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ABSTRACT

The climatological mean state, seasonal variation and long-term upward trend of 1979–2005 latent heat flux (LHF) in
historical runs of 14 coupled general circulation models from CMIP5 (Coupled Model Intercomparison Project Phase 5) are
evaluated against OAFlux (Objectively Analyzed air–sea Fluxes) data. Inter-model diversity of these models in simulating the
annual mean climatological LHF is discussed. Results show that the models can capture the climatological LHF fairly well,
but the amplitudes are generally overestimated. Model-simulated seasonal variations of LHF match well with observations
with overestimated amplitudes. The possible origins of these biases are wind speed biases in the CMIP5 models. Inter-model
diversity analysis shows that the overall stronger or weaker LHF over the tropical and subtropical Pacific region, and the
meridional variability of LHF, are the two most notable diversities of the CMIP5 models. Regression analysis indicatesthat
the inter-model diversity may come from the diversity of simulated SST and near-surface atmospheric specific humidity.
Comparing the observed long-term upward trend, the trends of LHF and wind speed are largely underestimated, while trends
of SST and air specific humidity are grossly overestimated, which may be the origins of the model biases in reproducing the
trend of LHF.
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1. Introduction

Earth’s weather is driven largely by the behaviors of two
large-scale atmospheric circulation systems: the Hadley cir-
culation and Walker circulation. The ocean forms an impor-
tant component of the climate system (Bigg et al., 2003) and
is thought to be responsible for a significant amount of the
heat transport (Trenberth and Solomon, 1994). Solar radia-
tion absorbed by the ocean not only drives the movement of
ocean water, but also provides energy to the atmosphere for
driving atmospheric circulations by evaporation, long-wave
radiation and sensible heat flux (Kiehl and Trenberth, 1997;
Trenberth et al., 2009). These ocean–atmosphere interactions
mainly occur in the tropics, and thus the changes of atmo-
spheric circulation and ocean–atmosphere heat transport have
been tied to variations of climate in most parts of the globe
(Trenberth, 1995).

Ocean surface heat fluxes, including turbulence heat
fluxes and radiation heat fluxes, are of great importance in
measuring ocean–atmosphere heat and water exchange (Li et
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al., 2011b). An important mechanism of heat transport is wa-
ter phase change, especially evaporation, which is the direct
result of surface latent heat flux (LHF) and forms an impor-
tant part of the hydrological cycle. The spatial and temporal
variabilities of heat flux and the influence of atmospheric cir-
culation on it have been explored in previous studies (Cayan,
1992a, 1992b, 1992c; O’Brien and Horsfall, 1995; Alexander
and Scott, 1997; Yu et al., 2004; Papadopoulos et al., 2013),
and the spatial patterns and temporal variability of LHF in
the intraseasonal band have been characterized using satellite
observations (Grodsky et al., 2009). State-of-the-art objec-
tive analysis approaches provide us with datasets that serve
the needs of the ocean and climate research community, and
bring us an objective view of annual, seasonal and interan-
nual variability of air–sea heat fluxes (Yu and Weller, 2007;
Yu et al., 2007).

Using bulk parameterization and similarity theory de-
scribed by Liu et al. (1979), the surface LHF can be computed
from the following relation:

LHF = ρLeCeU(qs−qa) = ρLeCeU∆q , (1)

whereqs is the saturation specific humidity at the SST,qa

is the near-surface atmospheric specific humidity,∆q repre-
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sents the difference betweenqs andqa, U is the near-surface
wind, ρ is the density of air,Le is the latent heat of evapo-
ration, andCe is a turbulent exchange coefficient determined
by the atmospheric stability, the air–sea temperature differ-
ences, and the wind. Asqs is a function of SST, the surface
LHF can be determined from observable state variables ofU ,
SST andqa. As Earth warms in response to humans driving
up levels of CO2 by burning fossil fuels, the warming air and
water will greatly change the mean state and variability of
LHF. The Clausius–Clapeyron equation describes the water-
holding capacity of the atmosphere as a function of tempera-
ture, and typical values are about 7% change for 1◦C change
in temperature. So, the specific humidity will change with
the climate change (i.e., global warming).

How the thermal state of the western North Pacific
warm pool influences surface LHF was discussed by Zhou
(2013) and their associations with tropical cyclone genesis
were investigated by Zhou et al. (2015). For longer time
scales, Gulev (1995) explored the climatological variations
of ocean–atmosphere heat transfer with respect to long-term
climate changes in the North Atlantic, and the trend of surface
heat flux has also been discussed in warming-related changes
(Yu and Weller, 2007) and the dynamic part, i.e., wind circu-
lation (Liu and Curry, 2006). Li et al. (2011a) investigatedthe
long-term trend of ocean surface LHF over the tropical and
subtropical Pacific (TSP) and suggested that the positive sur-
face LHF trend was closely associated with both the warming
forces (direct/local causes) and the surface wind circulation
(indirect/nonlocal factor).

To uncover interpretations from the perspective of climate
dynamics, coupled general circulation models (CGCMs),
which are sophisticated tools designed to simulate the Earth’s
climate system and the complex interactions between its
components (Reichler and Kim, 2008), are increasingly com-
mon in climate research. The Coupled Model Intercompar-
ison Project (CMIP) began in 1995 under the auspices of
the Working Group on Coupled Modelling, as part of the In-
ternational Research Programme on Climate Variability and
Predictability. Its purpose is to examine climate variability
and predictability as simulated by the models, and to evalu-
ate the model results against available observations, provid-
ing a community-based infrastructure in support of climate
model diagnosis, validation, intercomparison, documentation
and data access (Meehl et al., 1997, 2000). Scores of mod-
eling studies have shown that increasing greenhouse gases in
the atmosphere impact the global hydrological cycle (Zhou et
al., 2011). Strengthening trends of the tropical atmospheric
circulation have been shown in a number of previous stud-
ies, using both reanalysis data (Quan et al., 2004; Mitas and
Clement, 2006; Burgman et al., 2008) and satellite obser-
vation data (Chen et al., 2002; Wentz et al., 2007). How-
ever, general circulation models simulating the influence of
increased greenhouse gases produce a weakening of the trop-
ical overturning circulation that affects the Walker circulation
more strongly than the Hadley circulation (Held and Soden,
2006; Vecchi et al., 2006; Vecchi and Soden, 2007). Yu-
laeva et al. (2010) modeled the North Pacific climate variabil-

ity forced by oceanic heat flux anomalies. So, exploring the
changes of circulation and heat transport with global warm-
ing has been of great importance.

Given the fact that climate models feature a considerable
margin of error in terms of tropical atmospheric circulations
compared with observed and reanalysis data, achieving fur-
ther understanding of how models simulate LHF, which is an
important atmospheric circulation heat source, is emerging as
a highly necessary avenue of research. In this paper, we eval-
uate 14 CMIP5 models based on their performances in simu-
lating the climatological mean state, climatological seasonal
variation and long-term trend of oceanic LHF, and discuss
the possible origins of model biases. The inter-model diver-
sity in simulating the mean fields of LHF is also discussed.
The remainder of the paper is organized as follows: The data
and method used in this study are described in section 2. The
evaluation results and possible bias origins of the climatolog-
ical mean state, inter-model diversity, climatological seasonal
variation and long-term trend of surface LHF simulated in the
CMIP5 historical runs against observations are presented in
section 3. Finally, in section 4, a summary and discussion of
the paper are provided.

2. Data and method

In this study, the climatological mean state, climatolog-
ical seasonal variation and long-term trend of oceanic LHF
simulated in the historical runs of CMIP5 climate models are
evaluated against observations. The inter-model diversity of
14 CMIP5 CGCMs in simulating the annual mean climato-
logical LHF is discussed. The model data come from the
20th century (20C3M) historical runs in the World Climate
Research Programme (WCRP) CMIP5 multi-model dataset.
The observed oceanic surface LHF data come from the Ob-
jectively Analyzed air–sea Fluxes (OAFlux) project at Woods
Hole Oceanographic Institution. The OAFlux project aims to
provide consistent, multi-decadal, global analyses of air–sea
heat, evaporation, and momentum fluxes for use in studies of
the global energy budget, water cycle, atmosphere and ocean
circulation, and climate. The objective analysis approach
takes into account data errors in the development of enhanced
global flux fields. The flux-related variables in the OAFlux
dataset are obtainable from three major sources: marine sur-
face weather reports from voluntary observing ships, satellite
remote sensing, and numerical weather prediction (NWP) re-
analysis and operational analysis outputs (Yu et al., 2008).

To lend credence to the evaluation results, reliability anal-
ysis on the LHF in the OAFlux data is first performed us-
ing surface flux data from the National Oceanography Cen-
tre, Southampton, Version 2.0 (NOCS V2) surface flux and
meteorological dataset. The NOCS V2 dataset is a monthly
mean gridded dataset of marine surface measurements and
derived fluxes constructed using optimal interpolation. Inputs
for the period 1973 to 2006 are the International Comprehen-
sive Ocean-Atmosphere Data Set (ICOADS) Release 2.4 ship
data, and the update from 2007 to 2013 uses ICOADS Re-
lease 2.5. The dataset is presented as a time series of monthly
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mean values on a 1◦ area grid. Because the OAFlux dataset
and NOCS V2 dataset are derived from different data sources
and algorithms, they have different sources of errors (Yu et
al., 2008; Berry and Kent, 2009, 2011). They also differ
from NWP model fluxes in that NWP-modeled surface me-
teorological variables are just part of the input datasets for
the synthesis, and the OAFlux procedure uses the state-of-
the-art Coupled Ocean–Atmosphere Response Experiment
(COARE) 3.0 bulk flux algorithm (Fairall et al., 2003). So,
using the NOCS V2 dataset to verify the reliability of the
OAFlux dataset is reasonable.

We perform at-test on the signal-to-noise ratio (SNR) de-
fined as follows (Hayashi, 1982):

rH =
∆x

σ(∆x)
, (2)

where∆x = x2− x1 and∆x = x2− x1. ∆x is the climatolog-
ical mean difference between the two datasets, andσ(∆x) is
the standard variance difference between the two datasets,
reflecting the mean vibration condition of their difference.
As is known, each climate state can be decomposed to the
climatological mean state and biases asx = x + e, and then
∆x = ∆x + ∆e, in which the mean state is constant. By per-
forming an analysis of variance on this equation, we can ob-
tain σ2(∆x) = σ2(∆e), in whichσ(∆x) is the mean variance
of difference between the two datasets, i.e., noise, and∆x
is the signal. The ratio of them is the SNR of the climate
state of these two datasets. Figure 1 shows the result of thet-
test on the SNR of the annual mean and seasonal mean [DJF
(December–January–February) and JJA (June–July–August)
mean] LHF during 1979–2005 from the OAFlux and NOCS
V2 datasets. The figure shows that, at the 90% confidence
level, the LHF of the OAFlux dataset matches well with that
of NOCS V2 for the annual mean and seasonal mean. There
are regions in the subtropical Pacific not exceeding the 90%
confidence level due to the lack ofin situ data. However, the
OAFlux data are combined with post-1985 satellite remote
sensing state-variables data; so, for our study period (1979–
2005), the OAFlux data are more credible. Given this, it is
reliable to use the OAFlux data as observations in evaluating
the models.

Correspondingly, the heat flux products are grouped into
three categories: ship-based products, satellite-based prod-
ucts, and NWP reanalysis products (Yu et al., 2008). Com-
bining different sources of data helps reduce systematic er-
ror. The OAFlux global products have demonstrated in many
ways their value in stimulating advances in our understand-
ing of the role of the ocean in the global energy budget, the
global hydrological cycle, and the change and variability of
the Earth’s climate (Yu et al., 2008). In previous studies, the
decadal change of global oceanic evaporation (proportional
to LHF) is marked by a distinct transition from a downward
trend to an upward trend around 1977–78 (Yu, 2007); and
since this transition, global oceanic evaporation has beenris-
ing continuously. Thus, to evaluate the continuous trend of
LHF, the study period should be after this transition. So, the
starting year of this study is set to be 1979. The exact lengths

Fig. 1. Two-tailed Student’st-test on the SNR of the LHF dif-
ferences between the OAFlux and NOCS V2 datasets for the
(a) annual average, (b) northern winter average (DJF), and (c)
austral winter average (JJA). The time period of the LHF data
is 1979–2005. Shaded areas indicate the SNR exceeds the 90%
confidence level.

of the models’ outputs vary, but most of the models end their
simulations at the year 2005. Therefore, the period 1979–
2005 is designated as the time period of this study, with fur-
ther studies on the climatological mean fields, seasonal vari-
ations and long-term trend. Information on the 14 models
involved in this study including their modeling centers (or
groups), institute IDs, model names, and output time periods
of their 20C3M experiments, is presented in Table 1. The
multi-model ensemble (MME) mean is calculated by mathe-
matically averaging the 14 models’ simulations. The air–sea
heat interaction mainly occurs in the TSP, so the study do-
main is set to cover this region: (40◦S–40◦N, 100◦E–70◦W).

The resolutions of all the monthly fields of the model sim-
ulations and observations are re-gridded to 2◦

× 2◦ using the
inverse distance weighting approach. All spatial averaging
and correlation calculations use area weighting, where areas
changing between meridians at varying latitudes are consid-
ered by using the cosine of the latitude as weights. Inter-
model EOF analysis (Li and Xie, 2012) is used to validate
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Table 1. Information on the 14 CMIP5 models involved in this study.

Modeling center or group Institute ID Model name
Historical run
(YYYYMM)

Beijing Climate Center, China Meteorological Administration BCC BCC-CSM1.1 185001–201212
Canadian Centre for Climate Modelling and Analysis CCCMA CanESM2 185001–200512
Community Earth System Model Contributors NSF-DOE-NCAR CESM1-CAM5 185001–200512
Centre National de Recherches Météorologiques/Centre Européen de

Recherche et Formation Avancée en Calcul Scientifique
CNRM-CERFACS CNRM-CM5 185001–200512

Commonwealth Scientific and Industrial Research Organization in col-
laboration with Queensland Climate Change Centre of Excellence

CSIRO-QCCCE CSIRO-Mk3.6.0 185001–200512

LASG, Institute of Atmospheric Physics, Chinese Academy ofSciences LASG-IAP FGOALS-s2 185001–200512
NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2M 186101–200512
NASA Goddard Institute for Space Studies NASA GISS GISS-E2-R 185001–200512
Met Office Hadley Centre MOHC HadCM3 185901–200512
Institute for Numerical Mathematics INM INM-CM4 185001–200512
L’Institute Pierre-Simon Laplace IPSL IPSL-CM5A-LR 185001–200512
Japan Agency for Marine-Earth Science and Technology, Atmosphere

and Ocean Research Institute (University of Tokyo), and National In-
stitute for Environmental Studies

MIROC MIROC-ESM 185001–200512

Meteorological Research Institute MRI MRI-CGCM3 185001–200512
Norwegian Climate Centre NCC NorESM1-M 185001–200512

the diversity of these models in simulating the climatologyof
LHF.

3. Results

The models simulate the oceanic LHF in their historical
runs and the biases of these simulations are manifested in sev-
eral aspects such as the climatological mean state, seasonal
variations and long-term trend. The inter-model diversityof
the 14 CMIP5 models in reproducing the annual mean clima-
tological LHF is also discussed.

3.1. Climatological mean state

The annual mean (January–December) and seasonal
mean (DJF and JJA) climatology of oceanic surface LHFs
for the period 1979–2005 using model simulations and ob-
servations are computed first. The spatial distributions ofthe
simulated mean state (no single model is shown in this paper,
but the MME mean distributions for the annual mean, DJF
mean and JJA mean are shown in Figs. 2a, c and e) show that
all 14 models can generally reproduce the spatial pattern of
observed annual and seasonal mean LHF climatology (Figs.
2b, d and f, using OAFlux data), although there are some
significant biases in simulated amplitudes. Overestimations
are found throughout the models, but there are regional vari-
ations that can be captured. Comparing the MME mean LHF
climatology of the annual mean in Fig. 2a with that of the
OAFlux data in Fig. 2b, the major features match well. The
agreement in terms of the strong and weak latent heat release
centers is very good. The strong latent heat release centers
fall in regions such as the Pacific western boundary current
(including the Kuroshio Current and its extension, which is
strongest in boreal winter; and the East Australian Current
and its extension, which is strongest in boreal summer), the
tropical Pacific alongside the equator, the Gulf Stream, and

equatorward northwest region off the Australian west coast.
The weak latent heat release centers mainly fall in the Pacific
“cold tongue” region and 30◦ latitude (south and north) pole-
ward Pacific regions. Although the models can capture the
mean fields of LHF fairly well, there are overestimations both
in strong and weak latent heat release regions, which means
the models simulate stronger LHF over most of the TSP. The
differences between the CMIP5 outputs and OAFlux can be
as large as 20–30 W m−2 in the subtropical oceans according
to the MME mean. These results can be further verified by
comparing the seasonal mean (DJF in Figs. 2c, d and JJA in
Figs. 2e, f) climatology of the MME and OAFlux data.

To quantitatively evaluate the models’ performances, the
Taylor diagram (Taylor, 2001), which can provide a visual
framework for comparing model simulation results to ob-
servations, is used. Figure 3 graphically summarizes how
closely the spatial pattern of the annual mean, DJF mean
and JJA mean climatology of LHF, and related state variables
such as near-surface wind speed, SST and near-surface atmo-
spheric specific humidity, obtained from the models’ outputs,
match the observations of the OAFlux data. The radial dis-
tance from the origin represents the fraction of the modeled
spatial variation pattern that can be explained by the observed
(OAFlux) spatial pattern. The spatial correlation coefficient
between the model output and observation is denoted by the
angular distance from thex-axis. The centered root-mean-
square error (RMSE) between the simulated and observed
patterns is proportional to the distance to the point on thex-
axis identified as “OBS”. Models simulating patterns of cli-
matology that agree well with observations will lie nearestthe
“OBS” point. These models will have relatively high corre-
lation and low RMSEs. Models lying on the boldface dashed
arc will have the correct standard deviation, which indicates
that the pattern variations are of the right amplitude.

In Fig. 3a, for the annual mean climatology, the pattern
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Fig. 2. The climatological mean state of LHF (units: W m−2) over the TSP. The MME-mean distributions are
shown in the left panels for the (a) annual average, (c) northern winter average (DJF), and (e) austral winter
average (JJA). Observations from the OAFlux data are shown in the right panels for the (b) annual average,
(d) northern winter average (DJF), and (f) austral winter average (JJA). The averages are constructed from the
1979–2005 base period.

correlations of LHF all lie between 0.80 and 0.90, with an
average of 0.84, while the spatial variations are all larger
than the observed, except FGOALS-s2 (0.97). Since the
pattern correlations are not very different from each other,
the centered RMSEs of the models are mainly caused by
the relatively large spatial variations. Accordingly, thethree
best performing models are CESM1-CAM5, CNRM-CM5
and FGOALS-s2, while the poorest performing models are
GFDL-ESM2M, MIROC-ESM and the MME mean. The
model-simulated patterns of SST and near-surface atmo-
spheric specific humidity mean fields all agree well with
observations, with large pattern correlations of greater than
0.96 and small centered RMSEs below 0.5. However, the spa-
tial variations of atmospheric specific humidity are generally
smaller than the observations, while those of SST are all very
close to observations. Additionally, the near-surface wind
speed climatology in the model simulations do not agree very
well with observations, and the 14 models can be split into
two distinct groups: one with relatively high correlationsand
low variations (group 1: BCC-CSM1.1, CanESM2, CESM1-
CAM5, GISS-E2-R, HadCM3, IPSL-CM5A-LR, and the
MME mean); and the other with relatively low correlations
and high variations (group 2: CNRM-CM5, CSIRO-Mk3.6.0,

FGOALS-s2, GFDL-ESM2M, IMN-CM4, MIROC-ESM,
MRI-CGCM3, NorESM1-M). Near-surface wind speeds
simulated by the models, except FGOALS-s2, in group 2,
are all computed from the eastward and northward near-
surface wind component, but the near-surface wind speeds
of the models in group 1 are directly from the outputs of the
model runs. The differences between the two groups may lie
in the methods of data access. Given the sampling frequency
of data used in this paper is monthly, the monthly mean of
the wind speed will surely be larger than the square root of
the monthly mean zonal and meridional wind components,
because these components may fall in different directions
during a sample month. Thus, the only models that can
be evaluated as near-surface wind speed driving the LHF
are the six models in group 1 and FGOALS-s2 in group 2.
The pattern correlations of the six models in group 1 all
lie between 0.84 and 0.90, with an average of 0.86, while
for FGOALS-s2 the value is 0.50. The spatial variations of
the group 1 models are all larger than observed, except for
CESM1-CAM5 (0.95). The RMSEs show that all six models
in group 1 agree well with observations, with RMSEs below
1, but FGOALS-s2 does not agree very well with obser-
vations in its simulation of near-surface wind speed. For the
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Fig. 3. Taylor diagrams for evaluating how the models repro-
duce the climatological mean state of LHF and related state
variables including near-surface wind speed (U), SST and near-
surface atmospheric specific humidity (qa), against OAFlux
data, using 14 CMIP5 models and the MME mean, for the (a)
annual average, (b) northern winter average (DJF), and (c) aus-
tral winter average (JJA). The averages are constructed from the
1979–2005 base period. The angular distance from thex-axis
denotes the spatial correlation coefficient between each model
output and the observation. That is, the distance between each
simulation and the observation quantifies the accuracy of LHF,
SST,qa andU simulated by the models against observational
data.

boreal winter (DJF mean) in Fig. 3b and boreal summer (JJA
mean) in Fig. 3c, the results are similar to those described
above. The differences in pattern correlations of LHF, SST,
atmospheric specific humidity, and group 1 models’ near-
surface wind speed between Fig. 3a and Fig. 3b are quite
small. However, in Fig. 3b the spatial variations of LHF are
much more concentrated and closer to the observations, while
the variations of SST are much larger.

From Eq. (1) we know that the surface LHF can be de-
termined from the state variables of near-surface wind, SST
and atmospheric specific humidity, in which the near-surface
wind and SST provide positive feedback while the atmo-
spheric specific humidity provides negative feedback. In Fig.
3, the distributions of pattern correlations and spatial varia-
tions of simulated LHF and near-surface wind speed are well
matched, despite the poor performing models whose near-
surface wind speeds are computed by the zonal and merid-
ional wind components. This indicates that the biases of the
CMIP5 models in simulating the LHF mean fields may derive
from biases of near-surface wind speed simulations. In Figs.
3a and c, the spatial variations of LHF and near-surface wind
speed are generally larger than observed, and those of SST
have the same standard deviations as the observed. Compar-
ing Figs. 3a and b, or Figs. 3b and c, when the spatial varia-
tions of near-surface wind speed and atmospheric specific hu-
midity differ negligibly, the SST provides positive feedback,
offsetting the negative feedback of the atmospheric specific
humidity on the LHF.

3.2. Inter-model diversity

The inter-model variability of annual mean LHF climatol-
ogy over the TSP is examined by performing an inter-model
EOF analysis. Figure 4 presents the result of the EOF anal-
ysis, in which the normalized first two patterns and corre-
sponding principal components (PCs) are shown. The first
mode (EOF1 in Fig. 4a, explaining 33.5% of the total vari-
ance) exhibits a broad pattern of positive LHF anomalies over
the entire TSP, with maximums mainly covering the equato-
rial and subtropical Pacific and the strong western boundary
current, especially in the Kuroshio Current region, Indone-
sia, and the Gulf of Mexico. The first principal component
(PC1) is highly correlated (0.99) to the area-averaged LHF
over the TSP (Fig. 4c). Combining the first EOF and models’
PCs, there are some models showing positive LHF anoma-
lies and others showing negative LHF anomalies. The three
most positive models are FGOALS-s2, GISS-E2-R and IMN-
CM4, and the three most negative models are MIROC-ESM,
NorESM1-M and IPSL-CM5A-LR. The second mode, ex-
plaining 14.8% of the total variance, features a sharp pos-
itive peak over the central equatorial Pacific, and positive
anomalies also occur over the eastern subtropical Pacific in
both hemispheres, but relatively negative anomalies coverall
other regions and peak on both sides of the equator, over
Indonesia, and the Gulf of Mexico. The PC2s of the mod-
els in Fig. 4d show that the models of highest PC2 values
are classified as strong central equatorial latent heat release
models (first three: NorESM1-M, CESM1-CAM5, CNRM-
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Fig. 4. The inter-model EOF analysis of 14 CMIP5 model simulations of the climatological LHF mean state: (a, b) the
first and second modes of EOF spatial patterns; (c) the first PCof models correlating to regional-mean LHF climatology;
(d) the second PC of models, sorted in ascending order.

CM5), while models of lowest PC2 values are classified as
weak central equatorial latent heat release models (first three:
CSIRO-Mk3.6.0, HadCM3, FGOALS-s2).

To examine the sources of inter-model diversity in simu-
lating LHF climatology based on CMIP5, the LHF and re-
lated state variables of near-surface wind, SST and atmo-
spheric specific humidity are regressed on the models’ PC1s
and PC2s, and the meridional profiles of the zonal mean
(100◦E–70◦W) of these regressed variables are shown in Fig.
5. From Fig. 5a, the PC1-regressed LHF shows a well-
balanced positive zonal-mean distribution along the meridian
that can be seen in Fig. 4a. Over 20◦–40◦N and 20◦–40◦S, the
LHF is determined by the negative atmospheric specific hu-
midity, surface wind speed, and positive SST, but over 20◦N–
20◦S the variability of LHF is mainly caused by the merid-
ional variability of positive SST and negative atmospheric
specific humidity, because the wind speed changes little and
is close to zero in this meridional range. In Fig. 5b, the PC2-
regressed LHF has very large variations along the meridian,
with four positive peaks at 30◦S, 0◦, 25◦N and 40◦N, and two
significant negative valleys at about 5◦S and 5◦N. Another
valley lies at 30◦N, with a value close to zero. The peaks
at 30◦S, 0◦, 25◦N and 40◦N correspond respectively to the
positive anomalies in Fig. 4b, and the valleys correspond to
the negative anomalies. From this figure, the LHF is highly
correlated with SST and less correlated with atmospheric spe-
cific humidity between 20◦N and 20◦S, while over 20◦–40◦N
and 20◦–40◦S the LHF is more correlated to the surface wind
speed. These results are very similar to those shown in Fig.
5a.

Fig. 5. Meridional profiles of zonal-mean (100◦E–70◦W) cli-
matological LHF (units: 10 W m−2) and related state vari-
ables including near-surface wind speed (U ; units: m s−1), SST
(units: ◦C) and near-surface atmospheric specific humidity (qa;
units: g kg−1), regressed on (a) the first PCs of models and (b)
the second PCs of models in Fig. 4.
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3.3. Climatological seasonal variation

In climatology, seasonal variation is the part of a mea-
sured quantity’s fluctuation that is attributed to Earth’s chang-
ing position in orbit over the course of the year. Figure
6 shows the time–latitude sections of zonal mean (100◦E–
70◦W) climatological LHF and related state variables of at-
mospheric specific humidity, SST and near-surface wind dur-
ing 1979–2005. Compared to the LHF observations from
OAFlux (Fig. 6a1), the agreement of the MME mean (Fig.
6a2) is very good over most of the year. In particular, the
MME mean reproduces the maximum over the southern sub-
tropical Pacific in June to August, and over the northern sub-
tropical Pacific in December to February. This is a fairly re-
alistic position change of the latent heat release center over
the course of the year. Over the tropics, LHF overestima-
tions of around 20 W m−2 are apparent through the year in
the MME compared to the observations (see Fig. 6a3). As
with the LHF, the comparisons of the related state variables
of atmospheric specific humidity, SST and near-surface wind
are shown in Figs. 6b–d. The mean simulations of atmo-
spheric specific humidity and SST are both in good agree-
ment with observations, throughout the year, tracing a signif-
icant change of solar orbit position, and the maximum being
located on both sides of the equator. The atmospheric specific
humidity bias is about 1 g kg−1 over the entire meridional

range in this figure. The biases of SST are mainly located in
the latitudes of 20◦–40◦N and 20◦–40◦S. Comparing the sur-
face wind speed of the MME mean and observations in Fig.
6d, the changing pattern over the course of the year and the
maxima and minima all match well. However, there are rel-
atively large biases during June to December (i.e., the latter
half of the year) over the entire meridional range in this fig-
ure, and the biases of the first half of the year mainly occur
over the Northern Hemisphere.

Since the seasonal variations are highly correlated to
the changing subsolar point, the features of seasonal varia-
tion in the Northern Hemisphere and Southern Hemisphere
should be very different. Figure 7 presents the pattern statis-
tics describing the climatological seasonal variation of LHF
and related state variables (near-surface wind speed, SST
and near-surface atmospheric specific humidity), just likein
Fig. 3, over the northern TSP (100◦E–70◦W, 0◦–40◦N) and
southern TSP (100◦E–70◦W, 0◦–40◦S), simulated by the 14
CMIP5 models and MME mean, compared with the observed
(OAFlux). Over both the northern and southern TSP, the pat-
tern correlations of the climatological seasonal variation of
LHF, SST and atmospheric specific humidity all exceed the
99.9% confidence level, with distribution-intensive standard
variations nearer 1 and relatively low centered RMSEs. The
biases of near-surface wind speed again show large RM-
SEs and relatively low correlations. The most mismatched

Fig. 6. (a) Time–latitude sections of the zonal-mean (100◦E–70◦W) climatological LHF (W m−2) from (a1)
OAFlux data, (a2) the MME mean, and (a3) the differences between the two (MME minus OAFlux). The same
is also shown for (b1–b3) near-surface atmospheric specifichumidity (units: g kg−1), (c1–c3) SST (units:◦C),
and (d1–d3) near-surface wind speed (units: m s−1).
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Fig. 7. Pattern statistics describing the climatological seasonal
variation of LHF and related state variables including near-
surface wind speed (U), SST and near-surface atmospheric spe-
cific humidity (qa), over the northern TSP (0◦–40◦N, 100◦E–
70◦W) and southern TSP (0◦–40◦S, 100◦E–70◦W), simulated
by 14 CMIP5 models and the MME mean, compared with ob-
servation (OAFlux).

models, whose wind speeds’ seasonal variation correlations
to observations do not exceed the 99.9% confidence level,
are FGOALS-s2, CSIRO-Mk3.6.0 and MIROC-ESM in the
northern TSP, and in the southern TSP they are CNRM-CM5,
CSIRO-Mk3.6.0, FGOALS-s2, GFDL-ESM2M, MIROC-
ESM, MRI-CGCM3 and NorESM1-M. These are all group
2 models (see section 3.1 and Fig. 3). As explained in section
3.1, except FGOALS-s2, the errors of the surface wind speed
simulations of the models not exceeding the 99.9% confi-
dence level may come from the computing of monthly sur-
face wind speed from the monthly mean zonal and meridional
wind components. Nevertheless, there are five group 2 mod-
els that simulate the northern TSP wind speed seasonal vari-
ation in good agreement with observations, with correlations
exceeding the 99.9% confidence level; while in the southern

TSP, there is only one group 2 model (INM-CM4) exceeding
this level. This result is consistent with the bias distribution
differences between the northern and southern TSP in Fig.
6d.

3.4. Long-term upward trend

Whether from global warming forcing or the dynamics of
climate oscillation, trends are very important in climate re-
search and are ubiquitous in the climate system. Although
the climate variability in a fully coupled model is produced
by itself and has nothing to do with the observed climate vari-
ability, the climate trend responding to the increase of CO2

designated in CGCMs can be evaluated for improving climate
prediction and diagnosis using models.

Since the distinct transition from a downward trend to
an upward trend around 1977–78 (Yu, 2007), the LHF has
been rising continuously. Figure 8 presents the observed lin-
ear trend distributions and yearly mean variations averaged
over the TSP for LHF, near-surface atmospheric specific hu-
midity, SST, and near-surface wind speed. The results of the
MME mean are shown in Fig. 9. For the observed LHF in
Fig. 8a, a large-scale positive trend structure is capturedalong
the western boundary current, especially over the Kuroshio
Current and its extension and the equatorial central-western
Pacific. Meanwhile, a negative trend exists in the equato-
rial eastern Pacific and in the subtropical eastern Pacific in
both hemispheres. The trend patterns of near-surface atmo-
spheric specific humidity (Fig. 8c) and SST (Fig. 8e) both
show La Niña–like conditions. The positive feedback of the
SST trend is much larger than the negative feedback of the
near-surface atmospheric specific humidity, so the trend pat-
tern of LHF coincides with the SST trend. The trend of near-
surface wind speed, whose maxima and minima match well
with those of LHF, is shown in Fig. 8g. The 1979–2005 an-
nual mean variabilities of LHF, atmospheric specific humid-
ity, SST and near-surface wind speed in Figs. 8b, d, f and h
are highly correlated with a significant trend. In Fig. 9, forthe
MME mean, the pattern of the LHF trend does not match the
observations. To identify the origins of the biases, the atmo-
spheric specific humidity, SST and near-surface wind speed
trends are shown in Figs. 9c, e and g. The atmospheric spe-
cific humidity and SST trend patterns show an overall pos-
itive trend over the TSP. The atmospheric specific humidity
trend shows maxima over the equatorial regions, with signif-
icant poleward decreasing gradients, but there are no signifi-
cant east–west gradients. The trend pattern of SST peaks over
the northern TSP and a positive trend is distributed uniformly
over the central-western Pacific. North–south gradients are
located in the eastern Pacific, and there are east–west gra-
dients in the southern TSP. All these gradients derive from
the relatively lower trend over the regions off the west coast
of South America. There is no significant near-surface wind
speed trend that can be captured by Fig. 9g, except a very
small positive trend over the southeastern TSP. The 1979–
2005 annual mean variabilities of LHF, atmospheric specific
humidity and SST show significant trends, but not for near-
surface wind speed.
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Fig. 8. The observed linear trend (10 yr)−1 distributions and yearly mean variations averaged
over the TSP of (a, b) LHF (units: W m−2), (c, d) near-surface atmospheric specific humidity
(units: g kg−1), (e, f) SST (units:◦C), and (g, h) near-surface wind speed (units: m s−1), using
OAFlux data.

Using linear least-squares fitting, the decadal trends of
annual mean LHF and related state variables (atmospheric
specific humidity, SST and near-surface wind speed) aver-
aged over the TSP using the 14 CMIP5 CGCMs, the MME
mean and observations (OAFlux data) are computed and
shown in Table 2. The observed trends of LHF and related
state variables all exceed the 95% confidence level, using the
method of Santer et al. (2000), after taking into account the
autocorrelation of the noise in the data. From Table 2, there
are only two models (BCC-CSM1.1 and IPSL-CM5A-LR)
whose LHF trend exceeds the 95% confidence level, with val-
ues of 0.53±0.51 and 1.31±0.41 W m−2 (10 yr)−1, respec-
tively. However, these are much lower than the observed val-
ues of 2.96±0.95 W m−2 (10 yr)−1. Thus, the MME mean
is just able to exceed the 95% confidence level, with a very
small trend of 0.37±0.23 W m−2 (10 yr)−1. The trends of at-
mospheric specific humidity and SST in all 14 models and the
MME mean exceed the 95% confidence level, indicating that
the CMIP5 CGCMs simulate significant increasing trends
of near-surface atmospheric specific humidity and SST. The
biggest and smallest trends of atmospheric specific humid-
ity and SST are captured by IPSL-CM5A-LR and INM-
CM4, which are 0.32± 0.07 g kg−1 (10 yr)−1, 0.32± 0.07

◦C (10 yr)−1, and 0.07± 0.04 g kg−1 (10 yr)−1, 0.06±
0.05◦C (10 yr)−1, respectively. The MME-mean atmospheric
specific humidity and SST trends are 0.16± 0.06 g kg−1

(10 yr)−1 and 0.15±0.06◦C (10 yr)−1. Obviously, even the
smallest trends of model-simulated atmospheric specific hu-
midity and SST are bigger than observed. This means that the
trends of atmospheric specific humidity and SST are grossly
overestimated by the CMIP5 CGCMs. Because the atmo-
spheric specific humidity and SST feedbacks on the LHF are
opposite, the trend feedback of∆q in Eq. (1) will be very
weak in cases where the difference between the positive feed-
back of SST and the negative feedback of atmospheric spe-
cific humidity is minimal. The trends of near-surface wind
speed in Table 2 show that there is no model-simulated trend
of near-surface wind speed exceeding the 95% confidence
level.

4. Summary and discussion

4.1. Summary

Based on the OAFlux dataset (verified using NOCS V2
flux data) and the historical-scenario simulations from 14
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Fig. 9. As in Fig. 8 but for the MME mean.

Table 2.The linear trends and 95% confidence intervals of model-simulated annual LHF and related state variables averaged over the TSP
for the 14 CMIP5 models and MME mean compared with observations from OAFlux data∗.

Linear Trend and 95% confidence interval (10 yr)−1

LHF (W m−2) Atmospheric specific humidity (g kg−1) SST (◦C) Near-surface wind speed (m s−1)

BCC-CSM1.1 0.53±0.51 0.18±0.06 0.18±0.06 0.00±0.03

CanESM2 0.47±0.51 0.21±0.09 0.20±0.08 0.00±0.02

CESM1-CAM5 0.08±0.61 0.11±0.07 0.11±0.08 −0.01±0.03

CNRM-CM5 0.34±0.53 0.16±0.05 0.15±0.05 0.03±0.04

CSIRO-Mk3.6.0 0.18±0.50 0.12±0.08 0.11±0.08 0.02±0.04

FGOALS-s2 0.17±0.62 0.20±0.11 0.20±0.11 0.00±0.05

GFDL-ESM2M 0.26±0.89 0.19±0.08 0.18±0.08 0.01±0.05

GISS-E2-R 0.21±0.52 0.11±0.08 0.10±0.09 0.00±0.02

HadCM3 0.63±0.66 0.20±0.10 0.21±0.11 −0.01±0.03

INM-CM4 0.10±0.27 0.07±0.04 0.06±0.05 0.01±0.03

IPSL-CM5A-LR 1.31±0.41 0.32±0.07 0.32±0.07 −0.01±0.02

MIROC-ESM 0.31±0.44 0.11±0.08 0.10±0.07 0.03±0.05

MRI-CGCM3 0.29±0.39 0.09±0.04 0.08±0.03 −0.01±0.04

NorESM1-M 0.32±0.64 0.12±0.06 0.11±0.06 0.03±0.04

MME mean 0.37±0.23 0.16±0.06 0.15±0.06 0.01±0.01

OBS(OAFlux) 2.96±0.95 0.06±0.06 0.11±0.05 0.08±0.04

∗Boldface indicates the linear trend exceeds the 95% confidence level, using the method of Santer et al. (2000), after taking into account the autocorrelation
of the noise in the data.
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CMIP5 CGCMs, the LHF over the TSP and the origins of
simulation biases have been diagnosed and systematically as-
sessed in this study. From discussion of the climatological
mean fields, inter-model variability, climatological seasonal
variation, and long-term trend, the main conclusions can be
summarized as follows:

(1) The simulated annual-mean and seasonal-mean LHF
climatology in most of the CGCMs agrees very well with
the observations from OAFlux. From the comparison of the
MME mean with observations, the agreement in terms of
the strong and weak latent heat release centers is very good.
However, the models simulate stronger LHF over most of
the TSP. The differences between the CMIP5 outputs and
OAFlux can be as large as 20–30 W m−2 in the subtropical
oceans. Pattern statistics describing the annual- and seasonal-
mean LHF climatology and related state variables show that
the biases of near-surface wind speed may be the origin of the
LHF biases in the CMIP5 models. Seasonal-mean differences
show that SST biases and atmospheric specific humidity bi-
ases have opposite feedback effects on LHF biases.

(2) The inter-model variability of the annual-mean LHF
climatology over the TSP was examined by performing an
inter-model EOF analysis for the 14 CMIP5 CGCMs. The
first mode indicates overall positive anomalies, reflectingthe
fact that models with positive PCs simulate relatively strong
LHF, while models with negative PCs simulate relatively
weak LHF. The first PC of the models is highly correlated
with the TSP mean LHF climatology, indicating that the over-
all stronger or weaker LHF over the TSP, especially on the
equator and in the subtropics, is the most notable diversityof
the CMIP5 models. The second mode shows very large varia-
tions along the meridian. Both PC1- and PC2-regressed LHF,
SST and atmospheric specific humidity have similar merid-
ional distributions. However, the variability of near-surface
wind speed has no significant relationship with LHF. This in-
dicates that the inter-model diversity in the CMIP5 models
may come from the diversity in simulating SST and near-
surface atmospheric specific humidity.

(3) The agreement of the MME mean climatological sea-
sonal variation with OAFlux is very good over most of the
year. Over the tropics, LHF overestimations of around 20
W m−2 are apparent in the MME, compared to observations.
The mean simulations of atmospheric specific humidity and
SST are both in good agreement with observations, through-
out the year, tracing a significant changing solar orbit posi-
tion, and the maximum is located on both sides of the equa-
tor. Pattern statistics describing the climatological seasonal
variation of LHF and related state variables over the north-
ern and southern TSP, simulated by the 14 CMIP5 models
and the MME mean, compared with the observed (OAFlux),
show that–over both the northern and southern TSP–the pat-
tern correlations of LHF, SST and atmospheric specific hu-
midity all exceed the 99.9% confidence level. The errors in
the models’ simulations of near-surface wind speed not ex-
ceeding the 99.9% confidence level may derive from the com-
puting of monthly surface wind speed from the monthly mean
zonal and meridional wind components.

(4) The linear trend pattern of LHF in the MME mean
does not match the observations well. The observed trends
of LHF and related state variables all exceed the 95% con-
fidence level. Few models (only two) simulate the LHF
and near-surface wind speed trends exceeding the 95% con-
fidence level. The trends of atmospheric specific humidity
and SST in all 14 models and the MME mean exceed the
95% confidence level, indicating that the CMIP5 CGCMs
simulate significant increasing trends of near-surface atmo-
spheric specific humidity and SST. The trends of atmospheric
specific humidity and SST are grossly overestimated by the
CMIP5 CGCMs, while the trends of LHF and near-surface
wind speed are largely underestimated. So, the feedback ef-
fects of the atmospheric specific humidity and SST trends
are both overestimated by the models, and the trend feed-
back of specific humidity differences will be very weak in
cases where the difference between the positive feedback of
the SST and negative feedback of atmospheric specific hu-
midity is minimal.

4.2. Discussion

LHF serves energy to the evaporation process, which is
important in the global water cycle. The bulk aerodynamic
formula tells us that recent changes of LHF are likely related
to changes in surface winds, SST and near-surface atmo-
spheric specific humidity. For climatology, model-simulated
biases of surface LHF may come from the offset errors of
near-surface wind speed in CMIP5 MMEs. Inter-model EOF
analysis indicates the model diversity in simulating LHF may
come from the diversity in simulating the state variables of
SST and near-surface atmospheric specific humidity (temper-
ature differences or specific humidity differences). The cli-
matological seasonal variation in CMIP5 models is different
in the North and South Pacific, but the biases against observa-
tion both generally originate from the wind speed biases. For
trend analysis, the poor abilities of models to reproduce the
observed LHF long-term trend may intuitively be a result of
the overestimation of SST and atmospheric specific humidity,
but essentially may be a result of many natural and model-
associated stochastic factors acting together, which still needs
to be studied.

Many of these biases can be substantially reduced using
bias-correction procedures, which could make these runs use-
ful for climate change studies (Maurer and Hidalgo, 2008;
Maurer et al., 2010). However, while the bias will be reduced,
the variance will also be increased. So, for it to be useful,
the improvement in bias must be large relative to the loss in
variance. Thus, using CMIP5 multi-model projections of the
climatological mean state and seasonal variation of LHF in
future research on the hydrological cycle and heat transport
could lead to relatively good results, despite some regional
variances. However, for trend projections of LHF, the trend
rates and trend patterns require careful consideration. The
distributions of the LHF trend pattern are not very credible.
Better simulations of identified tropical and subtropical circu-
lation processes will improve simulations of the LHF trend,
which is a potential area of future research.
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