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ABSTRACT

The merging of multiple vortices is a fundamental process of the dynamics of Earth’s atmosphere and oceans. In this
study, the interaction of like-signed vortices is analytically and numerically examined in a framework of two-dimensional
inviscid barotropic flows. It is shown that barotropic vortex interaction turns out to be more intricate than simple merging
scenarios often assumed in previous studies. Some particular configurations exist in which the vortex merging process is
never complete despite strong interaction of like-signed vortices, regardless of the strengths or distances between the vortices.
While the conditions for a complete vortex merging process introduced in this study appear to be too strict for most practical
applications, this study suggests that careful criteria for vortex mergers should be properly defined when simulating the
interaction of vortices, because the merging may not always result in a final enhanced circulation at the end of the interaction,
as usually assumed in the literature.
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1. Introduction
The vortex merging process by which multiple vortices

of the same sign interact and are eventually aggregated into
a broader circulation at the end of their interaction plays an
important role in studies of atmospheric and oceanic circula-
tions. Various fluid processes have been shown to be charac-
terized by well-defined and coherent vortex interactions rang-
ing from minute fluid vortex eddies to large-scale circula-
tions (e.g., Yasuda, 1995; Ferreira and Schubert, 1997; Lan-
sky et al., 1997; Cerretelli and Williamson, 2003; Josser and
Rossi, 2007; Rodrı́guez-Marroyo et al., 2011; Yamazaki and
Itoh, 2013; Luo et al., 2014; Tallapragada and Kieu, 2014).
For specific mesoscale circulations in the atmosphere, vortex
mergers are often connected to swift changes in development
of tropical disturbances, which have significant impacts on
the formation and subsequent track and intensity changes of
tropical cyclones (Lander and Holland, 1993; Simpson et al.,
1997; Ferreira and Schubert, 1997; Kieu and Zhang, 2009;
Yu et al., 2010; Jang and Chun, 2015). At the smaller con-
vective scales, coalescence of deep convective towers in the
atmosphere—the so-called vortical hot towers—has been re-
cently suggested as a pathway for the upscale growth of trop-
ical depressions during the early phase of tropical cyclogen-
esis [“the vortical hot towers hypothesis”, e.g., Montgomery
and Enagonio (1998) and Hendricks et al. (2004)].
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Despite extensive numerical studies on the vortex merg-
ing process for a wide range of scales, it is nevertheless in-
triguing that the process of merging vortices has never been
precisely defined. Specifically, it is not clear in general if the
process of merging multiple vortices into a single vorticity
patch can be fully complete at the end of the vortex interac-
tion, or if the final circulation must be enhanced as a result of
the vortex merger. For example, modeling studies of vortex
merger by Dritschel and Waugh (1992), Prieto et al. (2003)
and Kuo et al. (2008) revealed that the merger depends on
the strength of each different vortex, the distance between the
vortices, and the relative size of the vortices. In all cases, the
full vortex merger does not appear to be realized, even for
cases that belong to the complete merger category.

In this study, the vortex merging process is investigated
for a special class of 2D flows that is barotropic and inviscid,
and the necessary conditions for the merger to be considered
complete at the end of the merging process are examined.
The approach is based essentially on the unique character-
istics of the barotropic vorticity equation, which allow for
rigorous analyses of the vorticity dynamics under some spe-
cific boundary conditions. While these analyses are strictly
valid only for the inviscid barotropic dynamics, due to some
technical constraints that may not be applicable to more gen-
eral vortex merging processes, the modest aim in this study
is to present an approach that could highlight the subtlety of
the vortex merging and interpretation that has not been ade-
quately addressed in previous studies.

The rest of the paper is organized as follows. The next
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section introduces a definition for a complete vortex merger
in the framework of the barotropic flows. Analyses of the vor-
ticity dynamics and the evolution of the merging processes
are then presented in detail under different boundary config-
urations. Some concluding remarks are given in the final sec-
tion.

2. Barotropic dynamics

2.1. Vortex merger definition

Although vortex merging processes in both 2D and 3D
flows have been extensively demonstrated in numerous mod-
eling studies, the fact that the merging varies strongly with
different scales and dynamical systems renders it difficult to
understand whether and how the merging process really oc-
curs. Depending on the relative size and distances between
vortices, a study of the vortex merging in Dritschel and
Waugh (1992) showed that there are generally five different
flow regimes at the end of the merging, which include (1)
elastic interaction, (2) complete merger, (3) partial merger,
(4) partial straining out, and (5) complete straining out for
the 2D flows. Such a classification of merging processes
was later investigated in many numerical experiments (e.g.,
Yasuda, 1995; Prieto et al., 2003; Kuo et al., 2008), which
confirmed these regimes systematically in both the barotropic
and 3D framework.

Following the innovative contour dynamics approach pre-
sented in Dritschel and Waugh (1992), a quantitative crite-
rion to classify the vortex merging process for mesoscale at-
mospheric flows was introduced in Prieto et al. (2003) and
Kuo et al. (2008), which is based on the ratio of the final to
the initial circulation for each participating vortex; the circu-
lation ratio is equal to 1 for complete merger, and zero for
elastic interaction. Such a definition of vortex merger based
on global contour circulation has the benefit of efficiently re-
moving filamentary structures and isolating coherent vortic-
ity patches, but it subjectively depends on how one defines
the contours around which the circulation can be computed,
as mentioned in Dritschel and Waugh (1992). This explains
why the complete merger regime in Prieto et al. (2003) and
Kuo et al. (2008) does not really exhibit the complete merg-
ing of two vortices into a single vorticity patch at the end of
the merging process, but instead displays a spread of one vor-
tex in the form of vorticity skirts wrapping around the other
vortex [e.g., Prieto et al. (2003, Fig. 2a) and Kuo et al. (2008,
Fig. 9)].

Given the lack of a rigorous definition for the vortex
merging process, which is needed to better define and un-
derstand the evolution of the vortex dynamics, this subsec-
tion begins by first redefining the merging process from a
barotropic flow perspective, to facilitate subsequent analy-
ses of the vortex merger. Note a specific property that one

would expect from a complete vortex merging process is that
the end product of a merging process should be a station-
arya vortex, which would not evolve by itself or break down
at all later time. This condition is necessary so that it can
at least be agreed whether or not the vortex merger is com-
plete. One could relax this condition by allowing for cases
with some type of periodic oscillation instead of a station-
ary vortex patch at the end of the vortex merger. However,
as shown in the next section, certain configurations in the
barotropic framework do not even approach an equilibrium
with a single vortex patch at the end of the merging, let alone
oscillating around an equilibrium. The aim in this subsection
is to express such a stationary merger condition more quanti-
tatively, and use this condition to examine how and when the
vortex dynamics will approach the stationary limit.

To present the characteristics of vortex merging in an an-
alytically tractable manner, let us start first with the inviscid
barotropic equation in an f -plane (see Holton, 2004) as fol-
lows:

∂

∂t
(∇∇∇2ψ) + J(ψ,∇∇∇2ψ) = 0 , (1)

where ψ(x,y, t) is assumed to be at least a real square-
integrable functionb over a given domain Ω ∈ R2. Equation
(1) accepts a stationary solution Ψ(x,y) if

J(Ψ,∇∇∇2Ψ) = 0 ,

or equivalently

∂Ψ

∂y
∂(∇∇∇2Ψ)
∂x

=
∂Ψ

∂x
∂(∇∇∇2Ψ)
∂y

. (2)

A symmetry in the x and y derivatives in Eq. (2) immediately
suggests that this equation will be generally satisfied if the
following relationship holds:

∇∇∇2Ψ = λΨ , (3)

where λ is an eigenvalue. Equation (3) is familiar and in-
dicates that the stationary solution Ψ(x,y) is nothing but an
eigenfunction of the Laplacian operator ∆. The existence of
such a stationary solutionc is of key importance for studying
barotropic vortex evolution, because if the complete merging
of multiple vortices can indeed take place, then one would
expect eventually that the final state of the vortex dynamics
would settle down to some “stable” configuration, which is
exactly what a stationary solution is supposed to be. For most
applications in the atmosphere, it suffices to assume also that
the streamfunction on Ω has a compact support such that the
Laplacian operator ∆ is self-adjoint (i.e., 〈∆ f ,g〉 = 〈 f ,∆g〉),
where f and g are two arbitrary smooth functions defined on
Ω. This ensures that the eigenvalues of the Laplacian are all
positive, 0 < λ1 < λ2 < λ3 < · · · , and the corresponding eigen-
functions {ϕ1,ϕ2,ϕ3, · · · } form an orthogonal basis according
to the Spectral Theorem (Nica, 2011).

aNote that the “stationary” criterion by no means implies that the flow has to completely stop. It just means that the final state of the flow is not an explicit
function of time.

bTechnically, the set of all real square-integrable functions f (xxx) is called L2-space, defined as L2(Ω) = ( f : Ω→ R|
∫
| f (xxx)|2dxxx <∞).

cStationary solutions for the streamfunction mean that vortex flows are purely advective.
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It should be noted that, strictly speaking, the pure eigen-
functions of the Laplacian operator are not the most gen-
eral stationary solution of Eq. (2). However, given the fact
that the spectrum of the Laplacian eigenfunctions are com-
plete for homogeneous boundary conditions from the Spec-
tral Theorem, any stationary solutions with the same bound-
ary condition will therefore have to be a superposition of the
Laplacian eigenfunctions. As such, examining the charac-
teristics of the Laplacian eigenfunctions can provide insights
into general long-term behaviors of the stationary solutions
of the barotropic vorticity equation [Eq. (1)].

With well-established properties of the eigenfunctions of
the Laplacian operator, it is apparent that there are an infinite
number of stationary states for the barotropic vorticity equa-
tion; each corresponds to one eigenfunction of the Laplacian
operator. For a circle domain Ω, an eigenfunction ϕk,λ(θ,r)
corresponding to an eigenvalue (λ,k) is given by (e.g., Can-
zani, 2013):

ϕk,λ(θ,r) = (ak cos(kθ) + bk sin(kθ))Jk(
√
λr) , (4)

where ak,bk are constants, θ is the azimuthal coordinate vari-
able, and Jk(x) is the k-order Bessel functions defined as fol-
lows:

Jk(x) =

∞∑

n=0

(−1)n

n!(n + k)!

( x
2

)k+2n
. (5)

As seen in Fig. 1, these eigenfunctions display a wide range
of shapes, depending on the value of the radial eigenvalue λ
and the azimuthal eigenvalue k. For a typical vortex merging
problem that is expected to settle down towards a stationary
state, we note however that it is the eigenfunction with no

θ-dependence, i.e., any eigenmode with k = 0, that is most
anticipated at the end of the vortex merger. This is because
these k = 0 states are the only configurations that possess a
vortex concentrated at the domain center and diminishes ra-
dially outwards (assuming that one can always arrange the
domain in such a way that an initial vortex distribution has
its mass-weighted vorticity center located at the domain cen-
ter). Any other configuration with k , 0 would correspond
to a distribution of positive vorticity centers located at differ-
ent places, which are not expected for the “complete” vortex
merging from the symmetry perspective.

The above observation of the radial symmetry of the
eigenfunctions thus allows us to precisely define conditions
for a complete merging process. Assume one starts with an
arbitrary distribution of vorticity on a domain Ω with a null
boundary condition for which the streamfunction ψ(r, θ, t) can
be expanded as follows:

ψ(r, θ, t) =
∑

λ,k

ck,λ(t)ϕk,λ(θ,r), (6)

where ck,λ are expansion coefficients. It is then clear that the
evolution of the barotropic flow under the governing equation
[Eq. (1)] will eventually approach a stationary axisymmetric
configuration if the following conditions hold:



lim
t→∞ck,λ(t) = 0 ∀k ∈ N+

lim
t→∞

dck,λ(t)
dt

= 0 ∀k,λ > 0

∃λ > 0| lim
t→∞c0,λ(t) , 0

. (7)

Fig. 1. Illustration of the eigenfunctions ϕk,λ(θ,λ) of the Laplacian operator with different values of λ and k.



990 BAROTROPIC VORTEX MERGING VOLUME 33

Indeed, if these conditions are satisfied after a sufficiently
long period of time, then the merging process can be claimed
as complete because the flow settles down to a specific su-
perposition of stationary axisymmetric eigenfunctions with a
resulting vortex located at the center. Such a complete merger
will directly support the assumption of aggregating multiple
like-signed vortices, as often assumed in previous studies of
vortex interaction. We should mention that the condition rep-
resented by Eq. (7) by no means dictates that the end phase
of the merging process has to be exactly an eigenfunction
of the Laplacian operator. The final vortex could in fact be
a superposition of infinite eigenfunctions ϕ0,λ(θ,λ), provided
that the superposition ensures a peak vorticity at the center
to meet with the expectation of a complete vortex merger.
The problem will be much less flexible for different boundary
conditions or different domain topologies. Nonetheless, the
existence of an orthogonal basis that corresponds to eigen-
functions of the Laplacian operator gives us a unique way to
shed light onto these merging processes in some specific ap-
plications, at least from the barotropic flow perspective, to
which the focus turns next.

2.2. Vortex merging in a square domain
In this section, the above definition of the complete vor-

tex merger is applied to examine the vortex dynamics in a
limited-area domain. The objective in this subsection is to in-
vestigate how an arbitrary distribution of vorticity at the ini-
tial time in a square domain would evolve and under what
conditions the merging process can be considered complete,
as defined by the complete merger conditions [i.e., Eq. (7)].
To approach the problem of modeling the vortex dynamics
in as practical a way as possible, a specific square domain
[0,L]× [0,L] with periodic boundary conditions is hereinafter
considered, where L is a given domain size. The compact-

support requirement to ensure the self-adjoint property of the
Laplacian operator puts a strong constraint on the set of the
eigenfunctions of Eq. (3), which are now given for each spe-
cific mode (m,n) as follows:

ϕm,n(x,y) = sin
(mπ

L
x
)
sin

(nπ
L

y
)
, (8)

with

λm,n =
π2(m2 + n2)

L2 ∀m,n ∈ N+ .

Figure 2 illustrates the first few eigenfunctions ϕm,n(x,y). Un-
like a circular disk domain that can support many axisym-
metric eigenmodes toward which the barotropic flow could
approach at the end of the vortex merger, the only mode that
possesses the maximum vorticity at the center of the square
domain is m = 1,n = 1. Based again on the symmetry ar-
gument, the conditions for a vortex merging process to be
complete in a square domain are thus reduced to



lim
t→∞cm,n(t) = 0 ∀m > 1,n > 1

lim
t→∞

dcm,n(t)
dt

= 0 ∀m,n

lim
t→∞c1,1(t) , 0

. (9)

These conditions [Eq. (9); hereinafter referred to as the com-
plete merger condition for the square domain] are used to ex-
amine how an initial distribution of vorticity will evolve and
eventually approach the stationary eigenmode (1,1) at the end
of the merging process. It should be mentioned again that
both sets of conditions [Eqs. (7) and (9)] are in fact “strong
conditions” for a complete vortex merger. This is because
some infinite superposition of coefficients cm,n may exist such
that the final function could possess a radially axisymmetric
distribution, mimicking a stationary end product of the vortex

Fig. 2. Illustration of eigenfunctions ϕm,n in a square domain with periodic boundary conditions for several different
values of (m,n).
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merging. It will be shown below, however, that the dynamics
of the barotropic flows in the square domain possesses very
specific characteristics, which do not admit such an arbitrary
superposition of general eigenmodes.

To this end, recall first that the completeness of the or-
thogonal eigenfunctions [Eq. (8)] over the square domain al-

lows us to expand an arbitrary streamfunction ψ(x,y, t) as fol-
lows:

ψ(x,y, t) =

∞∑

m=1,n=1

cm,n(t)ϕm,n(x,y) . (10)

Substituting the solution of Eq. (10) into Eq. (1), we have

∑

m,n

λm,n
dcm,n

dt
ϕm,n =

∑

m,n

∑

k,l

π2

L2 nkcm,nck,lλk,l sin
(mπx

L

)
cos

(nπy
L

)
cos

(
kπx
L

)
sin

(
lπy
L

)
−

∑

k,l

∑

m,n

π2

L2 nkck,lcm,nλm,n cos
(

kπx
L

)
sin

(
lπy
L

)
sin

(mπx
L

)
cos

(nπy
L

)
, (11)

where the dummy integer indices (m,n) and (k, l) have been
interchanged in the second term on the right-hand side of Eq.
(11) to facilitate later grouping. Multiply both sides of Eq.
(11) by an eigenfunction ϕM,N that corresponds to a specific
mode (M,N) and integrate both sides with respect to x and y
over the entire domain with a note that

∫ π

0
sin(mx)cos(kx) sin(Mx)dx

=

∫ π

0

1
4

(−cos[(k−m−M)x] + cos[(k + m−M)x] +

cos[(k−m + M)x]− cos[(k + m + M)x])

=
π

4
(δM,k+m +δM,m−k −δM,k−m) , (12)

and ∫ L

0
sin

(mπx
L

)
sin

( Mπx
L

)
dx =

L
2
δM,m , (13)

where δm,n is the delta Kronecker symbol, we arrive at a gov-
erning equation for each eigenmode (M,N) after some rear-
rangement as follows:

dcM,N

dt
=

π2

2L2λM,N

∑

m,n

∑

k,l

nk(λk,l−λm,n)cm,nck,l(δM,k+m +

δM,m−k −δM,k−m)× (δN,n+l +δN,l−n−δN,n−l) . (14)

It can be seen from Eq. (14) that if one starts with any spe-
cific eigenfunction (K,L), then dcm,n/dt = 0,∀m,n > 0, and
the flow will stay at the same initial mode (K,L) at all times,
as expected for stationary solutions. Note also that the evolu-
tion of each mode (M,N) is strongly coupled to other modes
via the double summation over (m,n) and (k, l) on the right-
hand side of Eq. (14). As such, the vortex dynamics is inher-
ently nonlinear.

A couple of remarks can be immediately obtained from
Eq. (14). First, the symmetry of the (m,n) and (n,m) modes
in Eq. (14) suggests that an initial distribution of vortic-
ity composed of exactly two eigenmodes (K,L) and (L,K),
where K,L are any two integer numbers, will not evolve
with time. This is because the forcing term on the right-
hand side of Eq. (14) will be reduced to only terms of the
form ∼ (δK,L − δL,K), or ∼ (δK,L − δK,L), which are all can-
celed out because of λm,n = λn,m, and so dcM,N/dt = 0,∀M,N.

While this property depends crucially on the square topol-
ogy of the domain, it highlights a subtle characteristic of the
multiple vortex interaction. Imagine one starts with a vor-
ticity distribution consisting of two specific amplitude modes
c9,10 = 1 and c10,9 = 1, which resembles a set of small-scale
like-signed vorticity centers as shown in Fig. 3. The gross
overall picture of multiple like-signed vorticity centers may
provide one with some intuitive feeling that these like-signed
vortices may soon interact, merge, and grow upscale. As seen
above, such a vortex merger could not, however, take place;
the entire vorticity distribution simply stays the same without
any evolution or interaction at all.

Of further importance is an observation about the delta
Kronecker symbols on the right-hand side of Eq. (14) for
which the subscripts are always combinations of either k±m
or l± n. This property dictates that if one starts with an ini-
tial vorticity distribution containing either purely even modes
(i.e., both k and m are even) or purely odd modes (i.e., both
k and m are odd) in one specific direction (either x or y),
then the subsequent evolution will involve either entirely
even modes or odd modes in that direction only. This is
a direct consequence of the selective Kronecker delta for
which the odd superscripts M or N can never be equal to the

Fig. 3. Distribution of nondimensionalized streamfunction
(shaded), which is composed of exactly two eigenmodes, (9,10)
and (10,9), with amplitudes c9,10 = −1 and c10,9 = −1.
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combination of purely even or odd subscripts m,k or n, l,
which are always even numbers. For example, if the initial
vorticity distribution is given by several even modes along
the x direction consisting of (m = 2,n−1), (m = 4,n = 5), and
(m = 6,n = 7), the flow will then quickly spread out over
all other even eigenstates along the x direction, as can be
seen from Eq. (14), whereas all of the odd eigenstates along
the x direction will never appear. In particular, this shows
that the most important eigenstate expected for the complete
merger condition (m = 1,n = 1) will never be satisfied (i.e.,
limt→∞ c1,1 , 0 cannot occur) despite the strong interaction
of vortices. As such, the complete merger condition [Eq. (9)]
is not ensured, and the vortex merging process will never end
up in a single vortex patch at the center as one would expect
from the complete vortex merging process.

As an illustration of the above particular selective prop-
erty of the Kronecker operator, Fig. 4 shows the evolution
of the streamfunction and the corresponding horizontal wind
components u = −∂ψ/∂y and v = ∂ψ/∂x, obtained from a nu-
merical integration of Eq. (14). Here, the numerical ex-
periment is carried out for a square domain [0,1000 km]×
[0,1000 km] on an f -plane located at 30◦N, with homoge-
neous boundary conditions and an initial condition consisting
of three eigenmodes of c10,10 = 1,c12,12 = 1, and c14,14 = 1,
where the amplitudes are scaled by a factor L2 f . A spectrum
truncation of 30 normal modes is applied in both the x and y
directions, and the integration time-step is fixed at 120 s.

One notices in Fig. 4 that, clearly, despite strong evolu-
tion of the vortex patches with time, there is no global merger
of like-signed vortices. In fact, the initial condition consist-
ing of the above selected even modes results in a complete
cancellation of the wave amplitudes at the center of the do-
main, such that there is no way for the vorticity centers to
aggregate at the center of the domain; all vortex merging can
only take place locally, away from the domain center, and
the complete merger with a single vortex patch at the do-
main center never occurs. While the merging of the vortic-
ity cannot be aggregated toward the center of the domain,
note that multiple vortex mergers could take place elsewhere,
which is seen by the development of several major patches
of vorticity in four quadrants shown in Figs. 4c–e. Such
self-organization of small-scale vortices is consistent with the
concept of “vortex relaxation” into large-scale structures due
to minimization (or maximization) of potential intrinsic in-
variants of the barotropic fluid such as enstrophy, energy, or
helicity (e.g., Brown, 1997). However, the type of larger-
scale vorticity patches shown in Figs. 4b and c does not grow
upscale indefinitely, but instead breaks down subsequently, as
seen in Fig. 4f. The processes of vortex merging and breaking
down take place around 2000 time-steps. One can in princi-
ple increase the degree of vortex interaction by either using a
larger wave amplitude to increase the vortex strength, or se-
lecting higher wavenumbers to reduce the distances between
like-signed vortices. Nevertheless, a complete vortex merger
with relaxation towards a single stationary vortex at the do-
main center could not take place due to the selective mode
of the barotropic dynamics. Of course, the vortex merging

process seen in Fig. 4 is particularly inherent to the invis-
cid barotropic model, and it will change entirely if diffusion
forcings or higher dimensions are introduced. However, this
barotropic merging process could demonstrate the intricate
dynamics that a simple merging scenario for like-signed vor-
tices may not always apply.

It is worth emphasizing that, unlike the superposition of
two symmetric states, which leads to stationary dynamics due
to the topology of the square domain shown in Fig. 3, the
evolution of either purely even or odd eigenstates illustrated
in Fig. 4 is a general property of the governing equation [Eq.
(14)] related to the completeness of the eigenfunctions ϕm,n.
In fact, this selective property of the Kronecker symbols has
an even stronger implication, as it essentially eliminates any
possibility of superimposing arbitrary eigenfunctions ϕm,n to
obtain a stationary Gaussian-like state for the complete vortex
merger. To the best of the author’s knowledge, no superposi-
tion of purely even or odd sinusoidal modes along the x or y
direction has been known that could produce a Gaussian-like
profile for vorticity at the domain center to mimic the com-
plete merger expectation. From this perspective, the unique
selective property of Eq. (14) suggests that simple intuition
regarding the merging of like-signed vortices should be taken
with caution, as it may not be applicable.

Except for the above special characteristics of Eq. (14)
that result in either strictly stationary states or interaction
among eigenmodes in some selective way, an arbitrary vor-
ticity arrangement will overall be distributed across the whole
spectrum of eigenfunctions quickly with time, and it seems
to have no stationary end state as one would expect for the
complete merger. For the sake of discussion, consider an ar-
bitrary initial field ψ(x,y,0) that consists of only three eigen-
states of (m = 1,n = 1), (m = 1,n = 2) and (m = 2,n = 1) (i.e.,
c1,1(0) , 0,c1,2 , 0, and c2,1(0) , 0), which roughly corre-
spond to a vortex at the center of the domain surrounded by
two lumps of vorticity along its x and y direction. The pur-
pose is to see if the superposition of these three eigenstates
in this example could eventually become a single stationary
mode of (m = 1,n = 1) that represents a resulting merged vor-
tex. More general distribution of ψ(x,y,0) can be similarly
examined along the same line of argument. Given such an
initial condition, Eq. (14) gives us a sequence of spectral
evolution shown in Table 1. As seen in Table 1, the strong
nonlinear coupling of all eigenstates in Eq. (14) leads to rapid
expansion of the flow over many other eigenstates after just
a few time steps. If one continues the integration of Eq. (14)
further in time, the entire eigenfunctions spectrum would be
occupied quickly, and there appears to be no simple setup to
guarantee that the complete merger condition [Eq. (9)] could
be ensured in general.

It is of interest to mention that the rapid distribution of
barotropic flow over the whole eigenfunction spectrum can
also be applied for the β-plane vorticity equation due to the
orthogonality of the eigenfunctions ϕm,n. As discussed in
Yasuda (1995), the β-effects will, however, complicate the
vortex merging process by creating asymmetry of the vor-
tex merging along the south–north direction, and the vortex



AUGUST 2016 KIEU 993

Fig. 4. Snapshots of the nondimensionalized streamfunction ψ (shaded) and the corresponding horizontal wind components
(u,v) (vectors) on an f -plane located at 30◦N, which are valid at t = 0 h, t ≈ 6.5 h, t ≈ 13 h, t ≈ 19.5 h and t ≈ 27 h, which
correspond to 0, 200, 400, 600, 800 and 1000 time-steps into the integration, using Eq. (14).

merger becomes even less complete. In particular, Prieto et
al. (2003) showed that inclusion of the β-effect can signifi-
cantly slow down the mutual rotation between two vortices,
as the Coriolis forcing is weaker at higher latitudes, thus

lengthening the merging process. These details are hard to
formulate from the analytical perspective, because the sta-
tionary states may not exist for the β-plane dynamics. How-
ever, the completeness of the eigenfunctions ϕm,n still at least
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Table 1. Development of new eigenmodes ϕm,n for the first four time
steps every 2 min, using Eq. (14) with initial conditions consisting
of three modes of c1,1,c1,2, and c2,1 at a truncation of 20 wavenum-
bers (i.e., m,n < 20).

t = 0 t = 2 (min) t = 4 (min) t = 6 (min) t = 8 (min)

c1;1 c1;1 c1;1 c1;1 c1;1
c1;2 c1;2 c1;2 c1;2 —
c2;1 c2;1 c1;3 — c1;19
— c2;3 c1;4 c1;9 c2;1
— c3;2 c1;5 c2;1 —
— — c2;1 c2;2 c2;20
— — c2;2 — c3;1
— — c2;3 c2;10 —
— — c2;4 c3;1 c3;19
— — c3;1 — c4;1
— — c3;2 c3;9 —
— — c3;2 c4;1 c4;19
— — c3;4 c4;2 c5;1
— — c3;5 — —
— — c4;1 c4;9 c5;19
— — c4;2 c5;1 c6;1
— — c4;3 — —
— — c4;4 c5;9 c6;20
— — c4;5 c6;1 c7;1
— — c5;1 — —
— — c5;3 c6;9 c8;1
— — — — —
— — — c10;1 c19;10
— — — c10;2 c19;11
— — — — c20;2
— — — — c20;6

allows for the expansion [Eq. (10)], and therefore the spread
of the eigenfunction spectrum as seen for the f -plane dynam-
ics can still be valid. This continuous spread over the whole
eigenfunction spectrum appears to explain the formation of
vorticity skirts wrapping around the other vortex instead of a
single enhanced circulation seen at the end of the complete
vortex merger case, as presented in Prieto et al. (2003) and
Kuo et al. (2008).

It should be noted that the spread of the eigenmodes over
the spectrum of the Laplacian eigenfunctions does not suffi-
ciently imply that the vortex merging will never take place
for all configurations. It is still possible that, as time goes on,
the flow may evolve in such a way that cm,n →∈,∀m,n , 1,
where ∈ is an arbitrarily small number, such that, practically,
one may no longer be able to notice any other modes except
for the dominant mode of (m = 1,n = 1) from a numerical
viewpoint. For these situations, it is reasonable to state that
these higher wavenumber modes diminish to a point that the
merging is considered to be practically complete. While such
an argument could be applied from the numerical standpoint,
apparently it requires one to define carefully how small a per-
turbation would be so that it can be numerically neglected.
To the best of the author’s knowledge, there is no known con-
figuration at present that could strictly ensure the complete

merger conditions [Eq. (9)] for the barotropic dynamics as
given by Eq. (1), and so it is more likely that the complete
vortex merging processes may never occur in the sense of the
complete merger condition [Eq. (9)].

3. Concluding remarks
This study analyzes the 2D vortex dynamics governed

by the inviscid barotropic vorticity equation. By noting that
the Jacobian operator in the vorticity equation of the form
J(ψ,∇2ψ) accepts a set of stationary solutions that are inher-
ently eigenfunctions of the Laplacian operator, it is found that
the vortex evolution can be decomposed into a set of spec-
tral components that evolve according to a system of highly
nonlinear constraints. Given the specific shapes and charac-
teristics of the eigenfunctions of the Laplacian operator with
a prescribed boundary, it is shown that sufficient conditions
exist for the vortex merging process to be considered strictly
complete.

Examination of the vortex dynamics for a square domain
with periodic boundary conditions shows that, unlike the
common expectation of merging of like-signed vortices, the
complete merger is not guaranteed for an arbitrary initial dis-
tribution of vorticity. In fact, it is demonstrated that there are
certain initial combinations of vorticity that the complete vor-
tex merger condition can never be satisfied. Specifically, the
superposition of eigenmodes that are purely even or odd in ei-
ther the x or y direction will lead to an evolution that contains
only even modes in either the x or y direction at all times, re-
gardless of how close and strong like-signed vortices are. In
a more extreme case with two symmetric sinusoidal modes,
the dynamics is even strictly stationary, and no vortex merg-
ing would take place. Analyses of the more general cases
also suggests that an arbitrary vorticity distribution at the ini-
tial time would quickly spread out over the whole spectrum
of the eigenfunctions of the Laplacian operator, and there is
no guarantee that modes with higher wavenumbers would di-
minish in time such that the flow would settle in a final state
with a single vortex patch at the center of interaction.

It is important to note that the results obtained in this
study are very specific for inviscid barotropic fluid, and by
no means encompass the full range of vortex interactions. In
particular, the strict definition of the complete vortex merger,
as given by either the condition for a circular domain [Eq.
(7)] or a square domain [Eq. (9)], is too strong such that
no configuration may exist for the complete vortex merger to
occur. In practice, it is possible that the vortex dynamics in a
3D space or inclusion of viscosity may allow for a complete
merger and subsequent upscale growth of the resulting vor-
tex (Kieu and Zhang, 2009; Huang and Xu, 2010; Luo et al.,
2014). However, the barotropic model in this study suffices to
demonstrate that an intuitive notion of merging of like-signed
vortices, which is often assumed in studies of multiple vor-
tex interaction, is highly intricate and should be taken with
caution, as the vortex merger may not lead to an eventually
enhanced circulation as one would expect.
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