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