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ABSTRACT

The ecosystem of the Tibetan Plateau is highly susceptible to climate change. Currently, there is little discussion on the
temporal changes in the link between climatic factors and vegetation dynamics in this region under the changing climate.
By employing Normalized Difference Vegetation Index data, the Climatic Research Unit temperature and precipitation data,
and the in-situ meteorological observations, we report the temporal and spatial variations in the relationships between the
vegetation dynamics and climatic factors on the Plateau over the past three decades. The results show that from the early
1980s to the mid-1990s, vegetation dynamics in the central and southeastern part of the Plateau appears to show a closer
relationship with precipitation prior to the growing season than that of temperature. From the mid-1990s, the temperature
rise seems to be the key climatic factor correlating vegetation growth in this region. The effects of increasing temperature
on vegetation are spatially variable across the Plateau: it has negative impacts on vegetation activity in the southwestern
and northeastern part of the Plateau, and positive impacts in the central and southeastern Plateau. In the context of global
warming, the changing climate condition (increasing precipitation and significant rising temperature) might be the potential
contributor to the shift in the climatic controls on vegetation dynamics in the central and southeastern Plateau.
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1. Introduction
The Tibetan Plateau, often referred to as “the third pole

of the Earth”, covers nearly a quarter of the total land area of
China [Fig. S1 in Electronic Supplementary Material (ESM)],
with an average altitude of over 4000 MSL. Due to its unique
orographic and topographic features, the Plateau not only
plays an important role in global climate regimes, especially
for the Asian monsoon system through dynamic (Ye and Gao,
1979) and thermal mechanisms (Hsu and Liu, 2003; Zhang et
al., 2004), but also is crucial for the terrestrial carbon cycle
(Cheng and Wu, 2007; Babel et al., 2014), which has experi-
enced a carbon loss in recent years as a result of permafrost
collapse (Mu et al., 2016; Wu et al., 2016) and grassland
degradation (Li et al., 2013). Moreover, the Tibetan Plateau
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is also the source region of several great rivers of Asia and is
known as Asia’s “Water Tower” (Xu et al., 2008; Immerzeel
et al., 2010; Yao et al., 2012). Consequently, ecological and
environmental changes on the Plateau may exert substantial
influences on the livelihoods of the billions of people living
in the region. Therefore, studies on ecosystem evolution in
this region and its responses to climatic factors are of great
importance from both scientific and societal points of view.

The Tibetan Plateau is one of the most vulnerable areas to
climate change (e.g., Cui and Graf, 2009; Wang et al., 2011;
Chen et al., 2013). A number of recent studies have been pub-
lished on the influence of climate change in vegetation dy-
namics as well as phenology over the Plateau (e.g., Gao et al.,
2013; Che et al., 2014; Shen et al., 2015a), based on evidence
from the NDVI (e.g., Pang et al., 2017) as well as tree-ring
data (Yang et al., 2017), but the nature of the change in the
trend remains a matter of debate. For instance, several stud-
ies have found a turning point for the vegetation dynamics of
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the Tibetan Plateau over the past three decades based on the
Global Inventory Modeling and Mapping Studies (GIMMS)
NDVI (e.g., Piao et al., 2011a; Chen et al., 2014b), while
others report an increasing trend in vegetation growth in the
northeastern Plateau throughout 1982–2011 when utilizing
other NDVI data sources (e.g., Shen et al., 2015b). Like-
wise, there is also controversy regarding the vegetation phe-
nology of the Plateau. For instance, Yu et al. (2010) reported
a delayed spring phenology after short-term advances as a
result of sustained wintertime warming, with limiting fulfill-
ment of chilling requirements and other factors (e.g., Chen
et al., 2011; Yi and Zhao, 2011). However, Zhang et al.
(2013a) doubted the data quality of GIMMS NDVI in most
parts of the western Plateau and insisted that the start date
of plant phenology has continuously advanced with a length-
ened growing season, but there is still some debate around
this view (e.g., Shen et al., 2013; Wang et al., 2013). Despite
these disputes, one certainty is that the Tibetan Plateau has
experienced substantial changes in vegetation growth over re-
cent decades.

The ecosystem of the Tibetan Plateau is highly suscep-
tible to climate change, and through various feedback pro-
cesses between the atmosphere and biosphere (Gu et al.,
2005; Kato et al., 2006) its evolution plays a crucial role in
regional (Li and Xue, 2010; Shen et al., 2015b) and global
(Wu et al., 2007) climate change. Recent studies have indi-
cated that climate change, particularly variations in temper-
ature and precipitation, affect vegetation dynamics (e.g., Liu
et al., 2013, Otto et al., 2016). For the majority of the Tibetan
Plateau, Zhou et al. (2007) suggested that vegetation activity
is controlled mainly by temperature (thermal) variations, with
positive correlations between temperature and vegetation dy-
namics in alpine ecosystems (Piao et al., 2011a), whereas
precipitation plays a relatively minor role. Nevertheless, as
global warming progresses, the influences of precipitation
(Gao et al., 2009, Shen et al., 2011) and temperature (Yu et
al., 2010, Zhang et al., 2013b) on vegetation dynamics on the
Plateau remain a matter of debate.

Temporal and spatial variations in the relationship be-
tween vegetation dynamics and climatic factors have been re-
ported in other regions. For instance, Buermann et al. (2014)
reported that, from the mid-1990s onward, the initially posi-
tive correlation between summer temperature and NDVI in
boreal forest zones became negative, possibly due to the
warming-induced drought stress. However, on the Tibetan
Plateau, although many recent studies (e.g., Ding et al., 2007;
Zhong et al., 2010; Zhang et al., 2013b; Hua et al., 2015) have
reported spatial differences in correlations between climatic
factors and vegetation dynamics, it remains unclear whether a
temporal switch has occurred in the relationship between veg-
etation dynamics and climate change. Such a switch could
lead to profound shifts in the ecosystem and, consequently,
the response of the regional and global climate system. To
this end, the objective of this study is to investigate the vari-
ations in the associations between the vegetation dynamics
and climate change over the Tibetan Plateau over the last few
decades.

2. Materials and methods

The GIMMS NDVI dataset (specifically: NDVI-3g), de-
rived from the AVHRR sensor (Pinzon and Tucker, 2014) and
corrected for calibration, view geometry, volcanic aerosols,
and other factors unrelated to vegetation change (Tucker et
al., 2005), was employed as an index of vegetation dynamics
(Chen et al., 2014a), with spatial and temporal resolutions of
(1/12◦) × (1/12◦) and 15 days, respectively. By employing
the Maximum Value Compositing technique (Holben, 1986),
the highest NDVI value from each 15-day period was ex-
tracted and combined into the growing season NDVI series
(Goward et al., 1985). Pixels with sparse vegetation (mean
NDVI < 0.1) were excluded, as suggested previously (Piao et
al., 2011b), which resulted in nearly 25% of the Plateau area
being excluded in this study.

A monthly precipitation and temperature gridded dataset
(0.5◦ × 0.5◦ spatial resolution) from 1982 to 2011 was ac-
quired from the University of East Anglia (the CRU’s TS
3.21 dataset: http://www.cru.uea.ac.uk/cru/data/) (Mitchell
and Jones, 2005). Due to the large gap in grid size between
the NDVI and CRU datasets, Pearson’s correlation coef-
ficient was calculated between each NDVI grid point and
the nearest CRU grid point during the growing season (the
mean of May to September). We calculated the Pearson’s cor-
relation coefficients between the vegetation dynamics (i.e.,
NDVI time series of the current growing season) and grow-
ing season precipitation (both the previous and the current
year) (Herrmann et al., 2005), as well as temperature (cur-
rent growing season). In addition, monthly in-situ meteoro-
logical records (Fig. S1 in Electronic Supplementary Mate-
rial) as well as MODIS NDVI were also employed to verify
the correlation results between the gridded CRU and NDVI
datasets.

To explore the relationship between climate change and
vegetation dynamics at the interannual time scale (Buermann
et al., 2014), linear trends were removed before the Pear-
son’s correlations were calculated (see Electronic Supple-
mentary Material). Since there is a significant (p < 0.05)
difference in the trends in the areal mean NDVI series be-
fore and after 1996 (Fig. S2), Pearson’s correlation coeffi-
cients were calculated for the sub-periods of 1982–96 and
1997–2011. As the correlation coefficients of the two sub-
periods had the same degrees of freedom (DF = 13), we
evaluated the difference in the coefficients between the two
sub-periods to highlight changes in the correlation. In order
to determine the relative role of temperature and precipita-
tion, partial correlations were also used to illustrate the tem-
poral changes in the climate controls on vegetation dynam-
ics over the Plateau. A nine-year moving-window correlation
between NDVI and the precipitation/temperature series was
also performed. In addition, in order to better identify the
spatial variations in the correlation between climate drivers
and vegetation growth, the Tibetan Plateau has been divided
into 11 physico-geographical areas (Zheng, 1996) (Fig. 1),
as suggested previously (e.g., Ding et al., 2007; Hua et al.,
2015).

http://www.cru.uea.ac.uk/cru/data/


NOVEMBER 2018 HUA AND WANG 1339

Fig. 1. Pearson’s correlation coefficient between the detrended
growing season NDVI and gridded precipitation in the previous
year on the Tibetan Plateau for (a) 1982–96 and (b) 1997–2011
[areas with non-significant (p > 0.1) correlation coefficients are
shown in grey], and (c) the difference between coefficients be-
fore and after 1996 (only areas with a difference of > 0.45 are
shown).

3. Results and discussion
3.1. Relationship between precipitation and vegetation dy-

namics
There was significant correlation (p < 0.10) between

growing season NDVI and precipitation of the previous year
over the majority of the Plateau from the early 1980s to the
mid-1990s (Fig. 1a). However, from the mid-1990s to the
early 2010s the correlations were not significant (p > 0.10)
across most of the Plateau, except for a few areas in the IID1
and IIAB1 zones (Fig. 1b). The decrease in correlation coeffi-
cients and switch from significant positive to non-significant
correlations (Fig. 1c) indicate that after the mid-1990s precip-
itation was no longer the key control on vegetation dynamics
on the Plateau.

By comparison, the correlation for precipitation in the
same year shows a different pattern (Fig. 2). From the early

1980s to the mid-1990s, except for the northeastern (IID2
and IIC2 zones) and part of the southwestern Plateau (IIC1
zone), there were significant negative correlations between
vegetation dynamics and precipitation in the same year over
the southeastern Plateau (IIAB1 zone) (Fig. 2a). From the
mid-1990s, excluding the southwestern Plateau, there were
non-significant correlations in most of the Plateau. In the
southeastern Plateau, there were also weakened negative cor-
relations between precipitation in the same year and vegeta-
tion growth after the mid-1990s. Compared with concurrent
precipitation, the precipitation prior to the growing season
was likely to have closer connections with vegetation dy-
namics, which might be owing to the time lag effect between
variation in precipitation and deep soil moisture that is criti-
cal for plant growth. In the central and southeastern Plateau,

Fig. 2. Pearson’s correlation coefficient between the detrended
growing season NDVI and gridded precipitation in the same
year on the Tibetan Plateau for (a) 1982–96 and (b) 1997–2011
[areas with non-significant (p > 0.1) correlation coefficients are
shown in grey], and (c) the difference between coefficients be-
fore and after 1996 (only areas with a difference of > 0.45 are
shown).
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where needle-leaf forest and shrubland are distributed, the
most moisture resource for trees comes from deep soil water
(Hua et al., 2015), and thus it takes a certain period of time for
the vegetation dynamics to respond to precipitation changes
(Bigler et al., 2007). Moreover, the finer-grained soil of the
southeastern Plateau (Brady and Weil, 1999) with a higher
water holding capacity may also be the contributor for the
significant correlation between NDVI and precipitation accu-
mulated during a longer time period (Lloret et al., 2007).

3.2. Relationship between temperature and vegetation dy-
namics

From the early 1980s to the mid-1990s, there was no
significant correlation (p > 0.10) between variations in tem-
perature and growing season NDVI for most of the Plateau,
despite some scattered areas (e.g., the IIC1, IC1, and IIC2
zones) with significant negative correlations (Fig. 3a). From
the mid-1990s, significant correlations (p < 0.05) between
temperature and growing season NDVI were obtained in the
IC1, IB1, and IIAB1 zones (i.e., the central and southeastern
part of the Plateau) (Fig. 3b), although negative correlations
were recorded in the IC2, IIC1, and IIC2 zones. The differ-
ence in the correlation coefficients pre- and post-1996 (Fig.
3c) shows a strengthening relationship between temperature
and growing season NDVI in the central and southeastern part
of the Plateau, suggesting the key factor controlling vegeta-
tion dynamics in these regions switched from precipitation to
temperature during the mid-1990s.

The effects of rising temperature on vegetation dynamics
were spatially variable across the Tibetan Plateau. A negative
relationship between NDVI and temperature, as seen in the
IC2, IIC1, and IIC2 zones (i.e., the southwestern and north-
eastern Plateau) after the mid-1990s, suggests that rising tem-
perature (Wang et al., 2008) leads to warming-induced mois-
ture deficits (Beck et al., 2011), thereby suppressing vegeta-
tion activity (Zhao and Running, 2010). In these regions with
relative low annual mean precipitation (< 400 mm), the sup-
pressing effect of temperature-rise-driven moisture deficits on
vegetation dynamics after the mid-1990s was also illustrated
by the significant positive correlations between growing sea-
son NDVI and the Palmer Drought Severity Index (PDSI) se-
ries (See Electronic Supplementary Materials and Fig. S3),
which suggests moisture is a key limiting climatic factor for
vegetation activity. Therefore, in these regions the temper-
ature increase had a negative impact on vegetation activity
after the mid-1990s.

By comparison, in the central and southeastern Plateau
(e.g., the IC1, IB1, and IIAB1 zones), after the mid-1990s
temperature variations were significantly and positively cor-
related with NDVI. In these areas, due to high amounts of
annual precipitation (> 400 mm), moisture was not the dom-
inant control on vegetation growth, as indicated by the in-
significant relationship between PDSI and NDVI (Fig. S3).
As a result, rising temperature did not increase drought stress,
but did lengthen the growing season (Liu et al., 2006) and en-
hance vegetation activity (Nemani et al., 2003). Therefore,
after the mid-1990s, temperature rise played a positive role

Fig. 3. Pearson’s correlation coefficient between the detrended
growing season NDVI and temperature on the Tibetan Plateau
for (a) 1982–96 and (b) 1997–2011 [areas with non-significant
(p > 0.1) correlation coefficients are shown in grey], and (c) the
difference between the coefficients before and after 1996 (only
areas with a differences of > 0.45 are shown).

on vegetation activity of the central and southeastern Plateau.
In addition, results from MODIS NDVI also showed that,

during the period of 2000 to 2011, vegetation activity in the
central and southeastern part of the Plateau had closer rela-
tionships with temperature than that of precipitation of both
the previous and concurrent growing season (Fig. S4), and
the correlation coefficients of the areal mean time series were
0.663 (p < 0.05) and −0.225 (p = 0.460) for temperature and
precipitation of the previous year, respectively, all of which
further support our finding regarding climate control changes
from the mid-1990s onward.

3.3. Temporal trends in the factors controlling vegetation
dynamics in the central and southeastern Plateau

The ecosystem of the central and southeastern part of the
Plateau is of greater importance to regional and global cli-
matic and environmental changes than other regions on the



NOVEMBER 2018 HUA AND WANG 1341

Plateau (Immerzeel et al., 2010). Over the past three decades
the central and southeastern Plateau has experienced changes
in the main climate controls on vegetation dynamics. Corre-
lation analyses of the areal mean NDVI series (e.g., the IC1,
IB1, and IIAB1 zones) with mean CRU precipitation of the
previous year demonstrate a change from a positive and sig-
nificant correlation (r = 0.54, p = 0.04) during the early 1980s
to the mid-1990s to a negative and non-significant correla-
tion of −0.01 (p = 0.96) during the mid-1990s to the early
2010s. The nine-year moving correlation coefficient between
the areal mean precipitation and NDVI also reveals that the
importance of precipitation as a control on vegetation dynam-
ics gradually decreased from the early 1980s to the present, as
indicated by the decrease in the correlation coefficient from
∼ 0.70 (p < 0.05) before the mid-1990s to −0.30 (p > 0.30)
by the early 2010s (Fig. 4a). These results indicate that, as
temperature increases, precipitation plays a weakening role
in the vegetation dynamics over the central and southeastern
part of the Plateau.

After the mid-1990s, the importance of temperature as
a controlling factor on vegetation dynamics increased in the
central and southeastern part of the Plateau. For instance,
from the early 1980s to the mid-1990s, the correlation coef-
ficient between areal mean NDVI and temperature was only
0.04 (p = 0.89), compared with 0.58 (p = 0.02) from the mid-
1990s to the early 2010s. The nine-year moving correlation
results also show that before the mid-1990s the temperature

was negatively and non-significantly correlated with vege-
tation activity (r is around −0.10, p > 0.70), whereas from
the mid-1990s the correlation coefficient increased to near
0.50 (p < 0.20) and even to over 0.60 (p < 0.10) in the late
2000s (Fig. 4b). This result suggests that, with the occurrence
of global warming, temperature is an increasingly important
control on vegetation dynamics. The results with in-situ data
also display a similar pattern to that of the gridded dataset
and the shift in the correlation with climate factors (Fig. S5).

On the other hand, the significant negative (r = −0.416,
p = 0.025) autocorrelation of the growing season precipita-
tion time series (i.e., the correlation between precipitation of
the previous and of the current year) and the relationship be-
tween precipitation and temperature may affect the correla-
tion between climate factors (i.e., temperature/precipitation
of the previous year) and NDVI. Therefore, a partial corre-
lation was performed to remove the influence of these con-
nections on the correlation between each climate factor and
vegetation dynamics. The result shows that when their rela-
tionship with precipitation of the current year was excluded,
the correlation of neither the temperature or the precipitation
in the previous year with NDVI was weakened obviously (Ta-
ble 1). During the period of 1982 to 1996, the partial correla-
tion of precipitation in the previous year decreases to 0.661 to
0.582, but they are both significant (p < 0.05); whereas, from
1997 to 2011, the partial correlation coefficient of tempera-
ture increases slightly, from p = 0.557 to p = 0.595, both of

Fig. 4. Temporal trends in growing season vegetation activity (1982–2011) and its correlations
with the gridded (a) precipitation in the previous year and (b) temperature on the central and
southeastern Tibetan Plateau. Correlation coefficients were calculated using a nine-year mov-
ing window with trends pre-removed. Correlation coefficients above/below the horizontal gray
dashed lines are statistically significant (|r| > 0.582; P < 0.1).
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Table 1. Partial correlation coefficients and their corresponding significance levels (in parentheses) between each climate factor and the
NDVI series during the growing season in the central and southeastern Tibetan Plateau (i.e., IC1, IB1, IIAB1) in the periods 1982–1996
and 1997–2011. The linear trends of all series were pre-removed.

1982–1996 1997–2011

Controlling factor Pre previous Pre current Tmp Pre previous Pre current Tmp

None 0.661 (0.010) −0.396 (0.143) −0.098 (0.792) −0.122 (0.664) −0.163 (0.561) 0.557 (0.031)
Pre previous – 0.108 (0.726) −0.198 (0.517) – −0.170 (0.562) 0.554 (0.040)
Pre current 0.582 (0.037) – −0.212 (0.466) −0.131 (0.656) – 0.595 (0.025)
Tmp 0.673 (0.012) −0.433 (0.122) – 0.103 (0.727) −0.297 (0.303) –

Note: “Pre previous”, “Pre current” and “Tmp” are abbreviations for the growing season precipitation in the previous year, the growing season precipitation
in the current/same year, and the growing season temperature, respectively.

which are significant at the 0.05 level.
In addition, the spatial pattern in the partial correlations of

vegetation activity with temperature and precipitation of the
previous year were also analyzed in both sub-periods. Fol-
lowing the method of a previous study (Wu et al., 2015), the
absolute value of the partial correlation coefficients (0–1) was
linearly scaled to 0–255, and the scaled values of temperature
and precipitation were then performed on red and green in the
RGB (Red, Green, and Blue) color mode, respectively (the
other primary color is constant), which illustrates the relative
role of temperature and precipitation in the vegetation activ-
ity. The result shows that, before 1996, the vegetation activity
in most of the central and southeastern Plateau was mainly
controlled by precipitation variations (Fig. 5a), while after
1997 it was driven primarily by temperature changes (Fig.
5b). These different patterns also suggest a shift in the main
climate controls on vegetation from precipitation to tempera-
ture.

Fig. 5. Partial correlation coefficients between the detrended
growing season NDVI and precipitation in the previous year on
the Tibetan Plateau for (a) 1982–96 and (b) 1997–2011.

3.4. Possible mechanism for the temporal variations in the
controls on vegetation dynamics

With the development of global warming, the central
and southeastern Plateau has also been experiencing climate
change in recent decades (Figs. S6 and S7). As suggested by
Piao et al. (2006), the relationship between climatic factors
and vegetation dynamics is closely linked with the climate
condition and will vary with the changing climate system,
which might be the reason for the temporal variations in the
climate controls of vegetation growth in the central and south-
eastern Plateau.

To verify this assumption, we also analyzed the relation-
ships between the correlation coefficient of each meteoro-
logical station (between climate time series and NDVI) and
their corresponding mean temperature and precipitation dur-
ing the two sub-periods, respectively (Fig. 6). It is clear that
the correlation coefficient between NDVI and precipitation
during 1982–1996 is higher than that of 1997–2011, while the
correlation coefficient of temperature is higher during 1997–
2011, which are both consistent with the statements men-
tioned above. The correlation between NDVI and precipi-
tation in the previous year is more dependent on the mean
precipitation than the mean temperature (Figs. 6a and b), and
there were significant (p < 0.10) and negative relationships
between them for both sub-periods, which indicates that in-
creasing precipitation may cause a declining connection be-
tween NDVI and precipitation in the previous year. However,
the correlation coefficient between NDVI and temperature is
more linked with temperature (Figs. 6c and d), and their pos-
itive relationships show that higher temperature appears to be
associated with a closer correlation between temperature and
vegetation growth.

In the central and southeastern part of the Plateau, the
relationships between precipitation in the previous year and
NDVI decreases as the mean precipitation increases, while
the favorable influence of temperature on vegetation growth
tends to increase as the mean temperature rises. As global
warming progresses, the increasing (albeit non-significant)
precipitation, and the significant rising temperature, in the
central and southeastern Plateau (Figs. S6 and S7) might con-
tribute to the weakening influence of precipitation and the
strengthening influence of temperature on vegetation activ-
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Fig. 6. Variations in the correlation coefficient (r) between the detrended growing season NDVI and the in-situ
precipitation of the previous year/temperature along with their corresponding mean (a)/(c) precipitation and
(b)/(d) temperature over the central and southeastern Plateau from 1982 to 1996 (open circles) and from 1997
to 2011 (solid circles). The solid (dashed) lines are the linear regressions (also shown by correlation coefficients
r) between correlations and precipitation of previous year/temperature obtained from the least-squares method.

ity, respectively. Therefore, the shift in the controlling factor
on regional vegetation dynamics can be regarded as the result
of their responses to the changing climate condition under
global warming.

4. Conclusions
In the central and southeastern Tibetan Plateau, the dom-

inant climatic control on vegetation dynamics has switched
from precipitation to temperature over the past few decades,
possibly due to the changing climate condition in the con-
text of global warming. Contrary to previous work showing
climate-warming-induced drought stress to vegetation growth
for several other regions (e.g., Buermann et al., 2014), our
study—with a focus on the ecosystem of the Plateau area—
provides evidence that a positive response has become per-
vasive since the mid-1990s. In addition to the lengthened
growing season, another potential contributor for the posi-
tive impact on vegetation dynamics of Plateau areas might be
the increasing water use efficiency, which enables resilience
to warming-induced moisture stress as a result of decreased
stomatal density and conductance of water driven by increas-
ing CO2 concentrations (Keenan et al., 2013). However, due

to the shortness of observations and limited station coverage,
this finding needs to be taken with some caution. Moreover,
the mechanism that underlies such switches since the mid-
1990s remains unclear, which should be addressed in future
studies.
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