
ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 33, NOVEMBER 2016, 1297–1305

Ensemble Mean Forecast Skill and Applications with the T213
Ensemble Prediction System

Sijia LI, Yuan WANG, Huiling YUAN∗, Jinjie SONG, and Xin XU

Key Laboratory of Mesoscale Severe Weather, Ministry of Education, School of Atmospheric Sciences,

Nanjing University, Nanjing 210023, China

(Received 19 June 2016; revised 27 July 2016; accepted 8 August 2016)

ABSTRACT

Ensemble forecasting has become the prevailing method in current operational weather forecasting. Although ensemble
mean forecast skill has been studied for many ensemble prediction systems (EPSs) and different cases, theoretical analysis
regarding ensemble mean forecast skill has rarely been investigated, especially quantitative analysis without any assumptions
of ensemble members. This paper investigates fundamental questions about the ensemble mean, such as the advantage of the
ensemble mean over individual members, the potential skill of the ensemble mean, and the skill gain of the ensemble mean
with increasing ensemble size. The average error coefficient between each pair of ensemble members is the most important
factor in ensemble mean forecast skill, which determines the mean-square error of ensemble mean forecasts and the skill
gain with increasing ensemble size. More members are useful if the errors of the members have lower correlations with each
other, and vice versa. The theoretical investigation in this study is verified by application with the T213 EPS. A typical EPS
has an average error coefficient of between 0.5 and 0.8; the 15-member T213 EPS used here reaches a saturation degree of
95% (i.e., maximum 5% skill gain by adding new members with similar skill to the existing members) for 1–10-day lead time
predictions, as far as the mean-square error is concerned.
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1. Introduction
The principle of combining forecasting outputs from dif-

ferent models and members into an ensemble was proposed
several decades ago (Sanders, 1963; Epstein, 1969; Leith,
1974) and has been widely employed in meteorology and
other fields since the 1990s, especially the arithmetic aver-
age of all ensemble members, i.e., the ensemble mean. From
an experimental perspective, it is well known that the ensem-
ble mean often outperforms its individual members in oper-
ational forecasts (Vislocky and Fritsch, 1995; Fritsch et al.,
2000). Recently, other complex methods have been devel-
oped to construct unequally weighted or bias-corrected en-
sembles instead of the arithmetic mean, such as linear re-
gressions (Krishnamurti et al., 1999, 2000), nonlinear re-
gressions (Hamill et al., 2008), Bayesian averages (Raftery
et al., 2005; Vrugt et al., 2006), artificial neural networks
(Yuan et al., 2007), and time-varying weighted bias correc-
tion methods (Hashino et al., 2007; Bohn et al., 2010). The
improvements in the ensemble mean due to the application
of these statistical methods vary on a case-by-case basis and
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are not stable due to the lack of a sufficient number of sam-
ples (Weisheimer et al., 2009). In fact, persistence in the rel-
ative skills of members is required to use complex weighting
combination methods, except for simple arithmetic averaging
(Reifen and Toumi, 2009). Therefore, the arithmetic ensem-
ble mean remains one of the most effective methods in op-
erational forecasts for many cases (Najafi and Moradkhani,
2016).

From a theoretical perspective, the pioneering work of
Leith (1974) first examined the potential skill of Monte Carlo
forecasts and found that the sample mean could better esti-
mate the real state in comparison with conventional single
forecasts. This indicated that the improvement of such a
Monte Carlo ensemble in terms of the mean-square skill was
a consequence of the optimal filtering nature of the proce-
dure. Additionally, several recent studies have attempted to
reveal the essence of the forecast skill of an ensemble mean.
Hagedorn et al. (2005) argued that the success of multimodel
ensemble means was mainly due to error cancellation and
nonlinearity of skill score metrics. Weigel et al. (2008) fur-
ther found that a “poorer” member can also contribute to the
skill of an ensemble mean. There are also other studies that
have examined the advantages of using an ensemble mean by
studying the relationships between ensemble members. For

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag Berlin Heidelberg 2016



1298 ENSEMBLE MEAN SKILL AND APPLICATIONS WITH T213 EPS VOLUME 33

example, the members that have higher skills and are less de-
pendent on each other have been suggested for an ensemble
prediction system (EPS) to achieve the best ensemble mean
skill (Yoo and Kang, 2005). Jeong and Kim (2009) demon-
strated that neither the equally nor unequally weighted mean
method could effectively improve the forecast skill if signifi-
cant correlations exist between the members. However, their
study only targeted two-member combinations and assumed
that the two members were unbiased. Winter and Nychka
(2010) conceptually indicated that the ensemble mean can
outperform the best individual member if the forecasting out-
puts of the ensemble members are markedly different from
each other. However, the relationship between the ensemble
mean skill and the correlation of the ensemble members has
rarely been quantitatively deduced without any assumptions.

Another important issue is the role of the ensemble size
on the performance of EPSs. In previous studies, it has been
concluded that a limited number of ensemble members is suf-
ficient to achieve a saturated skill (Houtekamer and Derome,
1995; Deque, 1997; Buizza and Palmer, 1998). Du et al.
(1997) indicated that an ensemble size of 8–10 can account
for a near 90% reduction in the RMSEs of ensemble mean
precipitation forecasts. Clark et al. (2011) revealed that the
skill gain decreases with increasing ensemble size. Ma et al.
(2012) found that more members are required to increase the
forecast skill, especially for long-range forecasts, although
the improvements were found to be insignificant beyond 20
members when measured by deterministic metrics. All of the
above research was based on experimental studies. From a
theoretical perspective, Richardson (2001) discussed the im-
pact of the ensemble size on probabilistic forecasts in terms
of Brier scores, reliability diagrams and potential economic
value, and found that for different metrics, the sufficient en-
semble size is different. However, the impact of the ensem-
ble size on the mean-square error (MSE), which is one of the
most commonly used deterministic metrics, has rarely been
discussed in a theoretic context.

This study aims to investigate the potential forecast skill
of the ensemble mean, including the optimum ensemble
mean and its superiority over its individual members, and
the impact of ensemble size, without specific assumptions
regarding the ensemble members. The theoretical analyses
related to the fundamental questions of the ensemble mean
are described in section 2. Experimental studies based on the
China Meteorological Administration (CMA) T213L31 EPS
(hereafter, T213 EPS) are presented in section 3. Section 4
gives a summary and discussion.

2. Theoretical analysis of the ensemble mean
2.1. Ensemble mean skill

For a finite number of data points K, the forecasts from M
ensemble members (FFF1,FFF2, . . . ,FFFM) can be combined to con-
struct an ensemble mean FFF∗, where FFFi = (Fi,1,Fi,2, . . . ,Fi,K),
i = 1,2, . . . ,M, and FFF∗ = (F∗1,F

∗
2, . . . ,F

∗
K). Fi,k denotes the

forecast at the kth data point predicted by the ith member,

and TTT = (T1,T2, . . . ,TK) denotes the corresponding validation
values.

Let EEE1,EEE2, . . . ,EEEM and EEE∗ denote the errors for each
member and the ensemble mean, respectively, where EEEi =

(ei,1, . . . ,ei,K) and ei,k = Fi,k − Tk. The errors EEE1,EEE2, . . . ,EEEM ,
EEE∗ can be viewed as random variables with expectations
EEE1,EEE2, . . . ,EEEM ,EEE∗. Thus, EEEi = (1/K)

∑K
k=1 ei,k.

The forecast error is expressed by the MSE:
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Let the following denote the error covariance between the
ith and jth members:

Ri, j =
1
K

K∑

k=1

ei,ke j,k . (3)

The MSE of the ensemble mean can be calculated as

R∗2 =
1

M2
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. (4)

The errors of all ensemble members can be represented by a
matrix EEE:

EEE =



R2
1 · · · R1,M
...

. . .
...

RM,1 · · · R2
M


M×M

. (5)

The MSE of the ensemble mean in Eq. (4) is equal to
the average of the elements of matrix EEE in Eq. (5). The ma-
trix EEE is symmetrical because Ri, j = R j,i. The diagonal el-
ements indeed represent the forecast skill of the individual
ensemble members according to Eq. (1), whereas the remain-
ing elements Ri, j represent the relationship between the errors
of any two members. This actually reveals the mathematical
essence of the ensemble mean in that the skill of the ensemble
mean depends on both the skills of the individual ensemble
members and the relationship between the errors of any two
members. This result is the generalization of Jeong and Kim
(2009) because no assumptions were made in Eq. (4).

If we want to add a new member FFFM+1 to the already ex-
isting M-member ensemble, the MSE of the new ensemble is
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equal to the average elements of matrix EEEM+1:

EEEM+1 =
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The (M + 1)-member ensemble can outperform the al-
ready existing M-member ensemble if and only if the aver-
age elements of EEEM+1 are smaller than EEEM . This means that
the average of the newly added elements in Eq. (6) should be
smaller than the average elements of EEEM:

1
2M + 1

R2
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Equation (7) gives the essential and sufficient conditions
in which a new member can enhance the skill of the al-
ready existing ensemble mean. Instead of simply having bet-
ter skill, the newly added members should be less correlated
with the already existing ensemble members because of the
weights in Eq. (7). This can explain why a “poorer” member
can still enhance the skill of the ensemble mean, which was
discovered by Weigel et al. (2008). Otherwise, even if the
new member has a higher skill than the existing members, it
can still decrease the ensemble mean if it is highly correlated
with the already existing ensemble members.

For different i and j, we have the following:
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Ri, j =
1
K

K∑

k=1

ei,ke j,k 6
1
K

K∑

k=1

1
2

(e2
i,k + e2

j,k) =
1
2

(R2
i + R2

j ) . (8)

From Eqs. (4) and (8), the following can be obtained:
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Equation (9) demonstrates that the forecast skill of the en-
semble mean always outperforms the average skill of the in-
dividual members. Thus, the ensemble mean can be used to
avoid choosing the “poorer” single members if the relative
performance of the individual members or the best member

is unknown. This explains why the ensemble mean can often
achieve a satisfactory skill in practice.

Let R2
min = min(R2

1, . . . ,R
2
M) denote the MSE of the best

ensemble member. Moreover, let the following denote the
average of the individual MSE R2

i :

U =
1
M

M∑

i=1

R2
i . (10)

The average of all possible Ri, j (i , j) can be expressed as

L =
2

M(M−1)

M∑
i, j=1
i, j

Ri, j . (11)

From Eqs. (4), (10) and (11), the MSE of the ensemble mean
can be written as

R∗2 =
1
M

U +

(
1− 1

M

)
L . (12)

As a result, the ensemble mean outperforms the best in-
dividual member if and only if

R2
min >

1
M

U +

(
1− 1

M

)
L . (13)

Equation (12) can also be explained in terms of the matrix
EEE in Eq. (5) because U represents the average of the diagonal
elements of EEE, whereas L represents the average of all other
elements of EEE.

Equation (13) gives the sufficient and essential conditions
in which the ensemble mean can achieve a higher skill than
the best individual member, which occurs only under spe-
cific conditions, i.e., the members have similar skills and
lower error covariances. This result is consistent with pre-
vious studies (Yoo and Kang, 2005; Jeong and Kim, 2009;
Winter and Nychka, 2010), and it further indicates that the
ensemble mean cannot outperform the best individual mem-
ber if the members are highly correlated (larger L) or there
are distinctively poorer members (noticeable increase of U).
It can also explain why the multimodel ensemble occasion-
ally cannot outperform its best individual model in numerical
weather predictions (Hagedorn et al., 2012) if the individ-
ual models operated by different centers are highly correlated
or the best model performs distinctively better than the other
models.

2.2. Role of ensemble size
From Eqs. (9), (10) and (12), the following is valid:

U > R∗2 > L , (14)

which shows that U and L can be treated as upper and lower
bounds of the MSE of the ensemble mean.

The MSE of the ensemble mean is equal to a weighted
mean of U and L [Eq. (12)]. When the ensemble size M in-
creases, the weight of the larger term U in Eq. (12) decreases,
whereas the weight of the smaller term L increases. As a re-
sult, the error correlation for each pair of ensemble members
becomes the main factor that determines the forecast skill of
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the ensemble mean. If U and L remain constant with increas-
ing ensemble size and the newly added members have similar
attributes to the already existing members, the MSE of the en-
semble mean should decrease toward its lower bound L and
reach a saturated skill level.

Specifically, Eq. (12) can be simplified to

lim
M→∞

R∗2 = L . (15)

When M→∞, the lower bound L exactly represents the po-
tential skill of the ensemble mean with increasing ensemble
size.

Let ρ conceptually express the average error correlation
coefficients between each pair of members:

ρ =
L
U
. (16)

The parameter ρ describes similarity among ensemble mem-
bers. Larger ρ implies the members are similar to each other.
It is clear that ρ 6 1.

From Eqs. (12) and (16), the MSE of the ensemble mean
compared with its individual members R∗2/U can be written
as a function of ρ and M:

R∗2

U
=

1
M

+

(
1− 1

M

)
. (17)

Obviously, ρ 6 R∗2/U 6 1. When the ensemble size M
increases, R∗2/U saturates to its lower bound ρ. The effect
of the ensemble mean compared with its individual members
is dependent on the average error coefficients and the ensem-
ble size (Fig. 1). If the ensemble size M is sufficient, ρ ex-
actly determines the effect of the ensemble mean. Smaller
ρ leads to a better ensemble mean compared with individ-
ual members, which implies that the errors of the members
should have lower correlations with each other to improve an
ensemble mean.

The “saturation degree” can be defined to describe the rel-
ative distance between the MSE of the ensemble mean and its

potential skill L:

S =

(
1− R∗2−L

L

)
×100% . (18)

The saturation degree S increases when the ensemble size in-
creases and the upper bound of S is 100%. By combining
Eqs. (12) and (18), the saturation degree S can be simplified
to

S =

(
1− 1−ρ

Mρ

)
×100% . (19)

Equation (19) can be rewritten as

Msaturate =
1−ρ

(1−S )ρ
. (20)

Equation (20) implies that the minimal ensemble size to reach
a given saturated skill is determined by the error correlation
coefficients between each pair of ensemble members. Fewer
members are required for a larger ρ, and vice versa (Table
1). When ρ→ 0, which implies that L→ 0 and the members
are independent of each other, the skill of the ensemble mean
can be effectively improved with increasing ensemble size.
Conversely, when ρ→ 1, which implies that the individual

Table 1. The minimum ensemble sizes required to reach saturation
degrees of 80%, 90%, 95% and 99%, according to Eq. (20).

Saturation degree S

ρ 80% 90% 95% 99%

0.1 45 90 180 900
0.2 20 40 80 400
0.3 12 24 47 234
0.4 8 15 30 150
0.5 5 10 20 100
0.6 4 7 14 67
0.7 3 5 9 43
0.8 2 3 5 25
0.9 1 2 3 12

Fig. 1. MSE of the ensemble mean compared to its individual members R∗2/U, as a
function of ρ and M, according to Eq. (17).
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members are highly dependent, increasing the ensemble size
is ineffective, and the improvement in the ensemble mean is
negligible compared with the single members.

3. Application with the T213 EPS

The T213 EPS (Su et al., 2014) forecasts, which are
provided by the CMA, have been archived in the TIGGE
(Bougeault et al., 2010) database. The breeding initial pertur-
bation method has been applied to the T213L31 (∼60 km and
31 vertical levels) global spectral model (Chen et al., 2004;
Wang et al., 2008) to generate 15 ensemble members, includ-
ing one control run and seven pairs of perturbed members.
This study uses the daily forecasts and corresponding anal-
ysis (validation) data from the T213 EPS over the Northern
Hemisphere in 2008; the data have a 1◦ × 1◦ output grid and
1–10-day lead time.

The MSE of the 500 hPa geopotential height, 850 hPa
temperature and specific humidity, and 200 hPa wind speed
(Fig. 2) shows that for a 1–3-day lead time, the ensemble
mean of the 15 members performs slightly better than the
control run and the average MSE of all its members U. With
increasing lead time, the advantage of the ensemble mean be-
comes increasingly more significant for medium-range fore-
casts (4–10 days), despite the analysis field favoring the con-
trol run. Although the average MSE of the individual mem-
bers U is appreciably larger, the ensemble mean outperforms
the control run and is close to its lower bound L because the
smaller L has a weight exceeding 90% (14/15) to determine
R∗2 according to Eq. (12) for the 15-member T213 EPS. With
increasing lead time, the MSE of the individual members (in-

cluding the control run) increases rapidly, whereas the in-
crease in L is relatively slow. As a result, the error correlation
coefficients between the ensemble members decrease when
the lead time increases [Fig. 3; Eq. (16)]. This can explain
why the advantage of the ensemble mean is more significant
in medium-range forecasts than in short-range predictions.

The relationship between the forecast skill of the ensem-
ble mean and ensemble size is also explored. There are
15!/[(15 − i)!i!] choices to select i members from the 15-
member ensemble. Among these choices, the best choice for
each i is selected based on the lowest MSE of the ensemble
mean. For the short-range forecasts (1–3 days), the skill (Fig.
4) of the best ensemble mean is barely improved by increas-
ing the ensemble size. For the medium-range forecasts (4–
10 days), the MSE of the ensemble mean rapidly decreases
when the ensemble size increases, and the skill of the ensem-
ble mean gradually becomes marginal and saturated.

The terms in Eq. (12) vary with the ensemble size. For ex-
ample, with a 10-day lead time (Fig. 5), both U and L remain
constant with increasing ensemble size, whereas the MSE of
the ensemble mean decreases due to the change in the weight
in Eq. (12). When the ensemble size M increases, the weight
for the smaller term L increases toward 1, whereas the weight
for the larger term U decreases toward 0. This indicates that
the skill of the ensemble mean increases with increasing en-
semble size and the ensemble mean skill becomes saturated
because the weight change becomes smaller with a large M.

In this case, for the 1–10-day forecasts of the different
fields of interest, such as the 500 hPa geopotential height, the
850 hPa temperature and specific humidity, and the 200 hPa
wind speed, the parameter ρ varies between 0.5 and 0.8 (Fig.
3). The ensemble size required for a saturated ensemble mean

Fig. 2. MSE of the control run, the ensemble mean of the T213 EPS, and the upper and lower bounds U and L for 1–10-day
lead times: (a) 500 hPa geopotential height; (b) 850 hPa temperature; (c) 850 hPa specific humidity; (d) 200 hPa wind speed.
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Fig. 3. The average error correlation coefficients for each pair of ensemble members ρ and the saturation degree S of the T213
EPS for 1–10-day lead times: (a) 500 hPa geopotential height; (b) 850 hPa temperature; (c) 850 hPa specific humidity; (d) 200
hPa wind speed.
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Fig. 4. MSE of the ensemble mean, as a function of the ensemble size, for lead times of 1, 3, 5, 7 and 10 days: (a) 500 hPa
geopotential height; (b) 850 hPa temperature; (c) 850 hPa specific humidity; (d) 200 hPa wind speed.

can be deduced from Eq. (20) and Table 1. For different me-
teorological elements, the saturated ensemble size is differ-
ent (Fig. 6). More members are required for medium-range
forecasts than short-range predictions. For the four meteoro-
logical elements considered in this paper, 2–4 members can
achieve a saturation degree of 80%, 3–8 members can reduce
the MSE of the ensemble mean by 90%, and 6–16 members
are enough to obtain a saturation degree of 95%. This can
explain the previous results of Du et al. (1997) and Ma et al.

(2012).
The already existing 15-member T213 EPS can reach a

saturation degree of 95% for 1–10-day lead times (Fig. 3),
except for the 10-day lead time of the 500 hPa geopotential
height predictions, as far as the MSE is concerned. For the
short-range predictions, the saturation degree is even higher.
This implies that if new members are added to the 15-member
T213 EPS, the MSE of the ensemble mean can only be re-
duced by 5%, unless the skills and error covariances of in-
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Fig. 5. MSE of the 500 hPa geopotential height for the ensemble mean R∗2, and
its two factors U and L, as a function of the ensemble size M, for a lead time of
10 days (units: gpm2).

Fig. 6. The minimum ensemble sizes required to reach saturation degrees of 80%, 90% and 95%: (a) 500 hPa geopotential
height; (b) 850 hPa temperature; (c) 850 hPa specific humidity; (d) 200 hPa wind speed.

dividual members are significantly improved. Note that the
correlations between existing members of T213 EPS are high,
which limits the skill gain of the ensemble mean when adding
more ensemble members. For a better configured EPS that
has lower correlations among the ensemble members, more
ensemble mean skill is expected to be gained from more
members.

4. Summary and discussion

Ensemble methods, especially the arithmetic mean, have
been widely used in weather and climate forecasting. This
paper set out to reveal the rationale behind the success of us-

ing ensemble means. The ensemble mean cannot always out-
perform the best single member, although it has a better skill
than the average skill of all individual members. The skill
of the ensemble mean not only depends on the skills of indi-
vidual members, but even more so on the error covariances
between each pair of ensemble members. This suggests that
the best approach is to choose ensemble members that have
lower error covariances with each other, to achieve a better
ensemble mean skill.

It is inappropriate to blindly add new members into an al-
ready existing ensemble. A greater ensemble size does not
necessarily yield higher skill. Even if a new member has a
higher skill, it can still decrease the ensemble skill if it is
highly correlated with the already existing ensemble mem-
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bers. In addition, the ensemble mean skill tends to saturate
toward its potential skill when the ensemble size increases
under the condition that the newly added members have simi-
lar attributes to the already existing ensemble members. This
also indicates that increasing ensemble size will benefit the
ensemble mean more when the added members have lower
covariances with existing members.

The average error coefficient between individual ensem-
ble members is the most important factor to determine the
ensemble skill. It not only determines the effect of the en-
semble mean compared with individual members, but also
the potential skill and the saturation degree of the ensemble
mean. More members are useful if the errors of the members
have lower correlations with each other, and vice versa.

The T213 EPS forecasts confirm the above theoretical re-
sults. The ensemble mean of the T213 EPS outperforms its
control run, especially for medium-range forecasts, because
the error covariances between each pair of ensemble mem-
bers are lower than the MSEs of the individual members. The
skill of the ensemble mean can be improved by increasing the
ensemble size for medium-range forecasts, which saturates
gradually, under the condition that the perturbed members
have similar attributes to each other. However, the ensem-
ble mean skill of the short-range forecasts saturates quickly
with a small ensemble size.

For an ensemble that has an average error correlation co-
efficient that varies between 0.5 and 0.8, 15 members already
reach a saturated ensemble mean. The 15-member T213 EPS
can reach a saturation degree of 95% for 1–10-day lead time
predictions, as far as the MSE is concerned. For short-range
forecasts, the saturated ensemble size is even smaller. This
can also be attributed to a greater correlation between en-
semble members in short-range forecasts. The already exist-
ing ensemble can barely be improved by simply adding new
members that have similar attributes to the already existing
members. The T213 EPS members show high correlations,
and for this reason its ensemble mean skill saturates quickly
at around 10 members, especially for specific humidity fore-
casts at shorter lead times. Therefore, efforts should be made
to reduce the correlations among the ensemble members to
benefit from more members. In addition, we only examine
the ensemble mean skill score in a deterministic sense in this
study; we do not address the probabilistic forecasting aspect.
It is very likely that probabilistic forecasting skill can further
benefit from more ensemble members, even when the ensem-
ble mean skill score ceases to improve by adding additional
members. Further research from the probabilistic forecasting
perspective is still needed.

In this paper, the MSE is used as the metric to evaluate the
ensemble mean. For different metrics, the theoretical frame-
works are different. Theoretical analyses based on other met-
rics and the internal relationship between different metrics
still requires further study.

Although these theoretical analyses in this study focus
on the ensemble mean with equal weights, they can also be
generalized to an unequally weighted ensemble mean. Obvi-
ously, to obtain a better weighted mean, larger weights should

be assigned to the members with higher skill. Further re-
search is needed on weight setting methods.

This study is based on the EPS of a single center (the
CMA); the error covariances between the outputs of differ-
ent centers in the THORPEX TIGGE data may improve the
skill of the ensemble mean. Research on multi-center models
requires further study.
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